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Homework set 3 — Solution

Problem 1. (i) Let z,2’ € X and y € E. Taking the infimum of d(z,y) < d(z,2') + d(z',y) over y € E
implies that dg(z) < d(x,2") + dg(2’). Combining this inequality with the one obtained by interchanging x
with 2/, we conclude that |dg(x) — dg(2’)| < d(z,z’), proving the uniform continuity of dg.

(ii) Since A is closed, x € A & da(x) = 0. Since = is immediate, we prove <. By definition of the
infimum, d4(z) = 0 implies that there is a sequence (2, )nen in A such that d(z, z,) — 0 as n — co. Hence
r € A= A. Now, since A, B are disjoint, d(z) + dg(x) > 0 for all x € X, and therefore f is continuous
by (i). Moreover, f(z) = 0 for all x € A and f(z) = 1 for all z € B and 0 < f < 1. In other words,
f provides a a slightly weaker separation of K = B and U = X \ A under weaker assumptions: B is not
compact and supp(f) = X \ A.

Problem 2. (i) Let {O1,...,0On} be a finite open subcover of K (here we insist with the use of the relative
topology on K). For any 1 < j < N, we define f; : K — [0,00) by fj(z) = di\0o, () as in Problem 1. Each
f; is continuous and so is f = fi1 V---V fy. For any x € K, there is 1 < jo < N such that x € Oy, and
hence there is d, such that B;, () N K C Oj,. It follows that f(z) > f;,(x) > 0. By continuity, f(K) is a
compact subset of R, and hence 2r = min{f(z) : x € K} > 0. By the definition of f, for any x € K, there
is 1 <ip < N such that f;,(z) > r, namely B,(x) N K C O,,, which is what we had set to prove.

(ii) Apply the above to the cover with one element U N K.

Remark. In other words: In a metric space, for any neighbourhood U of a compact set K, the distance
between K and U¥¢ is strictly positive.

Problem 3. We first note that

2] = Poys(z) = (|2 — Pu()) <1 _ WPWU)) _

2

Assume that |z| < 1. Then 0 < Py < |z|. Moreover, 0 < P,(z) < |z| implies 0 < 1 — M <1 and
hence 0 < P,y1(x) < |z|. Tt follows that 0 < P,(z) < |z| for all n € N. With this, P,41(z) — P,(z) =
(22 — (P, (2))?)/2 > 0, so that 0 < P, (z) < P,y1(z) < |z| for all n € N. Hence, (P, (x))nen is convergent for
any |z| < 1. The limit L(x) = lim,_ P,(x) satisfies 0 = 22 — L(z) and hence L(x) = |z| since L(z) > 0.
The convergence is uniform by Dini’s theorem.

Remark. With this in hand, the proof of Stone-Weierstrass does not require the classical Weirstrass result.

Problem 4. (i) If f is continuous, then for any a € R, both f~!((—o0,a)) and f~'((a,00)) are open,
proving that f is both L.s.c. and u.s.c. Reciprocally, for any a < b, f~((a,b)) = f~*((—o00,b)) N f~1(a,0)),
which is open if f is both ls.c. and u.s.c. This proves continuity since {(a,b) : —00 < a < b < oo} is a
base for the metric topology on R. Indeed: let B be a base for a topology and assume that f~1(B) is open
for all B € B. Any open set can be written as O = UyerBa, where B, € B and so f~1(0) = {z : f(x) €
UaEIBa} = Uae[f_l(Ba) is open.

(ii) If O is open, then

B ifa>1
{reS:xo@)>a}=<0 if0<a<l1
S ifa<0

proving that xo is L.s.c. since all three (), O, S are open.
(iii) Let C be closed, namely C' = O¢ where O is open. Then xc(xz) = 1 — xo(z) proving that x¢ is u.s.c
by (ii). Indeed, if f is l.s.c then —f is u.s.c. since {z : f(x) > a} ={z: —f(x) < —a}.



(iv) It suffices to note that {x € S :sup{fa(z) : @ € I} > a} = Uger{x : fo(x) > a}. Hence it is open if all
fa are Ls.c.

Problem 5. (i) Let {O, : a € I} be an open cover of X X Y. For any (z,y) € X x Y, there is an a(z,y)
such that (z,y) € Oy(s,y). Since simple products of open sets form a base, there are U, ) € Tx, Viz,y) € Ty
such that (z,y) € Uy X Vigy) C Oa(a,y)- For any fixed 2 € X, the collection {V(, ,y : ¥ € Y} is an open
cover of Y, from which we extract a finite subcover indexed by {yz1,--.,Yuzn}. The set U, = Ni—1 Uz . ;)
is open and contains x. Hence, the collection {U, : € X} is an open cover of X, from which we extract
a finite subcover indexed by {z1,...,z,n}. It follows that {O 1 <i<m,1<j<n}isa finite
subcover of X x Y.

a(whymi,j)

(i) Let A = {327, gj(x)hj(y) : n € Nand g; € Cr(X),h; € Cr(Y) for all 1 < j < n}. Clearly, A is an
algebra. 1 € A since 1 corresponds to n = 1,91 = hy = 1. Let (x,y) # (a/,y’), without loss = # 2. By
Urysohn’s lemma applied to K = {z} and U = X \ {2}, there is a function g € Cr(X) such that g(z) =1
and g(z') = 0. g is identified with a function in A by setting n = 1,h = 1 and hence A separates points.
By (i), X x Y is compact so that A is dense in Cr(X,Y’) by Stone-Weierstrass, concluding the proof.



