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Abstract

We review some of the concepts which shaped the understanding of the integer
quantum Hall effect, as well as the mathematical results they led to. Also described
are the underlying physical motivations. Emphasis is placed on the equivalence of
different approaches.

To Barry, with admiration

1 Introduction

The integer quantum Hall effect (IQHE) has been at the crossroads of several develop-
ments in mathematical physics, such as non-commutative geometry, index theory, local-
ization, and the adiabatic theorem. Some of the most illuminating contributions to these
topics are coauthored by Barry Simon. The fractional quantum Hall effect, which we
shall not review here, further ties to conformal and topological field theory [21] and to
the classification of certain integral lattices [19].

The IQHE appears in some two-dimensional samples at temperatures close to zero and
in a strong, transverse magnetic field. The current density j and the stationary electric
field E, both lying in the plane of the sample, are empirically related by the Hall-Ohm
law

j = σE , (1)

which introduces the conductivity tensor σ. The phenomenon is that, under appropri-
ate conditions, transport is dissipationless, j · E = 0, which means that the tensor is
antisymmetric,

σ =

(
0 σH

−σH 0

)
; (2)

even more remarkably, the Hall conductance σH is quantized in multiples of e2/h, where
e is the electron charge and h is Planck’s constant (i.e., of 1/2π if natural units are used);
and the quantization of σH is accurate to within 10−8 when the magnetic field or the
density of electrons are varied over a sizeable range, a fact called a plateau. Its width
may be comparable to the separation between plateaus.
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Three basically distinct explanations have been proposed for the IQHE. Common to
all, at least in their original formulation, is that they treat the electrons as independent
particles, except for the Pauli principle.

(i) The Hall conductance may be identified with the charged pumped across a closed
ribbon when the magnetic flux threading it is increased by one flux quantum [26].
The Hamiltonians before and after that change are unitarily conjugate and the state
has evolved adiabatically in between because the transport is dissipationless. The
occupation of states follows the spectral flow as a function of the flux and that
charge is the number of occupied eigenvalues having crossed the Fermi energy in the
process. Clearly, that number is an integer.

(ii) Linear response theory computes the current j induced by a weak electric field E
in the bulk of the sample, which yields the Kubo formula for the Hall conductance.
That expression can be related to a Chern number [33], which is an integer.

(iii) The Hall current is ascribed to states flowing at the edge of the sample. In special
cases it may be identified with the number of edge channels [23, 10], which is an
integer.

The Hall conductance as defined on the basis of (i) has been linked [26, 23] to the
current flowing along the ribbon when an electric potential is applied across it. That
current may be interpreted as flowing either in the bulk [26] or at the edges [23] of the
ribbon. In real experiments it is a combination of both possibilities [23].

Following their original formulation, the approaches (i-iii) have not only gained in
mathematical precision, but the physical concepts involved have been clarified as well.
For instance, the argument [26] for (i) depended on the fact that eigenvalues moving
down (resp. up) under the spectral flow are associated with the inner (resp. outer)
edge. If the Hamiltonian is symmetric against rotations along the ribbon, as it was
first assumed, then the eigenvalues are monotone in the flux throughout its variation,
permitting the conclusion on charge transport stated above. If it is not, as e.g. implied
by the presence of weak disorder, eigenvalue crossings formerly protected by symmetry
may now be avoided, destroying monotonicity. This issue, which reflects the possibility
of eigenstates tunnelling between edges, admittedly remained to be investigated in [26].
It can be avoided altogether if the outer edge is pushed to infinity [4], which turns the
ribbon into a punctured plane. In that geometry the Hall conductance can be identified
with the relative index [4] of a pair of projections. As another example, the argument
[33] for (ii) assumes a periodic Hamiltonian and hence rational magnetic flux per unit cell
and no disorder. This is however not needed, since the unit cell may be replaced by a
torus of boundary conditions [29] or fluxes [5] (in the latter case the approach extends to
interacting particles). Another generalization [6] of the Chern character, more appropriate
to the thermodynamic limit, is by means of non-commutative geometry.

