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Abstract

We relate the brace products of a fibration with section to higher order differentials in its
Serre spectral sequence. As an application, we determine the homology of some free iterated
loop spaces of spheres. Our main result is related to a classical theorem of G. Whitehead on
free loop fibrations and we use Whitehead’s result to give a simple geometric proof of a result
of Havlicek on spaces of rational maps into complex projective space.

§1 Introduction

Let ζ : F
i
−−−→E

π
−−−→B be a fibration with a section B

s
−−−→E. One of our main results in this

note shows that the differentials on the spherical classes in the Serre spectral sequence for ζ are
determined entirely by “brace products”in ζ.

Brace products for a fibration with section were originally defined by James ([J]). Given α ∈
πp(B) and β ∈ πq(F ), one can take the Whitehead product [s∗(α), i∗(β)] in πp+q−1(E). Since
π∗([s∗(α), i∗(β)]) = 0, one deduces from the long exact sequence in homotopy associated to ζ that
[s∗(α), i∗(β)] must lift to a unique class

{α, β} ∈ πp+q−1(F );

the so called brace product of α and β. Note that this class depends on the choice of section. The
brace product operation gives then a pairing

{, } : πp(B)× πq(F )−−−→πp+q−1(F ).

Let h : π∗(X)−−−→H∗(X; Z) denote the Hurewicz homomorphism. Our main result can now be
stated
∗The author holds a research fellowship with PIms (Pacific Institute for the Mathematical Sciences).
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Theorem 1.1: Let F → E → B be a fibration with section, and assume B is simply connected.
Then in the Serre spectral sequence (with any untwisted coefficients), the following diagram com-
mutes

πp(B)⊗ πq(F )
{,}
−−−→ πp+q−1(F )y yh

Hp(B,Hq(F )) Hp+q−1(F )y∼= y∼=
E2
p,q

dp

−−−−−→ E2
0,p+q−1

Remarks: Some interpretations are in order. First the map πp(B) ⊗ πq(F )−−−→Hp(B,Hq(F )) is
of course the composite

πp(B)⊗ πq(F )
h⊗h
−−−→Hp(B)⊗Hq(F )

ν
−−−→Hq(F,Hp(B)),

where ν is a universal coefficient homomorphism. Secondly the differential dp is really a map
Epp,q−−−→E

p
0,p+q−1, but the point is that any class in E2

p,q coming from πp(B) ⊗ πq(F ) actually
lives until Epp,q. Finally, even though the brace product does depend on the choice of section s,
commutativity of the above diagram does not.

A particularly interesting application of this theorem occurs for the evaluation fibration

F
i
−−−→E

ev
−−−→Sn,

where E = Map(Sk, Sn) := ΛkSn is the free loop space on Sn and F = ΩkSn the subspace of
basepoint preserving (or based) maps. The Serre spectral sequence for this fibration is discussed
in detail in §4 for 1 ≤ k < n. General arguments show that the spectral sequence collapses at E2

with mod-2 coefficients. When n is odd, the same collapse occurs with mod-p coefficients. The
case n even is therefore most interesting to study and we obtain our next main result as a direct
consequence of 1.1.

Let x ∈ H2n(S2n) be the orientation class and e ∈ H2n−k(ΩkS2n) be the infinite cyclic generator
representing the class of the inclusion S2n−k−−−→ΩkS2n which is adjoint to the identity map of S2n.
Finally let a ∈ H4n−k−1(ΩkS2n) be the torsion free generator (see §4).

Proposition 1.2: Assume 1 ≤ k < n and n is even. Then in the homology Serre spectral sequence

(with integral coefficients) for the fibration ΩkSn
i
−−−→ΛkSn

ev
−−−→Sn;

dnn,n−k(x · e) = 2a.

A more extensive study of the differentials in the evaluation fibration with relation to homology
operations in the fiber will appear in a sequel ([K2]). We point out for now that the differential in
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1.2 is already sufficient to determine H∗(ΛkSn; Q) and H∗(Λ2Sn; A) (for any untwisted coefficients)
entirely.

Corollary 1.3: Suppose 1 ≤ k < n and n is even, then the Poincaré series for H∗(ΛkSn; Q) is given
as follows {

1 + (xn + xn−k)/(1 − xn−k−1) , k is odd
(1 + x3n−k−1)/(1− xn−k) , k is even.

Corollary 1.4 (F. Cohen): Suppose n > 2 even and p odd. Then in the cohomology Serre spectral
sequence for Λ2Sn, the mod-p differentials are generated by dn(x ·e) = x0, where H∗(Ω2Sn; Zp) is a
tensor product of a divided power algebra on generators e, yi, and an exterior algebra on generators
xi, dim(xi) = 2(n − 1)pi − 1 = dim(yi) + 1, i ≥ 0.

The proof of theorem 1.1 relies on a beautiful theorem of G. Whitehead [W] relating the bound-
ary homomorphism in the homotopy long exact sequence of a free loop fibration on a space X to
Whitehead products in X. More precisely, let X be a finite CW complex (based at x0) and consider
the evaluation fibration

ΩnX
i
−−−→ΛnX

ev
−−−→X

where again Λn(X) := Map(Sn,X). We let Λnf (X) denote the component containing a given map
f . We can assume f(S) = x0 ∈ X (where S is the south pole of Sn) and hence denote by Ωn

f (X)
the subspace of Λnf (X) of based maps sending S to x0.

