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Abstract

In this unpublished note, we consider in detail (1) the O(s%) calculation of u for
the self-avoiding-walk, (2) the calculation of amplitude A and diffusion constant D
for the self-avoiding-walk, and (3) detailed O(s?) calculation of the critical point
pe for bond percolation. Each of these is treated in separate sections, preceded by
a brief supplement to Appendix A.

B Supplement to Appendix A

B.1 More on estimating Fourier Integrals

In this section, we supplement Lemma 4.1 so that it can be applied to more general
situation.

Lemma B.1 Let f be a real function on Z® which respects lattice symmetry, and for
which there exists a (small) positive € such that

Yolf@)] <e (B.18)
x#0

Let A(k) be a real function on [—m, )¢ which satisfies
1 - .
AR < S0 = D), AR <26 for ke [—m, 7] (B.19)

Then for any integer n > 1 and for d >2n+ 1, a > 1,

- d'k []E(O) - f(l{/')](gﬂa%m B . 62 50771 . |
/ (20 {all = DB {all - D]+ AEE (s +€) + 30 ;,f (y). (B.20)

Here O(A) denotes a term bounded in absolute value by KA, where K is a positive

constant independent of €, d, o (but dependent on n), and as usual s = i.

Proof of Lemma B.1 The proof goes in exactly the same way as that of Lemma 4.1,
if we now write f(0) — f(k) in the denominator of Lemma 4.1 as A(k).
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As a corollary, we obtain the next lemma, which will be used repeatedly in our
analysis of percolation.

Lemma B.2 Let f be a real function on Z® which respects lattice symmetry, and for
which there exists a (small) positive € such that

S ()] <e. (B.21)
z#0

Also let h(k) be a real function on [—m,7]% which satisfies (for 6 <€)
\h(k)| <6, for kel[—ma], (B.22)

and defining A(k) = f( ) — f( )—I—h( ),

IA(R)| < ;[1 —D(k)], for kel[-mn] (B.23)

Then for any integer n > 1 and for d >2n+ 1, a > 1,

- dk [A(K ] s€ + € & (1
/ (27(.)(1{@[1_15(;6)] n=1{a[l D(k)]#—A(\k,) O(5+ + )+ o y%f(ﬁ

(B.24)
Here O(A) denotes a term bounded in absolute value by KA, where K is a positive

constant independent of €, d, a (but dependent on n), and as usual s = ,Ld

Proof of Lemma B.2 We note an identity
[ (At
7 EmHall = D) Hall - D] + Ak}
-/ d'k [£(0) = F(R)Je™
2m) {all = DN} {all = D) + A()}
Ak [h(k)]e .
+/ (2m)4 {a[l — D(k)]}»Ha[l — D(k)] + A(k)} (B.25)

The first term is estimated by Lemma B.1. The second term is bounded by taking
its absolute value.

O
B.2 More on 1/d—expansions for Gaussian quantities
To deal with percolation, we will need (for € Z¢)
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C Detailed Explanation of O(s’) Calculation

Here we explain in detail the calculations needed to obtain (4.1)—(4.6), thus completing
the proof of Theorem 1.2.

C.1 Third Iteration: B

Part B of the Third Iteration is rather easy. That is, we have only to summarize what
we have (or what we can easily get) for the two point function G(0, ) at this stage.
First, by our current estimate on 3., we have

2df3, = 1+ s+ 25% + 65 + 275" + O(s") (C.1)
and for « in (4.56),
a=2d3,+ 5> +65° =1+ s+ 35" +125% + 275" + O(5"). (C.2)

So, (4.57) immediately gives:

s+ 2s% + 753+ 3557+ O(s?) (v =eq)
, ) s 4583+ 295 + O(sY) (2 = 2e) ‘
G(OJI’) — 252 + 1053 4 5054 + 0(55) (I e + 62) (63)
O(s?) (|z| > 2)
We also note that in a similar way we have
s+ 652 4+ 4153 + 32351 + O(s°) (v = 0)
45% + 3457 + 2885 + O(s°) (x =eq)
B(z) =< 5?4 1453 + 1485 + O(s°) (x = 2eq) (C.4)
252 4 2853 + 2725 + O(5°) (x =€+ e9)
O(s?) (|| > 2).
For later use, we also note that
B(0) = Y G(0,2)? = B(0) — 2dG(0,¢;)? = 25 + O(s%). (C.5)

|z|>1

C.2 Fourth Iteration: A

We now proceed to diagrammatic estimates. Because diagrams of six-loops and more
contribute only O(s%), we have only to consider diagrams of less than six-loops.

Comment on terminology:

We first introduce notation (congruence of points): @ & y for x,y € Z¢ means v and
y can be related by lattice rotation and reflection.