Disorder is crucial for the formation of plateaus. There, the Fermi energy varies within
in an interval where bulk states are localized, a so-called mobility gap. Such a variation
changes the occupation of states (and hence the electron density), but not that of those
participating in transport. By contrast, a variation over the extended states spectrum,
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or over a spectral gap, changes both, resp. neither. Disorder thus affects the analysis
in two main ways: First, it destroys a symmetry, like the above mentioned rotations or
periodicity. This applies even if the simplifying assumption is made that (a) the Fermi
energy falls in a spectral gap. Second (b), the Fermi energy actually falls in a mobility
gap. It it therefore of utmost importance that definitions of Hall conductance and their
equivalence be compatible with disorder. For (i, ii) this was achieved in [6, 4]; for (iii, a)
in [31, 24] and for (iii, b) in [16].

2 Results

We shall momentarily present three definitions of Hall conductance related to the above
pictures (i-iii). A mathematical setting, in which they are conveniently placed, is that
of discrete Schrödinger operators [14]. The bulk is represented by the lattice Z2 3 x =
(x1, x2) with Hamiltonian HB = H∗B on `2(Z2). Its matrix elements HB(x, x′), (x, x′ ∈ Z2),
are of short-range in the sense that

sup
x∈Z2

∑
x′∈Z2

|HB(x, x′)|(eµ|x−x′| − 1) =: C1 <∞ (3)

for some µ > 0, where |x| = |x1| + |x2|. A bounded, open interval ∆ ⊂ R, which shall
contain the Fermi energy, is assumed to lie (a) in a spectral gap or, more generally, (b) in
a mobility gap:

(a)
∆ ∩ σ(HB) = ∅ ; (4)

(b) For some ν > 0,

sup
g∈B1(∆)

∑
x,x′∈Z2

|g(HB)(x, x′)|(1 + |x|)−νeµ|x−x′| <∞ , (5)

where B1(∆) denotes the set of Borel measurable functions g which are constant
in {λ|λ < ∆} and in {λ|λ > ∆} with |g(λ)| ≤ 1 for all λ ∈ R. In particular, the
spectrum is pure-point in ∆ [25]. Denoting by EM the characteristic function of
M ⊂ R, the assumption is completed by

dimE{λ}(HB) <∞ , (λ ∈ ∆) , (6)

i.e., no eigenvalue in ∆ is infinitely degenerate.

Condition (5) is basically a statement about dynamical localization. It has been
established in [1] and more explicitely in [30], where the above property is related to the
SULE property, as well as in [2], where g is allowed to be constant, rather than zero,
outside of ∆. The condition holds true almost surely for ergodic Schrödinger operators
whose Green’s function G(x, x′; z) = (HB − z)−1(x, x′) satisfies a moment condition [3] of
the form

lim sup
E∈∆,η→0

E(|G(x, x′;E + iη)|s) ≤ Ce−µ|x−x
′|
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for some 0 < s < 1, but can also be proved [22] using multi-scale analysis [20]. Condition
(6) appears to be essential for a plateau, in view of the fact that for the Landau Hamil-
tonian (though defined on the continuum rather than on the lattice) σH jumps as the
Fermi energy crosses an infinitely degenerate Landau level. The condition, in fact simple
spectrum (almost surely), follows from the arguments in [32]. We stress however that the
hypotheses (a) and (b) themselves are deterministic. Translation covariance or ergodicity
of HB are not assumed here.

The three definitions of Hall conductance shall now be associated with a Flux, the
Bulk and the Edge. The physical motivations relating them to the approaches (i-iii)
mentioned before will be given in the next section.

(i) The definition is based on the index of a pair of projections and depends on some
unitaries associated with gauge transformations. Let P and Q be two orthogonal
projections on a Hilbert space, so that P −Q is compact. Then

Ind(P,Q) = dim{ψ | Pψ = ψ,Qψ = 0} − dim{ψ | Pψ = 0, Qψ = ψ} . (7)

Let U(x), (x ∈ Z2), satisfy |U(x)| = 1 and

|U(x)− U(y)| ≤ C1
|x− y|
1 + |x|

, (|x− y| ≤ C2|x|), (8)

for some C1, C2. Along a large loop encircling the origin counterclockwise, the
phases of U(y)/U(x), which are small for single bonds (x, y), add up to a multiple,
N(U) ∈ Z, of 2π. We assume that the winding number N(U) equals 1. Then

σF (λ) =
1

2π
Ind(Pλ, UPλU

∗) , (9)

where Pλ = E(−∞,λ)(HB).

