
SOLUTIONS TO HOMEWORK ASSIGNMENT #8

1. Graph the following functions showing all work:

(a) f(x) =
x2

x− 1
.

(b) f(x) = e−x
2

, −∞ < x <∞.
(c) f(x) = xe−x, −∞ < x <∞.
(d) f(x) = x2e−|x|.

Solution:

(a) First notice that the function is not defined at x = 1. In fact lim
x→1+

f(x) = +∞ and

lim
x→1−

f(x) = −∞. Thus x = 1 is a vertical asymptote. Also note that

f(0) = 0, f(x) > 0 for x > 1 and f(x) < 0 for x < 1.

Next notice that y = x+1 is a slant asymptote since long division gives
x2

x− 1
= x+1+

1

x − 1
.

In fact this tells us that f(x) approaches the line y = x+ 1 from above as x→∞ and from
below as x→ −∞.
Now we do the calculus:

1. f ′(x) = 1− (x− 1)−2 = 0⇐⇒ x = 0, 2.

2. f ′(x) > 0⇐⇒ −∞ < x < 0 or 2 < x <∞ and f ′(x) < 0⇐⇒ 0 < x < 1 or 1 < x < 2.

3. f ′′(x) = 2(x− 1)−3 is never 0. f ′′(x) > 0⇐⇒ x > 1 and f ′′(x) < 0⇐⇒ x < 1.

It follows that:

1. f(x) is increasing for x < 0 or x > 2 and decreasing for 0 < x < 1 or 1 < x < 2.
Therefore there is a local maximum at x = 0 and a local minimum at x = 2. The local
maximum and minimum values are f(0) = 0 and f(2) = 4 resp.

2. The graph is concave up for 1 < x <∞ and concave down for −∞ < x < 1. There are
no inflection points.

Now assemble all this information into the graph. See the diagram at the end.

(b) f(x) = e−x
2

is defined for all x (therefore no vertical asymptotes). Also notice the
following: f(0) = 1, f(x) > 0 for all x, f(−x) = f(x) (i.e. the function is even) and so the
graph is symmetric about the y-axis, and limx→±∞ f(x) = 0.
Now we do the calculus:

1. f ′(x) = −2xe−x
2

= 0⇐⇒ x = 0, f ′(x) > 0⇐⇒ x < 0 and f ′(x) < 0⇐⇒ x > 0.
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2. f ′′(x) = −2e−x
2

+ 4x2e−x
2

= (4x2 − 2)e−x
2

= 0⇐⇒ x = ± 1√
2
.

3. f ′′(x) > 0⇐⇒ x >
1√
2

or x < − 1√
2
.

4. f ′′(x) < 0⇐⇒ − 1√
2
< x <

1√
2
.

It follows that:

1. The graph is increasing for −∞ < x < 0 and decreasing for 0 < x < ∞. There is
an absolute maximum at x = 0 and the absolute maximum is f(0) = 1. There is no
absolute maximum and no absolute minimum.

2. The graph is concave up for −∞ < x < − 1√
2

or
1√
2
< x <∞ and concave down for

− 1√
2
< x <

1√
2
. The inflection points are

(
±1/
√

2, 1/
√
e
)
.

Now assemble all this information into the graph. See the diagram at the end.

(c) The function f(x) = xe−x is defined for all x so there are no vertical asymptotes. More-
over, note the following: f(0) = 0, f(x) > 0 if x > 0, f(x) < 0 if x < 0, limx→∞ f(x) = 0
and lim

x→−∞
f(x) = −∞.

Now the calculus:

1. f ′(x) = (1− x)e−x = 0⇐⇒ x = 1, f ′(x) > 0⇐⇒ x < 1 and f ′(x) < 0⇐⇒ x > 1.

2. f ′′(x) = (x− 2)e−x = 0⇐⇒ x = 2, f ′′(x) > 0⇐⇒ x > 2 and f ′′(x) < 0⇐⇒ x < 2.

It follows that:

1. The graph is increasing for −∞ < x < 1 and decreasing for 1 < x < ∞. There is an
absolute maximum at x = 1 and the absolute maximum value is f(1) = 1/e.

2. The graph is concave down for −∞ < x < 2 and concave up for 2 < x < ∞. There is
an inflection point at (2, 2/e2).

Now assemble all this information into the graph. See the diagram at the end.

(d) Observe that f(x) = x2e−|x| is defined for all x, f(0) = 0, f(x) > 0 for x 6= 0, f(x) is an
even function (i.e. f(−x) = f(x)) and lim

x→±∞
f(x) = 0.

Now assume x ≥ 0. Then f(x) = x2e−x and

1. f ′(x) = (2x− x2)e−x = 0⇐⇒ x = 0, 2.

2. f ′(x) > 0⇐⇒ 0 < x < 2 f ′(x) < 0⇐⇒ x > 2 (recall we are assuming x ≥ 0).