We say the contribution from a diagram is irrelevant, if we get O(s%) result after
summing those diagram contributions over other diagram contributions related by sym-
metry. To give an example, if f(e;) = O(s°), this is relevant for the sum Y2, f(x), because
>, f(x) contains 2d points congruent to e, thus

S f() = 2df(e1) + .. = O(s")...
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In the following always keep in mind that we have

1 0
2d . _ el .
9 points congruent to %, (C.6)
Qd(d — 1) e1 + e
This in particular means that a contribution to II(x) is irrelevant if it is
O(s%) (x=0)
O(s7) (r=e) (-
O(s7) (1 = 2¢)) (C.7)
O(s%) (v = ey + eo)

We also make heavy use of diagrams. In the diagrams, a solid line connecting x and
y denotes a connection (with possibly some constraints) while a thick (or wiggly) line
denotes a two-point function from x to y. Also a short thick line represents a bond.
C.2.1 Five-loop diagram

The estimate of the five-loop diagram is the simplest. For an upper bound, we just do
as we did for the four-loop diagram,

ZH(5)<.’I;) < lsqu(O,;’I;)] [sup B,(ZI;)] lsup B'(.’I;)] lsup B’(.’L‘)] B(0) = 5" + O(sY).
z z#£0 2#£0 2#£0 2#£0
(C.8)

For a lower bound, we consider the simplest one, where all the slashed lines are zero,
and the other vertex is |y| = 1 [see Fig. C.5]:

% (0) > 2d3.° = s° + O(s%). (C.9)
Combining these, we have

O0) =+ 0(s5), 311 (x) = (3", (c10
x#0

We have thus proved (4.5).

C.2.2 Four-loop diagram

The four-loop diagram is given by Fig. C.4, (0). We consider three cases separately,
according to the number of slashed lines.
(1) Both of the slashed are nonzero: In this case we have [Fig. C.4, (1)]

> [HM)(:};‘)7 case (1)} < lsup G((),;r)] lsup B(I)] [supB(:r)] B(0)

x A0 rZ£0 20
= 0(s)0(s*)?0(s) = O(sY), (C.11)

and thus this contribution is irrelevant.
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(2) One of the slashed is zero. This is the most complicated among the four-loops.
We have two cases: 0 = y or z = x in (4.32). These two give the same contribution, so I
will consider z = x case. We classify into two: (2-a) |x| = 1 and (2-b) |a| > 1.

Case (2-b). When |z| > 1 [Fig. C.4, (2-b)],

> {HM)(:{;)7 case (2)] < B(0) lsup B(.’L‘)] ls111)G(07:1/')]

|| >1 |z|>1 z#0
= O(s1)0(s%)0(s)* = O(s°), (C.12)
and thus is irrelevant.

Case (2-a). x| = 1. This is the most difficult. First, as a lower bound, we just collect
the simplest contribution where y = e +¢; (j = £2,43,...,+d) [Fig. C.4, (2-a)],

[ (er), case (2) | > (2d = 2)3.7 = 8"+ O(s7). (C.13)

For an upper bound, we further classify by the value of y [Fig. C.4, (2-a)]. First,
when |y —ey| > 1,

2
[HM)(el), case (2), |y —er| > 1} < G(0,e1)%B(ey) l sup G(LUgel)]

ly—e1|>1

= 0(s5)?0(s%)0(s*)? = 0(s%), (C.14)

and is irrelevant.
Second, if y = 2e;,
[H(4>(€1), case (2), y = 261} < G(0,e1)?Ger, 2e1)*{G(0,2¢;) — 3.2}
= 0(5)?0(s)°0(s*) = O(s%), (C.15)

and is irrelevant. [We had — 3,2, because the line connecting 0 and y should avoid 2 = ey

Third, if y =e; +¢; (j = £2,£3,...,%d)

?

[H(4)(61)a case (2), y=e + 62} < G(Oa€1:)2G(€h€1 + 62)3{G(07€1 +e5) — ﬁcz}
= s +0(s%), (C.16)

o 2 .
where we had —(.” as before.
Combining these, we have [because we have (2d — 2) contributions of the third case]

[H(4)(61), case (2) ] < s9+0(s7), (C.17)

and thus

[H(4)(€1), case (2) ] =554+ 0(s"). (C.18)

(3) Both lines are zero. As a diagram, this is simple. We have just five lines connecting
0 and x. We classify according to |z| =1 or |z| > 1.
Contribution from |z| > 1 is irrelevant:

> [I(2), case (3) | < lsup G((),x)]v B(0) = O(s2)?0(s%) = O(s®).  (C.19)

|z|>1 lz[>1
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On the other hand,
{H(“/”((zl), case (3) } < G0,e1)” = (s +25%4...)° =5 +10s° + O(s"), (C.20)

and by Fig. C4, (3),

(119 (e1). case (3) | > 3. +5(2d — 2)3.7 = 5" + 105° + O(s7). (C.21)

So we have |
101, e ] = -4 106400 o

(4) Summary: Summarizing (C.11), (C.12), (C.18), (C.19), (C.22) [don’t forget that
we have twice of (C.12), (C.18)], the four loop diagram contributes as

I0(e) = 8 + 127+ 0(s7), 3 I0() = O(s"). (C.23)
|41

We have in particular proved (4.4).