(ii) The definition makes use of switch functions: Let Λ(n), (n ∈ Z), be a function which
equals 0 for large negative n, resp. 1 for large positive n. Then

σB(λ) = i trPλ
[
[Pλ,Λ1], [Pλ,Λ2]

]
, (10)

where Λ1 and Λ2 are switch functions of x1, resp. x2.

(iii) The sample with an edge is modeled as a half-plane Z × Za, where Za = {n ∈ Z |
n ≤ a}, with the height a of the edge eventually tending to ∞. The Hamiltonian
Ha = H∗a on `2(Z×Za) is obtained by restriction of HB under some largely arbitrary
local boundary condition, described as follows. Denoting by Ja : `2(Z×Za)→ `2(Z2)
the extension by 0, we assume that

Ea = JaHa −HBJa : `2(Z× Za)→ `2(Z2)

satisfies
sup
x∈Z2

a∈Z

∑
x′∈Z×Za

|Ea(x, x′)|eµ(|x2+a|+|x1−x′1|) <∞ . (11)
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We then set
σE = i lim

η→0
lim
a→∞

tr ρ′(Ha)[Ha,Λ1]Aη,a(Λ2) , (12)

where ρ ∈ C∞(R) satisfies

ρ(λ) =

{
1 , (λ < ∆) ,

0 , (λ > ∆) ,
(13)

and

Aη,a(X) = η

∫ ∞
0

e−ηteiHatXe−iHatdt

is the average over a time ∼ η−1 of a bounded operator X with respect to the
Heisenberg evolution generated by Ha.

The main results are as follows: First of all, these quantities are well-defined for λ ∈ ∆.
Second, they are independent of various auxiliary objects, such as U , Λ1, Λ2 and Ea. In
particular, they do not change when U , Λ1, or Λ2 are replaced by some translates. For
concreteness only, the reader may think of Up(x) = U(x− p) with

U(x) =
x

|x|
(14)

and p = (p1, p2) ∈ Z2∗ = Z2 + (1
2
, 1

2
), as well as Λi,p = θ(xi − pi); for Dirichlet boundary

conditions, Ha = J ∗aHBJa, the locality condition (11) holds true by (3). Third, the
conductances are independent of λ ∈ ∆, resp. ρ with (13), which is the manifestation of
a plateau. Fourth,

σF = σB = σE .

Finally, 2πσF is manifestly an integer.

Some of these definitions were first formulated under slightly different assumptions.
For instance, under assumption (a) the definition (12) of the edge Hall conductance can
be replaced by the simpler

σE = i tr ρ′(Ha)[Ha,Λ1] , (15)

for any a ∈ Z. In an ergodic setting, Λ1 and Λ2 in (10) may be replaced by x1, resp. x2

and the trace by the trace per unit area,

σB = i tr∞ Pλ
[
[Pλ, x1], [Pλ, x2]

]
, (16)

which takes an almost sure value [7]. The same replacement can be made in (15), with
the trace now becoming trace per unit length [31].

It is now appropriate to review the genesis of these results. The definition (16) was
proposed in [6] and identified as a 2-cocycle. It was shown to be an integer by relating it
to a Fredholm index, through a formula of Connes [13]. In [4] that index was formulated
as the index (7) of a pair of projections and endowed with independent physical motiva-
tion. It was proved to be equal to the expectation of (10), again in the ergodic setting
and using Connes’ formula, but without explicit reference to non-commutative geometry.
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Translation invariance of (9) was shown and used in [6, 4]. It was noted in [16] that the
same is true for (10), and not just for its expectation, which allowed to turn σF = σB
into a deterministic statement. In [31], which is placed in the ergodic setting and under
assumption (a), σE was displayed as a winding number, which provided an independent
reason for its quantization. It was also shown to be a 1-cocycle, from which the conclu-
sion σE = σB was drawn using K-theory. The equality σE = σF , again for (a) but in a
deterministic setting, was shown in [15, 27]. In the more general case (b), σE = σB is due
to [16], with a special case due to [12]. In all this, the pioneering role of non-commutative
geometry [6, 31] is manifest.

3 Motivations

We provide the physical pictures underlying the definitions (i-iii) of Hall conductances.
The discussion is largely heuristic.