Theorem 1.5: [W] The homotopy boundary ∂ : πp(X) → πp−1(Ωn
f (X)) ∼= πp+n−1(X) in the long

exact sequence in homotopy associated to

Ωn
f (X)−−−→Λnf (X)

ev
−−−→X

is given (up to sign) by the Whitehead product: ∂α = [α, f ], α ∈ πp(X).

We give a short application of this theorem to the theory of rational maps ([K3]). Let P1 be
the Riemann sphere, and write Holk(P1) for the space of holomorphic maps from P1 into itself of
degree k. Denote by Ratk(P1) the subspace of basepoint preserving holomorphic maps (that fix
the north pole say).

Corollary 1.6 (Havlicek): The (cohomology) Serre SS for the fibration

Ratk(P1)−−−→Holk(P1)−−−→P1

has only one non-zero differential d2(x) = 2kι, where x ∈ H1(Ratk(P1)) and ι ∈ H2(P1) are the
generators. It follows in particular that the spectral sequence collapses with mod-p coefficients
whenever p = 2 or p divides k.

Acknowledgement: The first author would like to thank Fred Cohen for informing him about
his unpublished calculations, and to acknowledge the hospitality of CRM at Montréal where this
work originated.
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§2 Brace Products: Examples and Properties

Notation and Conventions: We often (but not always) identify a map f : Sp−−−→X with its
homotopy class [f ] ∈ πp(X). We do so when there is no risk of confusion and to ease notation. We
also write ad for the adjoint isomorphism

ad : πi+k(X)
∼=
−−−→πi(ΩkX)

(the index k is to be determined from the context).

In the introduction we defined Brace products for a fibration F
i
−−−→E

p
−−−→B with a section

B
s
−−−→E. Brace products are related to Whitehead products by the commutative diagram

2.1

πp(B)⊗ πq(F )
{,}
−−−→ πp+q−1(F )ys⊗i yi

πp(E)⊗ πq(E)
[,]
−−−→ πp+q−1(E)

The next three examples compute the brace product pairing for some classes of fibrations with
section.

Example 2.2: Let E be a sphere bundle over B = Sn with fiber F = Sk and group O(k + 1);

Sk
i
−−−→E

π
−−−→Sn.

This fibration is classified (up to homotopy) by a clutching function µ : Sn−1−−−→O(k + 1). If E
has a section then the group of the bundle reduces to O(k) (because the associated vector bundle
does). The map µ factors (up to homotopy) through Sn−1−−−→O(k) ↪→ O(k + 1), giving a class
α ∈ πn−1O(k). Let J be the Hopf-Whitehead construction

J : πn−1(O(k))−−−→πn+k−1(Sk).

Finally let ιn ∈ πn(E) be the class of s : Sn−−−→E and ιk ∈ πk(E) be the class of the fiber. Then
(up to sign)

Proposition 2.3: {ιn, ιk} = Jα in πn+k−1(Sk)

Proof: We will make use of some crucial intermediate results we prove in §3. Start with the
map α : Sn−1−−−→O(k). One can think of O(k) as transformations of the closed unit disc Dk. It
follows that α adjoins to a map Sn−1×Dk−−−→Dk and by pinching the boundary of Dk we get the
following commutative diagram

Sn−1 ×Dk
α
−−−→ Dky y

Sn−1 ∧ Sk
J
−−−→ Sk
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Since Sn−1 ∧ Sn = Sn+k−1 the bottom map can indeed be identified with (and actually is) the J
homomorphism. Consider the composite

φ : Sn−1 ∧ Sk
J
−−−→Sk

i
−−−→E

We write its adjoint as a map g : Sn−1−−−→ΩkE. Notice that the image of g lies in the component
containing the fiber inclusion i : Sk−−−→E and hence maps into Ωk

ιk
E. Moreover notice that g when

extended to ΛkιkE is trivial (lemma 3.4) and hence the map g factors through the fiber ΩE of the
inclusion ΩkE ↪→ ΛkE as follows

2.4
Sn−1

ad(s)
−−−→ ΩEy= ↓

Sn−1
g
−−−→ ΩkE −−−→ ΛkE

The adjoint of the top map is s : Sn−−−→E and the class of this map we denote by ιn. According
to lemma 3.2 we must have that

φ = [ιk, ιn] ∈ πn+k−1(E)

Both φ and the Whitehead product map lift to Sk. Since the lift of φ is J and the lift of [ιk, ιn] is
{ιk, ιn}, the proof is complete.

Note: In this case {ιn, ιk} is independent of the choice of section (see 3.1 and 3.2).

Example 2.5: Let ζ be a vector bundle over B = Sn with fiber F = Rk and group O(k). Consider
the open unit disc bundle associated to ζ and compactify it fiberwise by adding a point at infinity.
One then gets a bundle Sk → E → Sn which has a canonical cross section (sending each point in
Sn to the point at infinity in the fiber). Thus one computes {ιn, ιk} as indicated in 2.3.

Example 2.6: It is known that the fiber of the inclusion X ∨ X−−−→X × X is Σ(ΩX ∧ ΩX) (a
theorem of Ganea). Taking X = P = P∞ the infinite complex projective space, we find that there
is a fibration

2.8 S3−−−→P ∨P−−−→P×P

and hence after looping we obtain a fibration ΩS3−−−→Ω(P ∨P)−−−→S1 × S1 with a section given
by the composite

S1 × S1−−−→ΩP× ΩP
=
−−−→Ω(P ∨ ∗)×Ω(∗ ∨P) ↪→ Ω(P ∨P)× Ω(P ∨P)

∗
−−−→Ω(P ∨P).