C.2.3 Three-loop Diagram

We consider 5 cases separately, according to the value of |z|.
(1) |=| > 2. This is simple [Fig. C.3, (1)].

z e (1) <

|z|>2

sup G(o,;z;)] [B(0)B(0) + B(0)B(0)] = O(s*)0(s%) = O(s%), (C.24)

|z|>2

and thus is irrelevant. In the above second factor, we used the fact that |z| > 2 means
either |y| > 1 or [ —y| > 1 in Fig. C.3, (1).

(2) |x| = 2, & = 2¢;. This will turn out to be irrelevant. This is seen as follows. We
classify by the values of |y|. [See Fig. C.3, (2)] Then

[y = ey contribution] < G(0,e;)*{G(0,2¢;) — 3.7}
= 0(s)'0(s*) = O(s") (C.25)

[y = es contribution] < G(0, e2)*G(e, 2¢1)°G(0, 2¢y)

= 0(s)?0(s*)20(s%) = 0(s') (C.26)

[y = €2 + 2¢; contribution] = [ y = e, contribution] = O(s'"’) (C.27)
[y = —e; contribution] < G(0,e1)*G(—ey1,2¢1)*G(0, 2¢y)

= 0(s5)°0(s*)?0(s%) = O(s") (C.28)

[y = 3e; contribution] = [y = —e; contribution] = O(s'?) (C.29)

2
[lyl.|y — 2e1| > 1 contribution] < B(2e) lsup G(Uﬁy)] G(0,2¢)
ly[>1

= O(s2)0(s*)?0(5%) = O(5%) (C.30)
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So in all we have

I1®(2e,) < O(s7), (C.31)

and thus is irrelevant.
(3) |z| = 2, and x = e; + ey. This is analyzed in a similar way. It will turn out that
in Fig. C.3, (3a), only the first two terms (i.e. y = ¢; or y = e3) are relevant.

[y = e3 contribution] < G(0,e3)%G(es, e1 + €2)°G(0, €1 + e3)
= 0(5)?0(5*)*0(s*) = 0(s'"), (C.32)

[y = —ey contribution] < G(0, —ey)*G(—ey, 1 + €2)°G(0, e + e3)
= 0(5)?0(5*)%0(s%) = O(s'), (C.33)

[y = e1 + 2ey contribution] = [y = —e; contribution] = O(s'"), (C.34)

2
[lyl, |y — (e1 + e2)| > 1 contribution] < B(ey + e3) lsup G(0, ;1/)] G(0,¢1 + e2)
ly[>1

= 0(sH)0(sH)*0(s%) = O(s°). (C.35)

All these sum up to O(s®). Now the problem is y = e;, e, contribution. This is a bit
tricky.
We start from a lower bound: see Fig. C.3 (3b). We add those configurations

[y = e contribution] > 3.5+ 6(2d — 3)5.° + 2(2d — 4)/308 =59+ 145" + O(s%) (C.36)
On the other hand, as an upper bound [Fig. C.3, (3c)],
[y = e, contribution] < G(0,e1)* x (the line connecting 0 and e; + e5) . (C.37)

Now, this line connecting 0 and e; + €5 has a rather complicated avoiding constraint. In
particular, it should not have contributions marked “excluded” in Fig. C.3. (3¢), because
otherwise this line does not obey the constraint “loops should be saw”. So

[y = e, contribution] < G(0,e1)" X [G(0. ey + e2) — {37+ (2d — 3)3.* + (2d — 3)3.*}]
= 94 145" + O(s7). (C.38)
As a result, we have (because we have y = ey also)
TP (e) 4 e5) = 2[s° 4 1457 + O(5%)]. (C.39)
(4) |#| = 1. This is the most complicated of 3-loops. It will turn out that this
contribution is irrelevant.
Again, we classify according to |y|, |y — e1|. Just as in the above, it can be casily

shown that [See Fig. C.3 (4a)]

% (ey) = (2d — 2) [ y = €2, y = e1 + ey contribution | 4+ O(s7). (C.40)
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But we now claim that the first two terms are also irrelevant, due to avoidance constraint.
See Fig. C.3. (4b). There we have five walks A-E which make the diagram for y = e,.

We now claim that at least one of walks D or E cannot go through neither 0 nor e;+es.
If this is true, the contribution from that walk is bounded by G(es, e;) — 23,2 = O(s?),
and the diagram is bounded by

[y = es, y = €1 + ey contribution | < G(0,e1)G(0, e2)?G(ey, e2)O(s%) = O(s%), (C.41)
and thus contributes O(s”) to (C.40). (y = e; + ey is similar, although the details are
different.)

The claim is proven by the following steps. (1) Because the loop (B,C,D) should be
SAW, the walk D cannot go through 0. (2) If the walk D does not go through e; + ey
either, there is nothing to prove. So I assume it goes through e; + ey, (3) But then, the
loop (D,E) has to be a SAW also. This means the walk E cannot go through e; + es.
(4) However, the walk E cannot go thorough 0 either. Why? e; should be the first
intersection between the loop (B,C,D) and the walk E. If the walk E goes through 0, this
0 is the first intersection, not e;! QED.

