Math 257-316 Assignment 4

[Series solutions near regular singular point; Bessel's equations]

- 1. For $xy'' + 3y' + \frac{1+x}{x}y = 0$, (x > 0), find the value(s) of r so that there exists a solution of the form $\sum_{n=0}^{\infty} a_n x^{n+r}$. Find the recurrence relation for a_n .
- 2. The equation $\sin(x)y'' = e^x y$, (x > 0), has a solution of the form $\sum_{n=0}^{\infty} a_n x^{n+1}$, with $a_0 = 1$. Find a_1 and a_2 .
- 3. Modified Bessel's equation of order $p \ge 0$ is

$$x^{2}y'' + xy' + (-x^{2} - p^{2})y = 0.$$

This family of equations differ from the usual Bessel equations only on the sign of x^2y . They arise when we deal with PDE in polar coordinates in an annulus $0 < r_1 < r < r_2$. (a) find the value(s) of r so that there exists a solution of the form $\sum_{n=0}^{\infty} a_n x^{n+r}$. Find the recurrence relation for a_n .

(b) For the positive r and p = 1/2, solve one solution.

[Periodic functions]

4. Determine the minimal (fundamental) period of the given function.

(a) $\sin 2x$, (b) $\cos \frac{x}{2} + 3\sin 2x$, (c) $\frac{1}{2 + \sin x}$, (d) $e^{\cos x}$.

[Fourier series]

- 5. Find the Fourier series of the 2*p*-periodic function $f(x) = \begin{cases} x, & \text{if } 0 \le x \le p, \\ 0, & \text{if } -p \le x \le 0. \end{cases}$
- 6. Let f(x) = 1 for $-2 \le x \le 1$ and f(x) = x 2 for 1 < x < 2. Extend f(x) to a 4-periodic function.
 - (a) Plot the function on the interval [-6, 6].
 - (b) Plot its Fourier series (without computing it) on the interval [-6, 6].
- This assignment is due at the beginning of class of Wednesday, October 5.
- The first midterm exam is on Wednesday, October 12.