MIDTERM 1: MATH 100, SECTION 109, WEDNESDAY OCT. 7

QUESTION 1: [4 marks] Below you are given the graph of y = f'(x) for some function y = f(x). Graph the function y = f(x) assuming that f(0) = 1.

FIGURE 1. The graph of
$$y = f'(x)$$

Solution to (1):

FIGURE 2. The graph of y = f(x)

QUESTION 2: [6 marks] Using the rules of differentiation find the derivatives of the following functions. DO NOT SIMPLIFY YOUR ANSWERS.

(a)
$$f(x) = \frac{x^2 + 2x}{x^3 - x - 1}$$
. (b) $f(x) = \frac{1}{\sqrt{x} + 1}$. (c) $f(x) = (x^{-2} + x^2)(x - x^{-1})$.

Date: October 2, 2002.

0

Solution to (2):

(a)
$$f'(x) = \frac{(x^3 - x - 1)(2x + 2) - (x^2 + 2x)(3x^2 - 1)}{(x^3 - x - 1)^2}$$

(b)
$$f'(x) = -(\sqrt{x}+1)^{-2}\left(\frac{1}{2\sqrt{x}}\right).$$

(c) $f'(x) = (-2x^{-3} + 2x)(x - x^{-1}) + (x^{-2} + x^{2})(1 + x^{-2}).$

QUESTION 3: [4 marks] Let $g(x) = (f(x))^3$. You are given that f(0) = 2 and f'(0) = -1. Find g'(0).

Solution to (3): By the chain rule $g'(x) = 3(f(x))^2 f'(x)$. Putting x = 0, and using f(0) = 2 and f'(0) = -1, gives g'(0) = -12.

QUESTION 4: [6 marks] Let $f(x) = x^4 - 2x^2$, $-\infty < x < \infty$.

(a) Determine where f(x) is increasing and where it is decreasing.

(b) Determine all local maxima and local minima of f(x).

(c) Does f(x) have an absolute maximum or absolute minimum?

Solution to (4):

(a) $f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 0 \iff x = 0, \pm 1$. By testing values of the derivative we see that

 $\begin{aligned} f'(x) &> 0 & \text{if } -1 < x < 0 \text{ or } x > 1. \\ f'(x) &< 0 & \text{if } -\infty < x < -1 \text{ or } 0 < x < 1. \\ \end{aligned}$ Therefore $\begin{aligned} f(x) \text{ is increasing if } -1 < x < 0 \text{ or } x > 1 \\ \text{and} & f(x) \text{ is decreasing if } -\infty < x < -1 \text{ or } 0 < x < 1. \end{aligned}$

(b) There is a local maximum of f(x) at x = 0 and there are local minima at $x = \pm 1$. There are no other local extrema.

(c) There is no absolute maximum since f(x) is strictly increasing for x > 1. It is also strictly decreasing for x < -1. In fact $\lim_{x\to\pm\infty} f(x) = \infty$. There is an absolute minimum, and it occurs at either x = 1 or x = -1.

QUESTION 5: [4 marks] A ball is at rest 490 meters above ground when it is dropped. After t seconds it is $s(t) = 490 - 4.9t^2$ meters above ground.

(a) At what time does the ball hit the ground?

(b) What is the velocity of the ball when it hits the ground?

Solution to (5):

(a) The ball hits the ground when s(t) = 0, that is when $490 - 4.9t^2 = 0$. Solving for the positive value of t gives t = 10.

(b) The velocity of the ball is $v(t) = \frac{ds}{dt} = -9.8t$ for $0 \le t \le 10$. Thus the velocity when the ball hits the ground is $-98 \ m/sec$.