So as a result,

1% (e) = O(s7). (C.42)
(5) 2 = 0. This is also complicated. Again we classify by |y|. It is easily shown that
2 ~
[ |y| > 1 contribution | < [sup G((),y)] B(0) = O(sY%) (C.43)
ly[>1

and thus is irrelevant.
Now |y| = 1 contribution is by definition, because we have 2d such y’s,

[ ly| =1 contribution | = 2d A, (C.44)
A= Z p1p2p3pad1 200 313 1134 (0-45)
wji0—ey

where p; = 3%l and I ; is the indicator function of the event that w; Nw; = {0, e }.
Now we use inclusion-exclusion for the last indicator function

Iiy=1—TwsNwys #1{0,e1}].
Substitution into (C.45) gives
Ap = G(0,e)TTP(eg) — Ay (C.46)
with

Ay= Y pipapspaliplozls Tfws Nwy # {0, e1}]. (C.47)

wj:0—eq
Now, neglecting mutual avoidance, and using

oz Nws # {0,e1}] < 0 Hwz Ny 2],
z7#£0,eq



we have an upper bound on A,, which shows its irrelevancy:

Ay < G(0,e)” > G(O (z,e1)> < O(5)?0(s*)%0(s) = O(s"). (C.48)
z7#£0,e1

In the last step, we used the fact that at le:
and bounded the longer lines by sup,, |1 C(O 7) = O( ).
The first term on the other hand is shown by (C.91) and (C.3) to be equal to s* +
8s® + 525 + O(s").
So summarizing above, we have

and |z — ey is greater than one,

A =5 +85" + 525 + O(s") (C.49)

and thus
3(0) = s* + 8s* + 525 + O(s9). (C.50)

(6) Summary: we have shown by the above (1) (5) that

5% + 851+ 525 + O(s%) (v =0)
8 (x) ={ 0(s7) (v =e1,2¢1) . (C.51)
255 + 2857 + O(s%) (x=e1 4+ e)

And recalling the number of equivalent points, (C.6), we have

s34+ 851 + 525" + O(s%)  (x = 0)
0(36) (x = eq,2eq)
3) () — 2
%:H (.’L’) = 54 + 1255 + O<S6) (ZL o el + 62) . (COZ)
O(s°%) (l«] > 2)

We have in particular proved (4.3).

C.2.4 Two-loop diagram
We estimate the diagram using inclusion-exclusion. We classify according to the value
of z.

(0) First, in general, we have by inclusion-exclusion

1 (x) = Z p1papslw; Nw; = {0, x}]
wj:0—z
= Z pip2p3{l — o —Iog—Is1 4+ Liolog+ Ioglsy + 131010 — L1 oD 3131}
w;j:0—x
= G(0,2)* — 3T, () + 3Ty (x) — () (C.53)
where

pj = Bl L, = 1w Nw; # {0,2}] (C.54)

and we defined I, by the last equality, using symmetry between w; and w;. In the
following, we consider these terms one by one. Note here that because II, has less
constraint than II,, etc. we have

G(0,2)* > gy (x) > Ty(a) > (). (C.55)
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(1) First, contributions from |z| > 2 is shown to be irrelevant:

Z H(Q)(:’Ii) < Z G(O,;’I;)3 < [sup G(O7:1/‘)]

|| >2 | >2 |[>2

> G(O,;’I;)2] = 0(s)O(5%) = O(s9).
v (C.56)

So we have only to consider the cases congruent to v = e;, * = 2e1, * = e + e, in
the following.
(2) By simple calculation, we have

s34+ 651 + 335" + 19755 + O(s7) (v = e1)
G(0,2)* = ¢ 5%+ 1557 + O(s%) (x = 2¢) : (
8s% +120s" + O(s) (r =e; + )

@)
(@4
-~
NI

This takes care of the first term of (C.53).
(3) I, (x), |x| = 2, upper bounds.
By overcounting

I]jg S Z I[y € u)]]]:[y I~ LUQ], (C58)
y7#0,x
and thus [See Fig. C.2.(3a)]
L <G0n) Y Y pm<GO0) Y GO Gu  (C5)
y#0,x wi,w2 0—>y—a y#0,2

Now we estimate the second factor of the RHS for each x. First note that

> G0,y)°Gly,x)* = > G0,9)°Cly. )|yl =1 or [y — x| =1]
y#0,2 y#0,2
+ > G(0,9)°G(y,x)™[Jy| > 1 and |y — 2| > 1].(C.60)
y#0x

(3a) The contribution from the second term is irrelevant for |z| < 2 as follows.

ZG(O,;{/)ZG(;(/, 2)1[|y] > 1 and |y — 2| > 1]
y

< Lsup G(()?y)zl {Z G(O,y)z} = 0(s*)?0(s*) = 0(s°). (C.61)

vl ly>1
This, substituted into (C.59), gives O(s*)O(s5%) = O(s®) contribution for |«| = 2, and
O(5)0(s%) = O(s") contribution for |x| = 1. Even after multiplied by the number of
equivalent points given by (C.6), the contribution is O(s®), which is irrelevant.