(i) In one of its guises the Laughlin argument relates the Hall conductance with the
charge pulled from infinity when a flux quantum is slowly added near the origin. By the
continuity equation, the charge Q inside a loop C changes at the rate

dQ

dt
= −

∮
C
j · νds ,

where ν is the outward normal. By Faraday’s law, a change in the flux Φ is accompanied
by an electric field, ∮

C
E · τds = −dΦ

dt
,

where τ is the tangent vector. If the change is slow, the field is nearly stationary, so
that (1, 2) apply, resulting in ∆Q = σH∆Φ. This is to be compared with the quantum
mechanical computation of ∆Q. The state of the system is U(t, 0)PλU(t, 0)∗, where U(t, 0)
is the evolution generated by the Hamiltonian, now depending on time through the flux.
By the time, t = t0, the flux has increased by ∆Φ = 2π the Hamiltonian becomes unitarily
conjugate to H through U(x) with winding number 1. Its Fermi projection is UPλU

∗. In
the limit of a large loop and of a slow process the change ∆Q equals the excess number
of electrons in the evolved many-body state, as compared with the ground state for the
same flux:

∆Q = Ind(U(t0, 0)PλU(t0, 0)∗, UPλU
∗) = Ind(Pλ, UPλU

∗) .

The second equation follows because of the additivity (Ind(P,R) = Ind(P,Q)+Ind(Q,R))
and the continuity (‖P −Q‖ < 1⇒ Ind(P,Q) = 0) of the index, implying

Ind(U(t, 0)PλU(t, 0)∗, Pλ) = 0 .

(ii) The Kubo formula for conductance is derived by adiabatically switching an electric
field and considering the linear response of the system. The function −Λ2 can be seen
as an electric potential of unit drop for a field pointing in the positive x2-direction, while
the operator i[H,Λ1] stands for the total current in the x1-direction. The expectation
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of the latter in the state perturbed by the former yields σ12, i.e., σH in eq. (2). The
time-dependent Hamiltonian is

H(t) = H − Λ2f(t) , (t ≤ 0) ,

where f(t) slowly interpolates between 0 and 1, e.g., f(t) = eηt for some small η > 0. As
in (i) the unperturbed density matrix is Pλ. The perturbed density matrix ρ(t) satisfies
the initial value problem

d

dt
ρ(t) = −i[H(t), ρ(t)] , lim

t→−∞
eiHtρ(t)e−iHt = Pλ .

To first order in the electric field the solution is

ρ(0)− Pλ = i

∫ 0

−∞
dt eηteiHt[Λ2, Pλ]e

−iHt ,

and we obtain, after an integration by parts,

σB = lim
η→0

i tr[H,Λ1](ρ(0)− Pλ) = lim
η→0

iη tr

∫ 0

−∞
dt eηt(e−iHtΛ1eiHt − Λ1)[Λ2, Pλ] . (17)

Since Pλ is a projection we have [Λ2, Pλ] = Pλ[Λ2, Pλ](1− Pλ) + (1− Pλ)[Λ2, Pλ]Pλ. The
substitution of this into (17) amounts, by cyclicity, to the substitution of Λ1 there by the
expression

(1− Pλ)Λ1Pλ + PλΛ1(1− Pλ) =
[
[Λ1, Pλ], Pλ

]
.

The l.h.s. contributes two terms to (17) containing e±iHt, similar to one another, one of
which is

iη tr

∫ 0

−∞
dt eηte−iHt(1− Pλ)Λ1Pλe

iHt[Λ2, Pλ] .

As we now sketch, it vanishes for η → 0. Representing the propagators as e−iHt =∫
e−iµtdPµ, we are led to

iη

∫ 0

−∞
dt eηte−i(µ+−µ−)t = − η

µ+ − µ− + iη
(18)

with µ+ ≥ λ, µ− < λ. Since this quantity vanishes pointwise as η → 0 for (µ+, µ−) in the
stated region, one is tempted to conclude that

σB = −i tr
[
[Λ1, Pλ], Pλ

]
[Λ2, Pλ] = i trPλ

[
[Λ1, Pλ], [Λ2, Pλ]

]
,

which is (10). The passage from (17) to (10), or rather its analogue in the ergodic setting,
cf. (16), has been put on a firm basis, see [7], but also [2, 9]; in the present setting the
result can be obtained using methods of [17]. In both cases it is crucial that λ lies in a
mobility gap, which allows to control the small denominator in (18).