It turns out that 2.8 has an interesting brace product given as follows. Denote by a1 (resp. a2) the
generator of the second homotopy group for the first (resp. second) copy of P in P ∨P. The fiber
S3 maps to P∨P via the Whitehead product [a1, a2]. Taking G : S3 → P∨P to be the class of the
fiber, we then have that [a1, G] = [a1, [a1, a2]] ∈ π4(P∨P) and this corresponds to the class {a,G}
via the isomorphism π4(P ∨P) ∼= π4(S3). It is shown in [K1] that this triple Whitehead product
is non-trivial and hence

Lemma 2.8 [K1]: {a,G} is the generator of π4(S3) = Z2.
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Example 2.9 (Saaidia): Suppose F−−−→E−−−→B is a fibration with section, and F is a G-space
with a G-invariant basepoint. Consider the classifying bundle F−−−→EG ×G F−−−→BG. This
fibration also admits a section and its brace products are identified with the so-called “secondary
Eilenberg invariant” of the fibration E (cf. [Sa]). These invariants are fundamental in the study of
the homotopy type of the space of sections of E.

Brace Products and Samelson Products

The commutator map at the level of loop spaces (better known as the Samelson product) is
related to the Whitehead product as follows. First write S for the commutator

Ω(X) ∧ Ω(X)
S
−−−→ Ω(X)

(a, b) 7→ aba−1b−1

Then the following commutes (up to sign)

2.10

πp(ΩX)× πq(ΩX)
S
−−−→ πp+q(ΩX)yad×ad yad

πp+1(X) × πq+1(X)
[ , ]
−−−→ πp+q+1(X).

where ad is the adjoint isomorphism. This fact (originally due to H. Samelson) can be combined
with 2.1 to show that

Lemma 2.11: There is a homotopy commutative diagram

ΩB ∧ ΩF
{,}
−−−→ ΩFyΩs∧Ωi

yΩi

ΩE ∧ ΩE
S
−−−→ ΩE

where the upper map (which we also denote by a brace) induces James’ brace product at the level
of homotopy groups).

Proof: The composite

ΩB ∧ ΩF
S◦(Ωs∧Ωi)
−−−−−−−−−→ΩE

is trivial when projected into ΩB (because Ωp ◦ Ωi is trivial.) It then lifts to ΩF as desired. This
lift is unique up to homotopy since any two maps differ by a map

ΩB ∧ ΩF−−−→Ω2B
∂
−−−→ΩF

and that this “boundary” map ∂ is null-homotopic since ΩE ' ΩF × ΩB (see below). The rest of
the claim follows from 2.10.

Brace products as obstructions
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As pointed out in [J], brace products form an obstruction to retracting the total space E into
the fiber F . They also represent obstructions to the triviality of certain pull-back fibrations in the
postnikov tower for B (see [Sa]). In what follows we exhibit yet another obstruction expressed in
terms of these brace products.

Let F
i
−−−→E → B be a fibration and consider the loop fibration

2.12 ΩF−−−→ΩE−−−→ΩB

Suppose that 2.12 has a section s′. Being principal, it splits and we have a trivialization

Ωi ∗ s′ : ΩF × ΩB
'

−−−−−→ΩE

induced by loop sum in ΩE. This trivialization however is not necessarily an H-space map and
its failure to be such is measured by the commutator (Ωi)s′(Ωi)−1(s′)−1. We illustrate this by an
example

Example 2.13: Consider the Hopf fibering S1 → S3 → S2 which can be looped to a fibering

ΩS3−−−→ΩS2−−−→S1

This has an obvious section and it follows from above that S1×ΩS3
'
−−−→ΩS2. Notice that the left

hand side is abelian (since S3 is a topological group). It turns out however that ΩS2 is not abelian.
To see this consider the map S1−−−→ΩS2 and take its self commutator in ΩS2. This commutator
in homotopy is adjoint (by the result of Samelson) to the Whitehead product [ι2, ι2] = 2η ∈ π3(S2)
where η is the class of the hopf map. This shows that indeed ΩS2 is not abelian and that the
splitting above is not an H space splitting.

Lemma 2.14: Let F → E → B be a fibration with section s. If the brace products in this fibration
vanish identically, then

θ = Ωs ∗ Ωi : ΩB × ΩF
'
−−−→ΩE

is an H-space splitting.

Proof: Here one first notes that the induced loop fibration has a section s′ = Ωs. We need only
check that the following diagram homotopy commutes

(ΩB × ΩF )2
1×χ×1
−−−→ (ΩB)2 × (ΩF )2

∗×∗
−−−−−→ ΩB × ΩFyΩs×Ωi

yθ
ΩE × ΩE

∗
−−−−−−−−−−−−−−−−−−−−−−−−→ ΩE

where 1 × χ× is the shuffle map (x, a, b, y) 7→ (x, b, a, y). Since the images of Ωs and Ωi commute
in ΩE (this follows from 2.11 and 2.10 and from the fact that the brace products vanish), the claim
follows immediately.