(3b) Now, for the first term, we count explicitly all y configurations. For x = 2e;, we
just use the simple bound as above [Fig. C.3, (b3)]:

> G(0,9)°Gly, )|yl =1 or |y — x| = 1]
y£0,x

= [(2d = 2)G(0, €2)* G2, 261)* + G(0, —1)* G(—e1,2e1)?] x 2+ G(0,€1)*G(er, 2¢1)?
= 0(2d)0(s5)?0(s°)* + G(0, €1)*Ge1, 2e1)* = 5" + O(s”). (C.62)
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For & = e; 4 ey, we have similarly,

[(2(1 — 4)(;’(01 63)2G(6’3, el + 62)2 + 2(;(07 —61)2G<—€1, e+ 62)2] X 2
—|—2G(0 81)2G(€1? €1+ 6’2)2
= 0(2d)0(5)*0(s*)* + 2G(0,e1)*G(er, €1 + 2)? = 25* 4+ 165° + O(s°). (C.63)

(3¢) Upper bounds summary. We now have
I1,(2¢,) < G(0,2¢)) [54 + 0(55)] ="+ 0(s"), (C.64)

[u(e1 +e2) < G(0.e1 + €2) [25 + 165" + O(s%)] = 4s° + 5257 + O(s"). (C.65)

(4) I, (x), |x| = 2, lower bounds. This is not so complicated. We have only to find
out the main contributions. By Fig. C.2. (4),

Ha,(?e])
I, (e1 + e)

G(0,2¢)3. = s+ O(s7), (C.66)

>
> G(0,e1 4 e)[28.1 +8(2d — 3) 3.5 = 45° 4+ 5257 + O(s%). (C.67)

By (3) and (4), we have

[,(2¢;) = s°4+0(s), (C.68)
(e +e9) = 45°4+ 525"+ O(s%). (C.69)

(5) I, (x), |x] = 1. This is more subtle. We restart from the definition of I, (e1), and
rewrite it as

Ha(el) = G(O, 6’1) Z /)1/)21[(;«}1 N w9 ;é {(), 6’1}]

wi,wa:0—eq

= G0,e1) Y pipodlwr Nws

w1 ,w2:0—e1

+ G(0,e) z prp2lfwr Nws 3 ys |yl > 1]

wi wa0—req

xI[w) NwaFz;

:1]

~

= 1] (C.70)

(ba) Now the first term consists of (2d — 2) y’s which are equivalent to e, and one
y = —eq. But here, the sum over w; (for y = ey) is bounded by G(0,e2)G(eq, e1) — /)’Cg
(and so is the sum over ws). The reason is that because w; as a whole should be SAW,
it cannot backtrack, and therefore there is no contribution where w; consists of the
following three steps: (0,ey) o (e9,0) 0 (0,e1) = 3.3, Considering similarly for y = —ey,
we have for the first term

(first) < G(0,¢e) [ 2d — 2){G(0, e2)G(e2, €1) /303}2 + {G(0, —e1)G(—e1, €1) ﬁf}z
= "+ 0(s). (C.71)

(5b) The second term is shown to be O(s’), and thus is irrelevant. To see this, first
note that

2| =1] (C.72)

~

(second) < G(0,eq) Z z p1pd[wr NwaFz;

‘y|>1 w1 ,wg:Oﬁy%m
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The sum over y where |y — e;| > 1 is bounded as

~
{

< G(0,e) lsup G(0, y] { > G(0,y) } O(s)0(s*)?0(s*) = O(s"),  (C.73)
\

lyl>1 y—er|>1

and is irrelevant.

The remaining contribution is |y — e;| = 1, and this consists of (2d —2) y = e; + ey
and one y = 2e;. We consider y = e1 + e» first. If we do not take avoidance into account,
we simply have < G(0,e1)G(0, €1 + e2)?G(er + e, e1)? = O(s7). However, we now claim
we in fact have

< G0.1) [{G(0, e1+ e2) = B2} = 8.1 Gler + e2.1)” = O(5)0(5°)O(s)” = O(s%).

The reason is as follows: (1) w; : 0 — (e; +e2) — e; should be SAW, so its 0 — (eg + e2)
part cannot go through e;. Thus we do not have, at least 3, contribution, coming from
two steps: (0,e1) o (er,e; + es). This explains —3.” in the braces. (2) However, at least
one of w; should avoid ey also, because otherwise we would have wy Nwy 3 2. |z| = 1. So
we have to subtract 3.' [where both w; consist of two steps: (0, es) o (e, e + €3)].

Similarly, for y = 2e1, we have an upper bound G(0, e,){G(0,2¢,)— 5.2 }2G(e1, 2¢,)? =
O(s%).

