MATH 421/510, 2019WT2

Homework set 5 — Solution

Problem 1. Clearly, C, Cy are vector spaces. So we check completeness. Let (2"),en be a Cauchy sequence
in C, and let lim;_, 2 = Z" for any n € N. First of all,

12" = 2" = | lim (2 = 2")] < sup{|z} — 2| : j € N} = [[(=") = ()],

so that (Z™),en is a Cauchy sequence in C and hence convergent. Let Z = lim,, o, Z™. Secondly, |z;””—z]m\ <
sup{[z} —27"| : j € N} = [[(2") — (2)|| so that for any fixed j € N the sequence (2}'),en is a Cauchy sequence
in C and hence convergent. Let w; = lim;, o 27 We now claim (a) that (w;);en is a convergent sequence,
namely (w;);jen € C with lim; o, w; = Z, and (b) that lim,,_,+(2") = (w;);jen. (a,b) together conclude the
proof in the case C. The case Cy follows then by imposing Z™ = 0 for all n and hence Z = 0.

Proof of (a). Let € > 0. There is m € N such that |27 — 27"| < ¢/3 for all n > m and j € N as well as
|Z™ — Z| < €/3. Then for all j € N,

lwj — 2| = Jim. |2 — 27" <

WLl m

Let now N be so that [2]* — Z™[ < ¢/3 for all j > N. Then
lwj — Z| < Jwj — 27|+ [2]" = Z7 |+ |Z™ — Z| < e

for all j > N indeed.
Proof of (b). Let € > 0. There is N € N such that ||2™ — z™|| < ¢ for all n,m > N. But then

n_ _ no_ .. _ . n_ o m|. ; < T n__ .m
2" — w|| = sup{|z} — wj|:j € N} sup{mlgnoO |2f — 27" 1 j € N} < mlgnoo |z — 2" <€
for all n > N.
Problem 2. (i) We first note the following, which is simply a rephrasing of the definition of the essential

supremum. For any e > 0, we have that ||g|lcc + € € {M : |g(x)] < M for p-almost every z € 0}, namely
there is a set . of measure zero such that

sup{lg(z)] : 2 € @\ Ec} <lg]loc + €

Assume that (f,,)nen converges to f in the || - |[o-norm. For each n € N there is a set E,, C  of measure
zero such that )

sup{|fn(2) = f@)l 1 2 € A\ En} < Ifa = flloo + (1)
The set £ = UneN E,, is a countable union of sets of measure zero, hence it is itself a set of measure zero.
Furthermore,

limsup sup{|fn(z) — f(z)| : . € Q\ E} <limsup sup{|fn(z) — f(2)| ;2 € Q\ E,} =0
n—oo n—oo
by (1). Thus (f,)nen converges uniformly to f on Q\ E.

Reciprocally, assume that there is a set E C Q of measure zero such that (f,)nen converges uniformly to f
on Q\ E. As

limsup || fr. — flloo < limsup sup{|fn(z) — f(2)|: 2z € Q\ E} =0,
n— 00 n—00

fn converges to f in the || - ||so-norm.



(ii) Let € > 0. Let 6 > 0. Then for any x € §, there is N (4, z) such that |f,(z) — f(z)| < d for n > N(4, z).
For N € N, the sets S(0,N) = {x € Q : M(4,z) < N} for a non-decreasing sequence in both ¢ and N,
and let S(0) = UnenS(6, N). By assumption, almost every x € Q belongs to some S(J, N), we have that
1(S(6)) = Imy oo u(S(6,N)) = p(£2). In particular, for any p > 0, pu(S(5, N)) > u(Q) — p for N large
enough. Let now (J;)jen be a sequence of positive numbers tending to zero and let (N;);cn be so that
w(S(85,N;)) > p(2) — 27 7e. By construction, the set R. = N;enS(d;, N;) is so that f,, — f uniformly on

R.. Moreover,
oo

W(Re) = p(UjenS2\ S(65, Ny)) Z =
Jj=1
so that R, satisfies the claim. Remark. This is known as Egorov’s theorem

Problem 3. (i) The substitution + — z = z/y and the scaling property of the kernel K (by y) yield
[ 1K @) f@)lde = [ |K (=) f-(9)ldz. Here £.(y) = f(zy) for which [|£.],, = = /7]|f]], by scaling.
In particular y — [K(z,1)f.(y)| is in LP and [~ [K(z,1)|||f:]lpdz = C|fll, < oo by the integrability
assumption on K. The claim now follows from the generalized Minkowski’s inequality, namely || Tf]|, <

Jo  IK@DIf:]lpdz = C|lflp.
(ii) The inequality is ||T'f[|5 < CP||f||} of (i) with the choices

h(z) 1 .
J(@) = 2(+r=p)/p K(z,y) = X{0<a:<y}(~TaZJ)WCEO+ /P,

On the one hand, this choice gives (T'f)(y) = y~(+7/p Jy h(z)dz and |Tf]5 is the left hand side of the
inequality. On the other hand, || f Hg is the integral on the rlght hand side of the inequality. We compute the

constant as CP = (fol x(Fr=P)/Pp=1/Pdg)P = (p/r)P indeed.
Remark. This is called Hardy’s inequality. It is often stated in the case r = p—1 and expressed in differential

terms: [ (Y < (2) [Cwwyas

Problem 4. We establish differentiability at ¢ = 0. Differentiability for any ¢ follows from the argument
below upon replacing f with f 4 tg. For any z,w € C,

d
o w2 (2 ) g = B2 e 4 20)

which reduces the proof to the exchange of differentiation and integration. The convexity of x +— |z|P for
p > 1 yields

lim ¢z 4 tw|? =
t—0

If+tgl” <A =tfIP+tlf+g/” (0<t<1)
lf+tglP <@+ IfP=tlf—glP  (-1<t<0)
as well as
|f +twl? > |f? + tp/2)| fP2(fg + F9)-
Hence,

w/2)If P72 (fg+ fg) < (\f( ) +tg(@)[P = |f(@)[P) < |f(2) +g()" = [f(2)"  (0<t<1)
[f(@)[" = f(z) = g(2)|P (If( ) +tg(@)P —[f(@)F) < /21 P2 (fa+ fg)  (-1<t<0)

which implies that the limit can be interchanged with the integral by dominated convergence. Indeed, |f|?
and |f £ g|P are integrable, and so is | f|P~2(fg + fg) by Holder’s inequality:

1
t
<<

] [ 1725+ Faydu| < 211l



