
1. A strong version of Taylor’s theorem. Cauchy’s integral formula for a holomorphic f :
Ω→ C yields

f(z) =
∞∑
j=0

aj(z − z0)j

where

aj = aj(f, z0) =
f (j)(z0)

j!

and the series is uniformly convergent on any open disk that is contained in Ω.
Consequence: If z0 is a zero of f , then

f(z) = (z − z0)ng(z)

for some n ∈ N called the order of z0 and a holomorphic function g. Since zeros are isolated,
there is a small disk D centered at z0 in which g 6= 0.

2. Now z0 is a pole of order n of f if it is a zero of order n of 1/f . If z0 is a pole of order n
of f , then

f(z) = (z − z0)−nh(z)

where h is holomorphic in D. In other words, if z0 is a pole of f , then

f(z) =
∞∑

j=−n

aj(z − z0)j

and one defines the residue of f at z0 by

Res(f ; z0) = a−1

It follows that

Res(f ; z0) = lim
z→z0

1

(n− 1)!

dn−1

dzn−1
(
(z − z0)nf(z)

)
whenever z0 is a pole of order n
The Residue Theorem. If f is holomorphic in Ω \ {z1, . . . zN}, then∮

α

f(z)dz = 2πi
∑
i

Res(f ; zi)

for any closed, positively oriented, simple curve in Ω \ {z1, . . . , zN}, where the sum extends
to all poles contained in the interior of α.

Remarks. (i) The order of a zero z0 is the order of the first non-vanishing derivative at z0
(ii) If g is holomorphic in Ω, then f(z) = g(z)/(z − z0) has a simple pole at z0 with

Res(f ; z0) = g(z0)

which recovers Cauchy’s integral formula.
(iii) A function that is holomorphic in Ω \ {z1, . . . , zN} is called meromorphic in Ω.
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