As a result, this remaining contribution is bounded by
(2d —2)0(s®) + O(s%) = O(s7), (C.74)

and for (C.72), we have
(second) < O(s") (C.75)

and thus is irrelevant.
(5¢) Upper bound summary. We have shown by (C.71), (C.75),

() < 5%+ O(s"). (C.76)
(5d) I, (),
(5d)
My(e1) > (2d — 2)G(0,e1)3.° = s° 4+ O(s7). (C.77)
(5e) T, (),
I, (e1) = s° + O(s"). (C.78)

(6) TIy(x).

Now we proceed to IT,(xz). We can use simple-minded upper bounds. That is, again
using (C.58) for [ » and I, 3, we have an upper bound given by 4-loop diagram (but with
different slashes), see Fig. C.2. (6):

M) < Y GOYGHa+2 X G0,2%G0,)Gly. 2)G( 1) Gly 2)°
y#0,x y#0.2,2;270,2

= Sila) + Sol). (C.79)

In the above, we separated the contribution where y = 2z and defined this to be Sy (x).
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(6a) For x = 2ey,

S1(2e1) < G(0,e1)’+ > G(0,9)°G(y. 2e1)°

y#0,e1,2¢e;
< G0’ +2 s 6007 | | s Gl2e0| | T Glzar
ly[>1 ly—2e1]#0 ly—2e1|£0
= G(0,e1)0 +O(s")0(5)0(s) = 5+ O(s7). (C.80)

where we have used the fact that when y # e;. 0, 2e; then either |y| > 1 or |y — 2ey| > 1.
Similarly, for x = e; + e»,

Si(er +ea) < 2G(0,e0)° + Z G(0,y)*G(y, e1 + e3)?
y#0,e1,e2,e1+e3

< 2G(0,¢,)°
+2 lsup G(0, ;0)3] l sup  G(y,e1 + 62)] Y. Gly.ei+e)
lyl>1 ly—(e1+e2)|#0 ly—(e1+ez)|£0
= 2G(0,¢1)° + O(s%)O(5)O(s) = 25% 4 245" + O(5%). (C.81)

and for x = ey,

Sifer) < Y G(0.y)P°Gly.er)’

y7#0,e1
< 2[81113 G(Oﬁy)?’H sup G(%m)“ > G(y,el)Q]
ly|>1 ly—e1|#£0 byfel\;,eo J
= 0(s90(5)0(s) = O(s°). (C.82)

(6b) Now for Sy, we can show this is irrelevant. We classity the sum defining S,
> 1or|y—a| > 1, we have

>
<

> 1or |y—x| > 1, or not. When |:

according to whether

[Fig. C.2, (6b-1)]

>
~

[|z| > 1 or |+ —y| > 1 contribution to Sy(x)]

2
< 2 [sup G(0,y) lsup G(0, y)] lsup By — 1‘)] B(0)
|2[>1 y7#0 yFe

= 0(sH)?0(s)0(s*)O(s) = O(s%). (C.83)

On the other hand, the remaining contribution is just |z] = 1 and |y — 2| = 1.
Consider first © = 2eq,e; + es. For such contributions the geometry is constrained so
that we must have |y — z| > 1. Thus by decomposing the diagram a bit differently
[Fig. C.2, (6b-2)],

>
<

IE

2
< 2B(1’)2[ sup G(Zv,’l/)] [SUP G((),y)]

ly—z]|>1 y#0

= 0(s°)°0(s)0(s)* = O(s). (C.84)

=1 and |z — y| = 1 contribution to Sy(x); |2| = 2]



Finally, for || = 1 and |z| = 1, |y — 2| = 1, we must have | — z| = 2, and thus we have
the bound

[|z| =1 and |2 — y| = 1 contribution to Sy(x); |z| = 1]

2
< B(0) [ sup B(z,a?)] [ sup G(z,r)] [sup G(O,y)]
|z—z|=2 |x—z|=2 y#0
= 0(5)0(sH)0(s%)0(s)* = O(s"). (C.85)
In summary, we have proved that
Sy(x) = O(s"). (C.86)

(6¢) To summarize, we now have

O(s7) (o] = 1)
[, (x) < Si(x) + So(x) =< 54+ O(s") (x = 2e) : (C.87)
259 4+ 245" + O(s®%) (v =1 + e3)

(7) IIy(x), Lower bounds, and summary. As a lower bound, we collect terms of

Fig. C.2. (7).

My(2e1) > 3.5 =35+ 0(s"), (C.88)
Myle; +eo) > 285 +4-3-(2d—3)3.° =255 + 245" + O(s%). (C.89)
So we have ;
o7 (0= e
I(x) =4 s5+0(s) (z = 2eq) . (C.90)
250 4+ 245"+ O(s%) (v =e1 + €3)

(8) I.(x). This is easy. First, because II.(x) < IIy(x), the upper bound (C.87) also
holds for II.(z). Second, the configurations which gave lower bounds on II,(x) happen
to contribute to I1.(x) also. So we have the same lower bound as IT,(x). To summarize,
we have the same result as I, (x).