§3 Whitehead’s theorem and the Proof of Theorem 1.1
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In this section we prove theorems 1.5 and 1.1 in the introduction. Denote by Dn the closed
unit disc in Rn and by ∂Dn = Sn−1 its boundary. If Dn = Dp ×Dq, we can then write Sn−1 =
∂Dn = Dp×∂Dq ∪∂Dp×Dq (where the union is over ∂Dp×∂Dq). We also recall that an element
in πq(ΛpαX,Ω

p
αX) is represented by a map Dp ×Dq → X which sends ∂Dp ×Dq to basepoint. We

now have the following pivotal lemma

Lemma 3.1 (Whitehead): Start with a map

φ : Sp−1 ∧ Sq−−−→X

and adjoin it to get g : Sp−1−−−→Ωq
αX (where Ωq

αX is some component of ΩpX containing a
representative map α). Suppose that g extends to a map Dp−−−→ΛqαX and hence gives rise to an
element β ∈ πp(ΛqαX,Ωq

αX) ∼= πp(X). Then

φ = [α, β] ∈ πp+q−1(X)

Sketch of Proof: First we note that the statement of the lemma is independent of the choice
of the extension Dp−−−→ΛqX. Observe for now that the map φ can be represented by a map

φ : (Dp × ∂Dq) ∪ (∂Dp ×Dq)−−−→X

sending Dp × ∂Dq to basepoint x0 in X. On the other hand, the Whitehead product [α, β] is
represented by a map

Sp+q−1 = (Dp × ∂Dq) ∪ (∂Dp ×Dq)−−−→X
which sends ∂Dq ∪ ∂Dp to point, maps (Dp, ∂Dp)−−−→X via α and maps (Dq, ∂Dq)−−−→X via β.
Consider the following homotopy from Sp+q−1 to itself

F (x, y) =


(x, 2y), |x| = 1, |y| ≤ 1

2 ,
([2− 2|y|]x) , y/|y|), |x| = 1, |y| ≥ 1

2 ,
(0, y), |x| ≤ 1, |y| = 1

This has the effect of deforming the top half of Dq (i.e |y| ≥ 1
2) to the boundary and shrinking Dp

to point. By composing with F , we see that the map representing [α, β] is homotopic to the map
φ : (Dp × ∂Dq) ∪ (∂Dp ×Dq)−−−→X sending Dq via α and Dp to point.

An alternative formulation of this lemma that is better suited to us is as follows.

Lemma 3.2: Let E be a space and think of ΩE as the fiber of ΩqE−−−→ΛqE. Given a composite

φ : Sp−1
β

−−−−−→ΩE−−−→Ωq
αE

then necessarily adφ = [α, adβ] ∈ πp+q−1E.

Proof: That φ : Sp−1−−−→Ωq
αE factors through ΩE is exactly the same as having an extension

diagram
Sp−1

φ
−−−→ Ωq

αE
↓ ↓
Dp −−−→ ΛqαE
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such that the element of πp(ΛqαE,Ω
q
αE) ∼= πp(E) that this diagram defines is the class of adβ. It

follows from 3.1 that adφ = [α, adβ].

Theorem 3.3: [W] The homotopy boundary ∂ : πp(X) → πp−1(Ωn
f (X)) = πp+n−1(X) in the long

exact sequence in homotopy associated to

Ωq
f (X)−−−→Λqf (X)

ev
−−−→X

is given (up to sign) by the Whitehead product as follows. Let α ∈ πp(X), then

∂α = ad[α, f ] ∈ πp−1(Ωq
fX).

Proof: Recall that given a fibration F−−−→E−−−→B, it extends to the left ΩB−−−→F and the
boundary homomorphism is given by the induced map in homotopy

∂ : πp(B) = πp−1(ΩB)−−−→πp−1(F )

This means that if we take α ∈ πp(B), then the following commutes

Sp−1
ad(α)
−−−→ ΩBy=

y
Sp−1

∂α
−−−→ F

Letting B = X, F = Ωf
qX and E = Λqf (X), we deduce from lemma 3.2 that ad−1(∂α) = [α, f ] and

the claim follows.

We need one more lemma before we can proceed with the proof of 1.1. Let ζ : F−−−→E−−−→Sn
be a fibration with section s, and let µ : Sn−1−−−→Aut(F ) be the cluching function. Here Aut(F )
consists of based homotopy equivalences and we denote by Map∗(F,E) the space of based maps
from F into E. There are inclusions Aut(F ) ↪→ Map∗(F,E) ↪→ Map(F,E) and we assert that

Lemma 3.4: There is an extension diagram

Sn−1
µ
−−−→Aut(F ) ↪→ Map∗(F,E)

↓ ↓
Dn −−−−−−−−−−−−−→ Map(F,E)

such that the element β ∈ πn(Map(F,E),Map∗(F,E)) ∼= πn(E) that this defines corresponds to
the class of s : Sn−−−→E

Proof: We have the following sequence of fibrations F−−−→E−−−→Sn−−−→BAut(F ) and the last
map classifies the fibration ζ. By looping and letting Sn−1 → ΩSn be the adjoint to the identity
map, we get the following diagram

ΩEy
Sn−1 −−−→ ΩSn −−−→ Aut(F )
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The lower composite, which we label θ, can be identified with the clutching map µ. If one has a sec-
tion Ωs : ΩSn−−−→ΩE, then θ factors through ΩE which is the fiber of Map∗(F,E)−−−→Map(F,E).
The lemma follows.

Theorem 3.5: There is a commutative diagram

πp(B)⊗ πq(F )
{,}
−−−→ πp+q−1(F )yh⊗h yh

Hp(B,Hq(F )) Hp+q−1(F )y∼= y∼=
E2
p,q

dp

−−−→ E2
0,p+q−1

Remark 3.6: We first explain why 3.5 is independent of the choice of section. Suppose F → E → B
is as above and assume it has two distinct sections s1 and s2. Let α ∈ πp(B) and β ∈ πq(F ). The
brace products associated to s1 and s2 are given by {α, β}1 and {α, β}2 (respectively). Notice that
s1(α) − s2(α) projects to zero in π∗(B) and hence must lift to a class αF ∈ πp(F ). The difference
element

{α, β}1 − {α, β}2 = [s1(α) − s2(α), i(β)] = [αF , β] ∈ πp+q−1(F )

is a Whitehead product in F and hence must necessarily map to zero by the Hurewicz homomor-
phism. This obviously shows that the composite h ◦ {, } in the top half of the diagram in 3.5 is
independent of the choice of section as asserted.

