SOLUTIONS TO MIDTERM 1: MATH 100, SECTION 107

QUESTION 1: [4 marks] Below you are given the graph of y = f'(x) for some function y = f(x). Graph the function y = f(x) assuming that f(0) = -1.

FIGURE 1. The graph of y = f'(x)

Solution to (1):

FIGURE 2. The graph of y = f(x)

QUESTION 2: [6 marks] Using the rules of differentiation find the derivatives of the following functions. DO NOT SIMPLIFY YOUR ANSWERS.

(a)
$$f(x) = \frac{x^2 - 2x}{x^3 + x + 1}$$
. (b) $f(x) = \sqrt{\sqrt{x} + 1}$. (c) $f(x) = (x^{-1} + x) (3x^2 - 2x + 10)$.

Date: October 2, 2002.

Solution to (2):

(a)
$$f'(x) = \frac{(x^3 + x + 1)(2x - 2) - (x^2 - 2x)(3x^2 + 1)}{(x^3 + x + 1)^2}.$$

(b)
$$f'(x) = \frac{1}{2} \left(\sqrt{x} + 1\right)^{-\frac{1}{2}} \left(\frac{1}{2\sqrt{x}}\right).$$

(c)
$$f'(x) = (-x^{-2} + 1)(3x^2 - 2x + 10) + (x^{-1} + x)(6x - 2).$$

QUESTION 3: [4 marks]

(a) State the tangent line approximation for a function f(x) at the point x_0 .

(b) A function f(x) is known to satisfy f(0) = 1.05 and f'(0) = -0.1. Find a reasonable approximation to f(0.1).

Solution to (3):

(a) The tangent line approximation is $f(x_0 + h) \approx f(x_0) + hf'(x_0)$.

(b) Applying the tangent line approximation we have

$$f(0.1) \approx f(0) + (0.1)f'(0) = 1.05 + (0.1) \times (-0.1) = 1.04.$$

QUESTION 4: [6 marks] Let $f(x) = x^3 - x^2$, $-\infty < x < \infty$.

(a) Determine where f(x) is increasing and where it is decreasing.

(b) Determine all local maxima and local minima of f(x).

(c) Does f(x) have an absolute maximum or absolute minimum?

Solution to (4):

(a)

$$f'(x) = 3x^2 - 2x = x(3x - 2) = 0 \iff x = 0 \text{ or } \frac{2}{3}.$$

By testing at particular points we see that

$$\begin{aligned} f'(x) &> 0 \text{ if either } x < 0 \text{ or } x > \frac{2}{3}. \\ f'(x) &< 0 \text{ if } 0 < x < \frac{2}{3}. \end{aligned}$$

Therefore $f(x)$ is increasing if either $x < 0$ or $x > \frac{2}{3}$
and $f(x)$ is decreasing if $0 < x < \frac{2}{3}. \end{aligned}$

(b) There is a local maximum at x = 0 and a local minimum at $x = \frac{2}{3}$. There are no other local extrema.

(c) f(x) does not have an absolute maximum since f(x) is strictly increasing on the interval $\frac{2}{3} < x < \infty$. In fact $\lim_{x\to\infty} f(x) = \infty$. f(x) does not have an absolute minimum since f(x) is strictly increasing on the interval $-\infty < x < 0$. In fact $\lim_{x\to\infty} f(x) = -\infty$.

QUESTION 5: [4 marks] Find the minimum value of x + y, where x, y are positive numbers satisfying xy = 1.

Solution to (5): Since xy = 1 we have $x + y = x + x^{-1}$. Thus we have to minimize the function $f(x) = x + x^{-1}$ for $0 < x < \infty$. Now

$$f'(x) = 1 - x^{-2} = 0 \iff x = \pm 1.$$

We discard x = -1 and note that

$$f'(x) < 0$$
 if $0 < x < 1$ and $f'(x) > 0$ if $x > 1$.

Therefore the minimum ocurs at x = 1 and the minimum value is f(1) = 2.