(iii) For a simpler start let us first discuss the definition (15) for σE valid in the case of a
spectral gap. We interpret ρ(Ha) as the 1-particle density matrix of a stationary quantum
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state. Though some current is flowing near the edge we should discard it, as it is supposed
to be canceled by current flowing at an opposite edge located at x2 = −∞. The idea is that
the two opposite edges of a macroscopic sample are infinitely separated from a microscopic
perspective, and we focus on one of them. The drop in electrical potential used in (ii) is
now given a different physical realization: The Fermi energy is lowered by δ at the first
edge, but not at the second. Then a net current I = i tr((ρ(Ha + δ)− ρ(Ha))[Ha,Λ1]) is
flowing, resulting in

σE = lim
δ→0

I

δ
= i tr ρ′(Ha)[Ha,Λ1] .

The current operator i[Ha,Λ1] is relevant only on states along a strip near x1 = 0, and
ρ′(Ha) only near the edge x2 = a, because ρ′(HB) = 0 due to (4). The intersection of the
two strips is compact, which is basically why the trace exists. In presence of a mobility
gap, however, this property of ρ′(Ha) fails. In search of a proper definition of σE for this
case, we consider only the current flowing across the line x1 = 0 within a finite window
0 ≤ x2 < a next to the edge. This amounts to modifying the current operator to be
i[Ha,Λ1]Λ2 (or a symmetrized version thereof), with which one may tentatively use

lim
a→∞

i tr ρ′(Ha)[Ha,Λ1]Λ2 (19)

as a definition for σE. Though this limit exists, it is not the physically correct choice.
States in the range of ρ′(Ha) supported far away from the edge are close to bound states
of the bulk Hamiltonian, HBψλ = λψλ, or linear combinations thereof. Such states may
carry persistent currents (whence the operator in (15) is no longer trace class), but no
current across the line x1 = 0, since (ψλ, [HB,Λ1]ψλ) = 0. This cancellation is the
rationale for ignoring the part x2 < 0 of the line x1 = 0 by means of the cutoff Λ2 in (19),
however the cancellation is not achieved on states located near the end point x = (0, 0).
The contribution missed by (19) is (ψλ, i[HB,Λ1](1−Λ2)ψλ) = −(ψλ, i[HB,Λ1]Λ2ψλ) from
each bound state. By weighting them with ρ′(λ) we amend the definition (19) of the edge
conductance:

σE = lim
a→∞

i tr ρ′(Ha)[Ha,Λ1]Λ2 − i
∑
λ∈E∆

ρ′(λ) trE{λ}[HB,Λ1]Λ2E{λ} . (20)

The sum, which is over the eigenvalues in ∆, happens to be absolutely convergent, but
there is no general reason for it to vanish. In fact, it can be shown to be non-zero for the
Harper Hamiltonian with a Cauchy distributed random potential.

Alternatively, one may use in (19) and instead of Λ2 a cutoff which commutes with
the dynamics generated by Ha, at least in some limit. Its use will not create spurious
contributions which call for compensation. Such a possibility is realized by the time
average of Λ2 and leads to definition (12). Unlike (20), it is stated purely in terms of the
edge Hamiltonian Ha. Nevertheless the two definitions agree [16]. We also remark that the
time averages in eqs. (12) and (17), though of different physical origin, are mathematically
related, which is instrumental to the proof of σE = σB.
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4 Some snapshots from the proofs

1. The equality σF = σB in case (b)

In the case of finite dimensional projections P and Q the index can be computed as
Ind(P,Q) = tr(P −Q). The generalization [4] to the infinite dimensional case is

Ind(P,Q) = tr(P −Q)2n+1

if P − Q ∈ J2n+1 for some odd integer 2n + 1, where Jp, (1 ≤ p < ∞), are the trace
ideals. In particular, tr(P −Q)3 = tr(P −Q) if P −Q ∈ J1, which can be seen from the
identity

(P −Q)− (P −Q)3 = [PQ,QP ] = [PQ, [Q,P −Q]] . (21)

In the application to the QHE, where P = Pλ, Q = UPλU
∗, the difference luckily is not

trace class, since the contrary would imply tr(Pλ−UPλU∗) = 0 by evaluating the trace in
the position basis. However, the third power of this difference is trace class, which yields

σF =
1

2π
tr(Pλ − UPλU∗)3 =

i

π

∑
x,y,z∈Z2

Pλ(x, y)Pλ(y, z)Pλ(z, x)S(x, y, z) , (22)

S(x, y, z) = − i

2

(
1− U(x)

U(y)

)(
1− U(y)

U(z)

)(
1− U(z)

U(x)

)
.