Proof of 3.5: Let α : Sp → B represent a class in πp(B). Consider the pullback diagram

F −−−→ F
↓ ↓
E′ −−−→ E
↓ ↓
Sp

α
−−−→ B

By naturality of the Serre spectral sequence it suffices to prove the theorem for the pull back
fibration F−−−→E′−−−→Sp. In other words we must prove that the following diagram commutes:

πp(Sp)⊗ πq(F )
{,}
−−−→ πp+q−1(F )yh⊗h yh

Hp(Sp,Hq(F )) Hp+q−1(F )y∼= y∼=
E2
p,q E2

0,p+q−1y∼= y∼=
Epp,q

dp

−−−→ Ep0,p+q−1
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Now associated to F → E′ → Sp is a Wang sequence

· · · −−−→Hi(F )−−−→Hi(E′)−−−→Hi−p(F )
τ∗−−−→Hi−1(F )−−−→· · ·

where τ∗ is determined in terms of the clutching function of the bundle. Recall that this clutching
function is given by a map

µ : Sp−1 × F−−−→F

whose homotopy class determines the bundle (up to fiber homotopy). Identifying Hi−p(F ) with
E2
p,i−p and Hi−1(F ) with E2

0,i−1 it isn’t hard to see that τ∗ = dp : E2
p,i−p → E2

0,i−1 (see [S], p:482).

Choose a basepoint p ∈ F . Given β : Sq−−−→F representing a spherical class (of the same
name) in Hq(F ), then τ∗ can be made explicit as follows. We first have an isomorphism Hq(F ) ∼=
Hp+q(Sp ∧ F ) and the class β is represented under this isomorphism by a map Sp ∧ Sq → Sp ∧ F .
Writing Dp+q = Dp ×Dq and ∂Dp+q = (Dp × ∂Dq)∪ (∂Dp ×Dq) as before, we can represent β as
a map of pairs

(Dp+q, ∂Dp+q)−−−→(Dp × F,Dp × p ∪ ∂Dp × F ).

The map on the second component is the boundary map ∂ and it can be prolonged into F

3.6 τ : ∂Dp+q
∂
−−−→Dp × p ∪ ∂Dp × F −−−−−→F

by collapsing Dp× p to p ∈ F and sending ∂Dp×F = Sp−1×F to F via the clutching function µ.
(This is possible since µ(∂Dp × p) = p ∈ F .) The composite in 3.6 is a map Sp+q−1−−−→F whose
Hurewicz image gives a class in Hp+q−1(F ). This class is exactly τ∗(β) = dp(β).

Note at this point that the map τ gives rise by restriction to a map

∂Dp ×Dq

↓
Sp−1 ∧ Sq −−−→Sp−1 ∧ F

µ
−−−→F

i
−−−→E

The horizontal composite adjoins to a map θ : Sp−1−−−→ΩqE and the component it lies in contains
the map β : Sq−−−→F−−−→E. By precomposing and using lemma 3.4, one gets the following
extension diagram

Sp−1 −−−→ Aut(F ) −−−→ ΩqEy y y
Dp −−−→ Map(F,E) −−−→ ΛqE

and the homotopy class this defines is given by (lemma 3.4)

s(Sp) ∈ πp(E) ∼= πp(Λ
q
βE,Ω

q
βE).

One can now apply lemma 3.1 directly to obtain

i ◦ τ = [s(α), i(β)] in πp+q−1(E).

Both maps lift to F ; the LHS lifts to τ and the RHS lifts to {α, β} : Sp+q−1 → F . Notice that in
homology, the Hurewicz images of i∗ ◦ τ∗ and [s(α), i(β)]∗ are zero in Hp+q−1(E) (in the first case
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because of the Wang exact sequence and in the second because of a known property of Whitehead
products). It follows by the Wang exact sequence again that the class in the image of h◦{α, β}∗ in
Hp+q−1(F ) is also in the image of τ∗ and by the arguments above it must follow that it is exactly
τ∗(β). The proposition follows.

§4 Free Loop Spaces of Spheres ΛkSn, 1 ≤ k < n

Let ΛkSn = Map(Sk, Sn) denote the space of free maps from Sk to Sn. When k < n, this space
is connected and moreover the evaluation fibration

4.1 ΩkSn
i
−−−→ΛkSn

ev
−−−→Sn.

admits a section. We use our previous results to determine H∗(ΛkSn) for many values of 1 ≤ k ≤ n,
and for field coefficients F = Q,Zp. (The general case is discussed in [K2].)

Remark 4.2: When n = 1, 3 or 7, ΛkSn is an H-space and so the existence of a section yields a
space level splitting for these values of n. Generally and for n odd, the localised sphere Sn(p) at an
odd prime becomes an H-space and hence so is Λk(Sn). We therefore have a space level splitting
for odd n and after inverting 2. The Serre spectral sequence for 4.1 collapses for odd spheres with
Zp coefficients (p odd).