(9) Summary. To summarize the above all, we have from (C.57), (C.68), (C.69),
(C.78), (C.90),

0 (x =0)
3 4 5 6 7
(@2 _ ) s 065" +3357 +194s +O(s") (x=¢e)
() O(s") (v = 2ey) (C.o1)
1257 4+ O(s%) (x=e1 + e9)
and thus recalling the number of equivalent points, (C.6),
0 (x =0)
’ s2 4+ 653 + 3351 + 1945° + O(s%) (2 = e))
ST (x) =4 0(s) (v 22 2¢)) : (C.92)
@ 655 + O(s9) (x Z e +ey)
O(s%) (|| > 2)

This in particular implies (4.2).



C.2.5 Diagrammatic estimate, summary

In the above, we have proven (4.2)—(4.5). Also we now have the following, which will be
used in the next subsection: By (C.91), (C.51), (C.23), (C.10),

—s% — 851 — 5357 + O(s%) (x =0)
oo 3 4 5 6 ™, i
>S9,y )y ) 80+ 05T+ 3457 +2065° + O(s7) (v =e
I (1) — ;( 1) I (1) - 0(57) (I — 261 ’
—255 — 165" + O(s%) (x=e1 + )
(C.93)
> I17%(x) = O(sY), (C.94)

|z|>2

and thus
[12%(2) = 1[a = 0]I1Z2(0) + I[Ja] = 1] (ey) + 1[x = ey + ex]ll(e; + e3) + h(x), (C.95)

where

S |h(x)] = O(s"). (C.96)

T

C.3 Fourth Iteration, B

Out remaining task is to prove (4.1). For this, we have only to derive the estimate on
2d3.G(0,eq). This is done as follows.
From the previous subsection, we now have

T1(0) — TI(k) = 2dII(e;)[1 — D(k)] 4+ T(e; +ea) > [1—e®*] 4+ h(0) = h(k). (C.97)
r=erter
Using the identity

2)°1-DP= 3 (1-e™e™H=2 S [1-e™]+ 3 (1-e*), (C.98)

le]=|f|=1 r>ej+ea r22e;

this gives

[1(0) - TI(k) = 2d1(e))[1 — D(R)] + 2PTL(er + e2)[1 = D(K)?] +(0) — g(k)  (C.99)

- 1 .
g(k) = h(k) = STi{er + o) S et (C.100)
|F1=1
or .
g(x) = h(z) — 51‘[(61 + eo)I[x = 2e4]. (C.101)
Thus we have
> lg(a) <> |h(x 2d)I1(e; + e3) = O(s). (C.102)
x#0 x#0

We define locally

a = 2dB. 4 2dI(ey), v =2d°(e; +e2) = O(s"), A(k) = §(0) — g(k), (C.103)



A=a[l=D(k)], E=~[1—-D(k)?. (C.104)
By (C.1) and (C.93),

a=14s+3s"+125° +61s* + O(s"), 7 =—s'—85+0(s°). (C.105)
Using the above definitions we can write

Ak D

G(0,e1) / a7k D(k) / (C.106)
e1) = | - - . (C.
o 2m)?all = D(k)] + [l = D(k)2] + A(k)  J @r)?A+E+A
Now applying
1 1 E+A
= : 107
A+ E+A A A{A+E+ A} (C.107)
twice, we have
~dk [D ED AD {F+A)’D
G(0, e, :/,— S C.108
0-e0) = | oy lA A2 2 T RAfE+A) (C-108)
Now, the first term is I1 o(e1)/a. The second term is computed as
(second) = / d'h [l — ( )Z]D< ) =X / d'k lj(k)[l + b(k)]
J @) a1~ DGk (20 1-Dk)
27
= "Y [[ll( )—|—[12< )] IIO<(1) (CIOQ)

The third term is bounded using Lemma B.1, by O(As + A?) = O(s%). The fourth term
is simply bounded by its absolute value as O({E + A}?) = O(s%).
Summarizing we have

; Io(e 2y .
G(O,e]) = # |:1 - (_y/:| + O<S6)
= s+3s7+ 11s* + 525 + 304s” + O(s9). (C.110)

This completes the proof.

D Calculation of A and D.

In this Appendix, we explain briefly how to derive results for the amplitude A and the
connective constant . Due to complexity involved with increasing orders, we restrict
ourselves here to estimates which leads to error bounds of O(s?).

D.1 Expressions of A and D in terms of diagrams
By Eq.(3.3) and Eq.(3.5) of [16], A and D are given by
1

A= ~ . D=Al2d5.— V311 (0] D1
0. [2d + 9511, (0)] t5.(0)] (D.1)

o
Ut



So to get an expansion for these quantities with error bounds of O(s?), we have only to
get such expansions for 3,511, (0) and V314 (0).

In addition to estimates derived so far, we make use of estimates derived in [26]
(actually we have to work slightly harder than [26], to take extra care with slashed
lines):

sup|| 13G(0,2) = O(s), (D.2)

VEL 0] < X el () = 0. 03)

In the following, we drop the label §.. All the quantities are at j3., except otherwise
stated.