To show its equality with

σB = i
∑

x,y,z∈Z2

Pλ(x, y)P⊥λ (y, z)Pλ(z, x)[(Λ1(y)− Λ1(x))(Λ2(z)− Λ2(y))− (1↔ 2)] , (23)

the authors of [4] assumed that the projection is ergodic (or covariant) w.r.t. magnetic
translations. Translation invariance of σF then implies that (22) is a translation invariant
function of the randomness and a.s. equal to its expectation. After taking the expecta-
tion of both equations (22, 23), the expressions E(Pλ(x, y)P

(⊥)
λ (y, z)Pλ(z, x)) are constant

under a common shift a of the summation variables x, y, z. By trading one them against
a, the sums over the latter involve only U , resp. Λi; moreover, for U = x/|x|, they are
related through a formula of Connes, to be discussed below. The result is σF = E(σB). A
slightly different use of translation invariance, which does not depend on ergodicity, was
made in [16]. Let U = Up and Λi = θi,p as in (14). Since in fact both σF and σB are
independent of p, averaging of (22, 23) over Λ∗L = {p ∈ Z2∗ | |p| ≤ L} results in

σF =
i

πL2

∑
p∈Λ∗L

x,y,z∈Z2

Pλ(x, y)Pλ(y, z)Pλ(z, x)S(p, x, y, z) , (24)

S(p, x, y, z) = sin∠(x, p, y) + sin∠(y, p, z) + sin∠(z, p, x) , (25)

respectively in

σB =
i

L2

∑
p∈Λ∗L

x,y,z∈Z2

Pλ(x, y)P⊥λ (y, z)Pλ(z, x)·

· [(θ(y1 − p1)− θ(x1 − p1))(θ(z2 − p2)− θ(y2 − p2))− (1↔ 2)] . (26)

9



These two expressions, which do not depend on L by derivation, will be shown to be equal
in the limit L→∞. Because the decay (5) applies to Pλ, the summation ranges x ∈ Z2,
p ∈ Λ∗L can then be replaced by x ∈ ΛL, p ∈ Z2∗. At this point Connes’ formula [13]

1

π

∑
p∈Z2∗

S(p, x, y, z) = 2 Area(x, y, z) (27)

may be used in (24), where Area(x, y, z) is the triangle’s oriented area, namely 1
2
(x− y)∧

(y− z). On the other hand the corresponding sum in (26) also yields 2 Area(x, y, z), since∑
pi∈Z∗

(θ(yi − pi)− θ(xi − pi)) = yi − xi .

The proof of σF = σB is completed by P⊥λ (y, z) = δyz − Pλ(y, z).

2. Connes’ formula

The role of the sine function in (27, 25) is less special than one might think, as noted by
[11]: For a fixed triplet u(1), u(2), u(3) ∈ Z2, let αi(p) = ∠(u(i+1), p, u(i+2)) ∈ (−π, π) be
the angle of view from p ∈ Z2∗ of u(i+2) relative to u(i+1) (with αi(p) = 0 if p lies between
them). Let g(α) be a bounded function satisfying g(−α) = g(α) and

g(α) = α + O(α3) (28)

near α = 0. Then, ∑
p∈Z2∗

3∑
i=1

g(αi(p)) = 2πArea(u(1), u(2), u(3)) . (29)

The proof is as follows. We may assume the triangle to be positively oriented. The
statement (29) is true for g(α) = α. Indeed, for each p ∈ Z2∗,

3∑
i=1

αi(p) = 2π


1

1/2
0

 for p


inside

on the boundary of
outside

 the triangle. (30)

Thus, for g(α) = α the l.h.s. of (29) is 2π× the number of dual lattice sites within the
triangle (counting a boundary site with weight 1/2). This number equals the triangle’s
area.