First of all, observe that our main theorem 1.1 combined with the result of Hansen described
in the appendix yields the diagram

4.3

πnS
n ⊗ πi+k(Sn)

[,]
−−−→ πn+i+k−1(Sn)y1⊗ad

yad
πnS

n ⊗ πi(ΩkSn)
{,}
−−−→ πn+i−1(ΩkSn)yh⊗h yh

Hn(Sn)⊗Hi(ΩkSn)
dn,ii−−−→ Hn+i−1(ΩkSn)

where here we have identified Hn(Sn) ⊗ Hi(ΩkSn) with E2
n,i and Hn+i−1(ΩkSn) with E2

0,n+i−1.
The situation is most interesting when i = n − k. The top map in this case is given by the
Whitehead square [ιn, ιn] ∈ π2n−1(Sn) and the Hurewicz map h : πn−k(ΩkSn) → Hn−k(ΩkSn) is
an isomorphism.

Remark 4.4 (The Whitehead Square):
• When n is odd, the Whitehead square is two torsion; i.e. 2[ιn, ιn] = 0 (this follows from the
commutation relation [α, β] = (−1)|a||b|[β, α]). Naturally this Whitehead square is zero if and only
if Sn is an H-space and this corresponds to the values of n = 1, 3, 7.
• When n = 2q, [ι2q, ι2q] generates an infinite cyclic group in

π4q−1(S2q) ∼= Z⊕ torsion.

12



This follows from the fact that there is a homomorphism H : S4q−1 → S2q (the Hopf invariant) for
which H([ι2q, ι2q]) = 2. The copy of Z in π4q−1(S2q) is then identified with the even integers by
H. This Whitehead square is twice another class τ if and only if τ has Hopf invariant one in which
case q = 1, 2 or 4.

Lemma 4.5: Assume 1 ≤ k < n. Then under the composite

θ : π2n−1S
n

ad
−−−→π2n−k−1(ΩkSn)

h
−−−→H2n−k−1(ΩkSn),

the Whitehead square maps as follows

θ([ιn, ιn]) =
{

0 n is odd,
2x n is even

(here x is the infinite cyclic element in H2n−k−1(ΩkSn; Z), n even.)

Proof: Since [ιn, ιn] is two torsion for n odd, the claim in this case follows mod-p, p odd and also
rationally. For the case n even, we refer to [C2] for details. One however need convince himself that
θ maps indeed to an infinite cyclic element mod-p (similary mod-Q). To see this, we use the fact
that [ιn, ιn] generates an infinite cyclic summand in π2n−1(Sn) and hence by adjointing it generates
a torsion free generator β ∈ π2n−k−1ΩkSn. On the other hand, we know by [S] that loops on an
even sphere split after localizing at any odd prime p;

4.6 ΩkSn '(p) Ωk−1Sn−1 × ΩkS2n−1

Under this equivalence, the generator β maps to the generator of π2n−k−1ΩkS2n−1 ∼= Zp (re-
member the spaces are localized). It follows that by composing with the mod-p Hurewicz map
h : π2n−k−1ΩkS2n−1−−−→H2n−k−1ΩkS2n−1 ∼= Zp we get the non-trivial generator. The composite

π2n−1(Sn)
ad
−−−→π2n−k−1(ΩkSn)

pr
−−−→π2n−k−1ΩkS2n−1

h
−−−→H2n−k−1ΩkS2n−1 ↪→ H2n−k−1(ΩkSn)

maps [ιn, ιn] to an infinite cyclic generator as desired.

We can now prove proposition 1.2 of the introduction.

Proposition 4.7: Assume 1 ≤ k < n and n is even. Then in the Serre spectral sequence for the

fibration ΩkSn
i
−−−→ΛkSn

ev
−−−→Sn, the differential dnn,n−k is given by multiplication by 2 on the

torsion free generator of H2n−k−1(ΩkSn). In particular, dnn,n−k is an isomorphism with rational
coefficients.

Proof: The differential dnn,n−k is determined according to diagram 4.3 by the image of the White-
head square under the map θ described in 4.5. The claim now follows from lemma 4.5.

4.1 Rational and Mod-2 Calculations

The mod-2 cohomology of ΛkSn, k < n is completely determined according to the following
lemma
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Lemma 4.9: The Serre SS for ΩkSn−−−→ΛkSn−−−→Sn collapses with mod-2 coefficients whenever
k < n.

Proof: The following short and quite lovely argument was provided to us by F. Cohen [C]. Consider
the suspension ΩnE : ΩnSn+q → Ωn+1Sn+q+1 and the following induced map of fibrations

ΩnSn+q
ΩnE
−−−→ Ωn+1Sn+q+1

↓ ↓
Λn(Sn+q)

Λn(E)
−−−→ ΛnΩSn+q+1

↓ ↓
Sn+q

E
−−−→ Ω(Sn+q+1).

Since ΩSn+q+1 is an H-space, then so is ΛnΩSn+q+1 and consequently we have a splitting

ΛnΩSn+q+1 ' ΩSn+q+1 × Ωn+1Sn+q+1.

It is known (cf. [C3], pp. 228-231) that the map ΩiE is injective in mod-2 homology (for all i) and
hence in the diagram above both fiber and base inject in Z2-homology. The Lemma follows.

We now use proposition 4.7 to calculate H∗(ΛkSn) with rational coefficients. We also give a
complete answer mod-p (p odd) for the case of a two fold loop space. We make use throughout of
the following standard fact. Consider the path-loop fibration ΩkSn−−−→P−−−→Ωk−1Sn for k < n.
Then

4.8 H∗(ΩkSn) = TorH
∗(Ωk−1Sn)(F,F)

This follows because the Eilenberg-Moore spectral sequence collapses at the E2 term (cf. [CM]).