3. f ′′(x) = (x2 − 4x+ 2)e−x = 0⇐⇒ x = 2±
√

2.
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4. f ′′(x) > 0⇐⇒ 0 < x < 2−
√

2 or x > 2 +
√

2, f ′′(x) < 0⇐⇒ 2−
√

2 < x < 2 +
√

2.

Now use the symmetry about the y-axis to complete the analysis.

1. The graph is increasing for −∞ < x < −2 and 0 < x < 2.

2. The graph is decreasing for −2 < x < 0 and 2 < x <∞.

3. The graph is concave up for −∞ < x < −2 −
√

2, −(2 −
√

2) < x < 2 −
√

2 and
2 +
√

2 < x <∞.

4. The graph is concave down for −2−
√

2 < x < −2 +
√

2 and 2−
√

2 < x < 2 +
√

2.

5. Inflection points occur at x = −2−
√

2,−2 +
√

2, 2−
√

2, 2 +
√

2.

Now assemble all this information into the graph. See the diagram at the end.

2. Compute the following limits:

(a) lim
x→0

1− cos(x2)

x2 sin(x2)

(b) lim
x→0

sin(x) sin(2x)

x2 + x4

(c) lim
x→0

ln(1 + x)

x

Solution:

(a) lim
x→0

1− cos(x2)

x2 sin(x2)
= lim

x→0

1− (1− x4/2) + · · ·
x2(x2 − · · · ) = lim

x→0

1/2 + · · ·
1 + · · · = 1/2.

(b) lim
x→0

sin(x) sin(2x)

x2 + x4
= lim

x→0

(x+ · · · )(2x+ · · · )
x2 + · · · = 2.

(c) lim
x→0

ln(1 + x)

x
= lim

x→0

x− · · ·
x

= 1.

3. Find the Maclaurin series (Taylor series at x = 0) for the following functions:

(a) f(x) = ln(1 + x2)

(b) f(x) =
1− e−x

x

(c) f(x) = tanx out to and including terms of order 5.

(d) f(x) = esinx out to and including terms of order 3.

Solution:

(a) ln(1 + x2) = x2 − 1

2
x4 +

1

3
x6 − 1

4
x8 + · · ·

3



(b)

1− e−x
x

=
1− (1− x+ x2/2!− x3/3! + x4/4!−+ · · · )

x

= 1− 1

2!
x+

1

3!
x2 − 1

4!
x3 + · · ·

(c)

tan x =
sin x

cosx
=

x− 1
3!
x3 + 1

5!
x5 + · · ·

1− ( 1
2!
x2 − 1

4!
x4 + · · · )

=

(
x− 1

3!
x3 +

1

5!
x5 + · · ·

)(
1 +

(
1

2!
x2 − 1

4!
x4 + · · ·

)
+

(
1

2!
x2 − 1

4!
x4 + · · ·

)2

+ · · ·
)

= x+
1

3
x3 +

2

15
x5 + · · · (after a lot of algebra.)

(d)

esinx = 1 + sin x+
1

2!
(sin x)2 +

1

3!
(sin x)3 + · · ·

= 1 + x− 1

3!
x3 +

1

2!

(
x− 1

3!
x3

)2

+
1

3!

(
x− 1

3!
x3

)3

+ · · ·

= 1 + x+
1

2
x2 + · · · (the third order terms cancel).

4. Suppose f(x) is a function satisfying f(0) = 10 and f ′(x) =
1

1 + x4
for all x. Compute

the linear approximation L to f(0.1) and show that L− 2× 10−5 < f(0.1) < L.

Solution: The linearization to f(x) at x = 0 is L(x) = f(0) + f ′(0)x = 10 + x. Thus
f(0.1) ≈ 10.1. To see how accurate this is we need Taylor’s theorem with remainder, namely

f(x) = f(a) + f ′(a)(x− a) +
f ′′(x̄)

2!
(x− a)2,

where x̄ is some point between a and x. We apply this formula to our function with a = 0,

using f ′′(x) = − 4x3

(1 + x4)2
:

f(0.1) = f(0) + f ′(0)× 0.1 +
f ′′(x̄)

2!
(0.1)2 = 10.1− 2x̄3

(1 + x̄4)2
× (0.1)2,

where 0 < x̄ < 0.1. This certainly implies f(0.1) < 10.1. Since

2x̄3

(1 + x̄4)2
× (0.1)2 < 2× (0.1)3 × (0.1)2 = 2× 10−5
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we see that 10.1− 2× 10−5 < f(0.1) < 10.1.

5. Suppose f(x) is a function which is twice differentiable for −∞ < x < ∞ and satisfies
f(0) = f(1) = f(2) = 0. Show that there exists x such that 0 < x < 2 and f ′′(x) = 0.

Solution: Applying the Mean Value Theorem we see that there are points x1, x2 such that
0 < x1 < 1 < x2 < 2, f ′(x1) = 0 and f ′(x2) = 0. Applying the Mean Value Theorem to
the function f ′(x) on the interval x1 ≤ x ≤ x2 we see that there is a point x such that
x1 < x < x2 and f ′′(x) = 0.
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Figure 2: y = e−x
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Figure 4: y = x2e−|x|
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