The above observation reduces (29) to the statement that for f(α) = g(α)− α∑
p∈Z2

3∑
i=1

f(αi(p)) = 0 . (31)

A significant difference between f and g is that the individual terms f(αi(p)) are summable
in p ∈ Z2, since by (28) f(αi(p)) = O(|p|−3) for |p| → ∞. However, each of the three
individual sums changes sign under the reflection with respect to the midpoint of the
corresponding edge, (u(i+1) + u(i+2))/2 ∈ (Z/2)2 (which is a symmetry of the lattice Z2).
Thus even the individual sums (at given i) vanish.
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3. The equality σF = σE in case (a)

In this setting σE is given by (15), without the need to pass to the limit a → ∞. We
may thus take Ha=0 on `2(Z× Z0) as the edge Hamiltonian. Unlike for HB, the interval
∆ is not a spectral gap for H0. Its spectrum in ∆ may actually be absolutely continuous
[28, 8, 18], which is a manifestation of states extending along the edge. As a result,
the matrix elements of a spectral projection E(−∞,λ)(H0), (λ ∈ ∆), will no longer decay
rapidly away from the diagonal, which is the property that in the bulk case ensured

P − UPU∗ ∈ J3 (32)

for P = Pλ = E(−∞,λ)(HB) and U as in (8). By contrast, we also have Pλ = ρ(HB) with
ρ as in (13) due to assumption (a), and the property (32) extends to P = ρ(H0). The
price to pay is that P is no longer a projection, but that does not seem to be a crucial
aspect of the Laughlin argument. Morally, we may identify σF with (2π)−1 tr(P −UPU∗),
while eq. (21) is cautioning us that the correct computation of the trace is, in the case of
projections, by discarding the trace of the commutator on the r.h.s., which, though not
defined, is formally zero. That identity reads

(P −Q)− (P −Q)3 =
1

2
[PQ,QP ]− 1

2

[
(1− P )(1−Q), (1−Q)(1− P )

]
+(1− 2P )(P − P 2)− (1− 2Q)(Q−Q2)

+
3

2
{P −Q,P − P 2 +Q−Q2}

if it is not restricted to projections, where {·, ·} denotes the anticommutator. It suggests
to consider the expression

K(U) := tr
(3

2
{P −Q, (P − P 2) + (Q−Q2)}+ (P −Q)3

)
(33)

as a replacement for tr(P − Q) when P and Q = UPU∗ are unitarily conjugated. More
precisely, we consider unitaries U which are multiplication operators w.r.t. some fixed
basis, like the position basis of `2(Z × Z0), and operators P = P ∗ such that (P − Q)3,
(P −Q)(P − P 2), p(P )− p(Q) ∈ J1 for p(λ) = λ− λ2 and p(λ) = (1− 2λ)(λ− λ2). We
remark that these properties are satisfied for P = ρ(H0) and for U as in (8), if U = 1 on
all but a finite piece of the edge. For instance, (P −Q)(P − P 2) is then associated with
such a piece, because P − P 2 vanishes away from the edge. Hence it is trace class.

The important property is that K(U) is unaffected by changes of U which are trace
class. This is used as follows: Let U − 1 be supported in a cone whose rays point into the
lower half-plane Z×Z0, and let its curl, i.e., the magnetic flux, be concentrated near the
vertex. Moving the vertex without changing the fan of the cone is an example of such a
change of U . If the vertex too is placed well inside the lower half-plane, the cone does
not intersect the edge and the first term in (33) is negligible. In this limit K(U) reduces
to 2πσF . If, on the other hand, the vertex is pulled across the edge and well into the
upper half-plane, then the second term in (33) is associated with the intersection of the
cone with the lower half-plane, which in the limit is a negligible (though infinite) tail.
Moreover, and still inside the lower half-plane, U may be represented as an exponential,
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which near the edge is of the form e2πiΛ1(x). The remaining first term in (33) can then be
computed as

3 tr(P −Q)
(
(P − P 2) + (Q−Q2)

)
≈ 6 tr(P −Q)(P − P 2)

≈ 6

∫ 2π

0

dϕ
d

dϕ
tr(P − eiϕΛ1P e−iϕΛ1)(P − P 2)

= 6 · 2πi tr[ρ(H0),Λ1]
(
ρ(H0)− ρ(H0)2

)
= 6 · 2πi tr[H0,Λ1]ρ′(H0)

(
ρ(H0)− ρ(H0)2

)
= 2πi tr[H0,Λ1]ρ̃′(H0) = 2πσE ,

where ρ̃ = 3ρ2 − 2ρ3 satisfies the same assumption (13) as ρ does.