Proposition 4.10: Let 1 ≤ k < n and suppose n even. then the Poincaré series for H∗(ΛkS2n; Q)
is given as follows {

1 + (xn + xn−k)/(1 − xn−k−1) , k is odd
(1 + x3n−k−1)/(1− xn−k) , k is even.

Proof: When n is even, one has H∗(ΩSn) = Λ(en−1) ⊗Q(a2n−2), where Λ(en−1) is an exterior
algebra on an n− 1 dimensional generator. It is easy to see (see §4) that

TorΛ(en−1)(Q,Q) = Q(en−2), and TorQ(a2n−2)(Q,Q) = Λ(a2n−3)

Iterating these constructions yields

H∗(ΩkSn; Q) =
{

Q(e)⊗ Λ(a), k even
Λ(e) ⊗Q(a), k odd

where deg(e) = n − k and deg(a) = 2n − k − 1. In the Serre spectral sequence for 4.1 with Q
coefficients, the class a hits eι and this differential generates all other differentials. When k is odd,
one has (up to a unit)

d(ak) = eιak−1, d(eak) = e2ιak−1 = 0
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and the classes that survive are eak and xak, k = 1, 2, . . .. The first claim follows. When k is even,
H∗(ΛkSn; Q) ∼= Q(e)[aι, 1] and that leads to the second assertion.

Remark: The Poincaré series for ΛSn; (1 + xn + xn−k − xn−k−1)/(1− xn−k−1), is well-known and
is given for instance in [Ro].

§4.2 Second fold (free) loop spaces

We here show that the Serre SS for the fibration Ω2(S2q+2)−−−→Λ2S2q+2−−−→S2q+2 has only
one non-zero differential at the E2q+2 term. This recovers an unpublished calculation of F. Cohen
(we work below with mod-p coefficients.)

Recall first the description of Ω2S2q+2 over the mod-p Steenrod algebra (see [C3] or [R] for a
general discussion). We have that

Ω2S2q+2 ' ΩS2q+1 × Ω2S4q+3

(this follows from 4.6), and that H∗(Ω2S4q+3) is given by

H∗(Ω2S4q+3) = Λ(x0, x1, . . .)⊗ Γ(y1, y2, . . .)

where |xi| = 2(2q + 1)pi − 1 and |yi| = 2(2q + 1)pi − 2. The action of the Steenrod algebra is given
by

β(yi) = xi, and P1(ypi ) = yi+1.

Example: We work out below the details for Ω2S4 (the general case being identical). Start with
the Hopf fibration S3 → S7 → S4 and observe that it has to split after looping ΩS4 ' S3 × ΩS7

(see §2). This gives an algebra isomorphism

H∗(ΩS4) ∼= H∗(S3)⊗H∗(ΩS7) ∼= Λ(ε)⊗ Γ(a).

Here Γ(a) is a divided power algebra on a six dimensional generator while Λ(ε) is the exterior
algebra on a three dimensional generator. According to 4.8

H∗(Ω2S4,Zp) ∼= TorΛ(ε)(Zp,Zp)⊗ TorΓ(a)⊗Zp(Zp,Zp)

It is easy to see that a minimal resolution for Λ(ε) is generated by |ε|, |ε|ε|, . . . (sub-resolution of the
Bar construction) and these elements generate a divided power algebra (where the algebra structure
comes from the shuffle product in the Bar construction), so one has

4.11 TorΛ(ε)(Zp,Zp) ∼= Γ(|ε|).

On the other hand (and mod-p) one can verify that Γ(a) splits as a product of truncated polynomial
algebras (a result of H. Cartan)

Γ(a)⊗ Zp ∼= PT (a, p)⊗ · · · ⊗ PT (γpi , p)⊗ · · ·

where PT (a, p) denotes the truncated polynomial algebra Zp(a)/ap = 0. It can be easily checked
using the Bar construction (see [K1]) that

TorPT (a,p)(Zp,Zp) = Λ(|a|)⊗ Γ(|ap−1|a|)
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This then combines with 4.11 to yield the following description of H∗(Ω2S4,Zp) as an algebra.

Lemma 4.12: H∗(Ω2S4,Zp) ∼= Γ(ε)⊗Λ(x0, x1, . . . , )⊗ Γ(y1, y2, . . .) where e is of degree 2, the xi’s
are of degree 6pi − 1 and the yi’s of degree 6pi − 2.

Here of course e = |ε|, xi = |γpi+1 | and yi = |γp−1
pi
|γp|. It isn’t hard to see that as a module over

the Hopf algebra, H∗(Ω2S4,Zp) is generated by e and the xi (here βxi = yi where β is the mod-p
Bockstein).

Theorem 4.13: In the cohomology Serre spectral sequence for Ω2S2q+2 → Λ2S2q+2 → S2q+2 we
have that

d4q+1x0 = e · ι,

where e is the generator of H2q(ΩS2q+1) in the fiber and ι is the generator of H2q+2(S2q+2) in the
base.

Proof: The differential d4q+1 is described by 4.7 and is non-trivial. The differentials vanish on the
y’s by dimensions argument. It follows that there are no non-zero differentials on the xi’s, i ≥ 1
since dxi = d(βyi) = βdyi = 0. The claim follows.

§5 The Space of Rational Maps of the Riemann Sphere

We here give a short proof of a theorem of Havlicek on the structure of the space Hol(P1,Pn)
of holomorphic maps (unbased) from the Riemann sphere into complex projective space. We start
with a lemma

Lemma 5.1: Let F → E → B be a fibration over a simply connected space B. Assume all elements
of Hn(B; A) are transgressive. Then the transgression is given according to the diagram

πn(B)
∂
−−−→ πn−1(F )yh yh

Hn(B)
τ
−−−→ E0,n−1

where here E0,n−1 is thought of as a quotient of Hn−1(F ).

Proof: The following diagram commutes

· · · −−−→ πi(F ) −−−→ πi(E) −−−→ πi(E,F )
∼=πi(B)

∂
−−−→ πi−1(F ) −−−→· · ·yh yh yh yh

· · · −−−→ Hi(F ) −−−→ Hi(E) −−−→ Hi(E,F )
∂
−−−→ Hi−1(F ) −−−→· · ·yp∗ y

Hi(B)
τ
−−−→ E0,i−1
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and the lemma follows.

Lemma 5.2: The d2 differential for the (cohomology) Serre spectral sequence associated to Ω2
kS

2 →
Λ2
kS

2 → S2 is of the form
d2(x) = 2kι

where x is the generator of H1(Ω2S3) ∼= Z. The SS collapses at E2 with mod-2 coefficients and at
E3 mod-p, p odd.

Proof: Let k : S2−−−→S2 denote multiplication by k. From the previous lemma we deduce that
the transgression on ι ∈ H2(S2) is given as the image under the Hurewicz homomorphism of the
Whitehead product

[k, ι] = k[ι, ι] = 2k ∈ π3(S2) ∼= π1(Ω2
kS

2) ∼= Z

Note that all components of Ω2S2 are equivalent to Ω2
0S

2 ' Ω2S3. Since π1Ω2
0S

2 is abelian, the
Hurewicz map is an isomorphism and one has that τ(ι2) = d2(ι2) = 2kx where τ is the transgression.
Dualizing in cohomology we see that τ(x) = 2kι2. We now have that

H∗(Ω2S3; Z2) ∼= Λ(q1, . . . , q2i+1−1, . . .)

where the right hand side denotes an exterior algebra on (odd) generators qi of dimensions 2i+1−1
(q1 = x). A quick inspection of the mod-2 quadrant for the serre spectral sequence shows that the
only possible differential is the one going from q1 to ι2 in the base. But this is multiplication by 2k
and hence is zero mod-2. The first claim of the lemma follows.

The very same argument applies for the case p > 2. In this case

H∗(Ω2S3; Z2) ∼= Λ(q1, . . . , q2pi−1, . . .)⊗ PT (βq1, . . . , βqi, . . .)

where now the qi have degree 2pj − 1 and the additional term is given by a truncated polynomial
algebra (that is a polynomial algebra on the indicated generators with (βqi)p = 0.) Since the
differentials on qi, i > 1 vanish, they must also vanish on βqi and the second claim follows.

We now turn to the space of meromorphic functions on P1 = C ∪ {∞} or Hol(P1). This space
can be regarded as as a subspace of Ω2S2 and hence is also graded by degree. Inside Hol(P1) we
let Rat(P1) be the subspace of maps sending the north pole ∞ to 1. An element of Rat(P1), say
of degree k, is identified with the quotient p

q = zk+ak−1z
k−1+···+a0

zk+bk−1zk−1+···+b0 where p and q have no roots in

common. It is easy to see for example that Hol1(P1) corresponds to PSL(2,C), the automorphism
group of P1 (which is up to homotopy RP 3), and that Rat1(P1) = C×C∗ ' S1.

Consider now the map of fibrations

5.3

Ratk(P1) ↪→ Ω2
kS

2

↓ ↓
Holk(P1) ↪→ Λ2

kS
2

↓ ↓
P1

=
−−−→ S2.
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According to Segal [S], the top inclusion is an isomorphism in homology group up to dimension k.
In [C2M2] and also in [K1] it is shown that H∗(Ratk(P1)) actually injects in H∗(Ω2

0S
2) and it does

so in the following nice way. Recall that Ω2
0S

2 ' Ω2S3 = Ω2Σ2S1 and hence it stably splits as an
infinite wedge

∨
j≥1Dj where the summands Dj are given in terms of configuration spaces with

labels. It now turns out that (stably)

Ratk(P1) 's
k∨
j=1

Dj .

It is known that H1(Rat1(P1; Z)) ∼= π1(Rat1(P1)) ∼= Z. Since the map of the fibers in 5.3 is
an injection, it is direct to see by comparison of spectral sequences that the transgression on the
orientation class of the base (in the left hand fibration in 5.3) is also given by multiplication by 2k,
and that all other differentials are trivial. This then shows that

Corollary 5.5 (Havlicek): The Serre SS for the fibration

Ratk(P1)−−−→Holk(P1)−−−→P1

has only one non-zero differentials d2(x) = 2kι. It follows in particular that the spectral sequence
collapses with mod-p coefficients whenever p = 2 of p divides k.
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series in commutative algebra”, Springer lecture notes in math 1352, 173–189.

[17] [Sa] El-Kamel Saaidia, “Brace-produit et suites spectrales en homotopie”, C. E. Acad, Sci.
Paris, t.311 (1990), 361–364.

[18] [S] J.P. Serre, “Groupes d’homotopie et classes de groupes abeliens”, Ann.Math. (2)58(1953)
258–294.

[19] [W] G. W. Whitehead, “On products in homotopy groups”, Ann. Math., 47(1946), 460–475.

Sadok Kallel & Denis Sjerve
Dept. of Math., #121-1884 Mathematics Road
U. of British Columbia, Vancouver V6T 1Z2

Emails: skallel@math.ubc.ca
sjer@math.ubc.ca

19