4. The equality σE = σB in case (b)

We sketch some of the steps towards this identity when σE is defined by (20). If the other
definition (12) is chosen, the argument runs along similar lines. The statement may be
rephrased as

lim
a→∞

i tr ρ′(Ha)[Ha,Λ1]Λ2 = σB + i
∑
λ∈E∆

ρ′(λ) trE{λ}[HB,Λ1]Λ2E{λ} . (34)

The operator on the l.h.s. is geometrically associated with the finite but growing portion
0 ≤ x2 ≤ a of the the line x1 = 0. It therefore has no chance to converge in trace class
norm as a→∞. To see that its trace nevertheless does, we look for an operator Z(a) ∈ J1

with trZ(a) = 0, and replace the operator with

iρ′(Ha)[Ha,Λ1]Λ2 − Z(a) , (35)

hoping that convergence in that norm now holds true. A first attempt is Z(a) =
i[ρ(Ha),Λ1]Λ2, which satisfies the two requirements; in particular, its trace is seen to
vanish by computing it in the position basis. A partial cancellation between the two
terms is made manifest using the Helffer-Sjöstrand representations

ρ(Ha) =
1

2π

∫
d2z∂z̄ρ(z)Ra(z) ,

ρ′(Ha) = − 1

2π

∫
d2z∂z̄ρ(z)Ra(z)2 ,

where Ra(z) = (Ha − z)−1 and ρ(z) on the r.h.s. is a quasi-analytic extension of ρ(x). It
yields in fact

[ρ(Ha),Λ1]Λ2 = − 1

2π

∫
d2z∂z̄ρ(z)Ra(z)[Ha,Λ1]Ra(z)Λ2 , (36)

ρ′(Ha)[Ha,Λ1]Λ2 = − 1

2π

∫
d2z∂z̄ρ(z)Ra(z)2[Ha,Λ1]Λ2 .
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The two expressions would look even more similar if in the second line one power of the
resolvent could be moved to the end of the expression. This however is just a commutator
which may be absorbed into a redefinition Z(a). Then (35) reads

− i

2π

∫
d2z∂z̄ρ(z)Ra(z)[Ha,Λ1](Λ2Ra(z)−Ra(z)Λ2)

= − i

2π

∫
d2z∂z̄ρ(z)Ra(z)[Ha,Λ1]Ra(z)[Ha,Λ2]Ra(z) . (37)

This expression is geometrically associated with the intersection of the lines x1 = 0 and
x2 = 0, which is independent of a. It is therefore reasonable that it has a limit as a→∞,
which is indeed obtained by replacing the subscript a with B. It remains to show that
the trace of the bulk quantity T so obtained equals the r.h.s. of (34). To this end we use
(37, 36) in reverse, but now with a; B, and obtain

T = −i[ρ(HB),Λ1]Λ2 −
i

2π

∫
d2z∂z̄ρ(z)R(z)[HB,Λ1]Λ2R(z) .

Unlike for a < ∞, the two terms are not separately trace class. We next compare the
expression with (17): While the first term, e−iHtΛ1eiHt, is necessary to ensure that the
whole expression is trace class, it is formally only the second one which contributes to the
trace, as explained there: σB = −i tr Λ1[Λ2, Pλ], or σB = i tr[Λ1, Pλ]Λ2. These expressions
are not well defined, but the following is a correct representation for σB:

σB(λ0) = −i trE−[Pλ0 ,Λ1]Λ2E− − i trE+[Pλ0 ,Λ1]Λ2E+ −
∑
λ∈E∆

i trE{λ}[Pλ0 ,Λ1]Λ2E{λ} ,

(38)
where E−, E+ are the spectral projections for HB onto {λ | λ < ∆}, resp. {λ | λ > ∆}.
Since σB(λ0) is independent of λ0 ∈ ∆ we may replace Pλ0 by ρ(HB) in (38). We then
frame T similarly with E±, E{λ}, without changing its trace. The first term is then just
σB; the contributions with E± from the second vanish because E±R(z) and R(z)E± are
analytic on the support of ρ(z) or of ρ(z)− 1. The remaining contribution is

− i

2π

∑
λ∈E∆

∫
d2z∂z̄ρ(z)(λ− z)−2 trE{λ}[HB,Λ1]Λ2E{λ} ,

which equals the last term in (34).
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[19] J. Fröhlich, T. Kerler, U. M. Studer, and E. Thiran. Structuring the set of incom-
pressible quantum Hall fluids. Nucl. Phys. B, 453:670–704, 1995.
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[21] J. Fröhlich and U. M. Studer. Gauge-invariance and current-algebra in nonrelativistic
many-body theory. Rev. Mod. Phys., 65:733–802, 1993.
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