D.2 Estimates on V2II(0).
By simple inspection,
V() = Y (- ZH (3T (). (D.4)
n=2

But (D.3) guarantees that n > 3 terms in (D.4) only contributes O(s?). So in effect, we
have only to consider n = 2.
However, this is also simple. As a lower bound, we just count the contribution where

|x| =1 [Fig. D.2]:

> |2]20P (2) > 2P () = 2d x 5 = 5% + O(s°). (D.5)

On the other hand, as an upper bound, we simply use

>3 (@) < ZH [5G0, 2)7 = 2dG(0, )" + 3 [l2l5GK

|z]>1

< 2dG(0,e)* + [sup |2|[3G(0, ]
|>

> Gl ]
jal>1
< 2dG(0,e1)* + O(5)0(s%) = s* + O(s%). (D.6)

as a result, we have from (D.4)

— V211(0) = s> 4+ O(5°). (D.7)

D.3 Estimates on 395I1;(0)

We will apply the elementary formula
8050 = Jw| g, (D.8)

where w denotes a walk which is not necessarily self- avoiding, and |w| its number of steps.
Noting that |w| = 3. I[z € w] — 1, where the sum over = is taken with multiplicity along



w (e.g. when w visit a polnt @ twice, this & appears twice in the sum), we can express
each term of 303114(0) as [Fig. D.3, (1)]

so, i) =1+ S g =1"0) + Rr(0) (D.9)

z#£0 w:0—=2z—=0

and [Fig. D.3, (2)]

o =(2) =~ (2)
oI (0) = 31T (0) +SZ Z Z p1papslwr D 2|1 215315

r#£0 240,20 wi w2 w3:0—=x

= 307(0) + 30». (D.10)

Higher order terms are similarly given by diagrams with an extra vertex on one of its
edges.

Now it is now quite elementary to show that even with such an extra vertex, the n-
loop diagram is O(s™). So for our current purpose, we have only to consider the one-loop
and two-loop diagrams, which are given by (D.9) and (D.10).

Neglecting mutual avoidance of three lines making up @)», we have [Fig. D.3, (3)]

Q2 <> > G(0,2)*G(0,2)G(z,x) < B(0) lsup B(’L)l = 0(5)0(s%) = O(s*). (D.11)
@0 20,0 e #0

and thus using (4.2)

~(2)

50,117 (0) = 3117 (0) + O(s%) = 352 + O(s°). (D.12)

On the other hand,

RO) = > > pipelin=> G0.2)”=>" > pipollwi Nws # {0, 2}]

220 w1 wa:0—x rZ£0 2#£0 w1 wo:0—

= B(0) — Q; (D.13)

Now, by neglecting mutual avoidance [Fig. D.3, (4)],

Q < z z Z prpalfwr 3 z,we 3 2] < Z Z G(0,2)°G(z, x)*

220 z#£0,2 w1 ,we:0— 220 z£0,2
= B(0)* =s*+0(s*). (D.14)

And collecting the configuration which is congruent to w; = (0. ey, e; +e2) [Fig. D.3, (5)],
which in fact is the lowest order contributions to x = e; + e5, we have

Q> 2d(d—1) x 28.* = s> + O(s*) (D.15)
and thus
R(0) = B(0) — [s* + O(s*)] = 5 + 55 + O(s%), (D.16)
39,117 (0) = 25 + 852 + O(s%). (D.17)
And thus we have A
B0TI(0) = —25 — 5s? + O(s%). (D.18)

(V]
=~



D.4 Summary

So we have )

5 = 2df + BO5I1(0) = 1 — 5 — 3% + O(s7), (D.19)
or
A=1+s+4s+0(s%). (D.20)
Similarly,
D - .
- = 208~ VIIL(0) = 1 + 5 4 357 4+ O(s7), (D.21)
and so 7
D =1+2s5+48s>+ O(s%). (D.22)

E 1/d-expansion for bond-percolation p.

In this section we prove Theorem 1.4, i.e. that

5 7
pe(bond) = s + 5% + 553 + O(s?) (E.1)

where as before s = i. Comparing with our result for 1/d-expansions for 3. = 1/u for

self-avoiding walk, we can see that the difference begins at the O(s?)-term.
E.1 The lace expansion and p.

The proof parallels that for pu, using the lace expansion for bond percolation, derived in
[14]. The lace expansion for nearest-neighbour bond percolation with p < p. reads [14]:

N )
7(0,2) = Sop+ > (=1)"g"(0,2)
n=0
+p Y rlwa) +p Y (=1)" Y "0, y)7(y 2) + (=) TTRM(0,2)
lu|=1 n=0 ly—y'|=1
(E.2)
or in Fourier transformed form:
1+ 20 o (=1)"4™ (k) + (—)NH RNV (%

1 — 2dpD(k){1 + =2 o (—=1)"g™ (k)}

In [14], it was shown that for d > dy, the above identity holds for all p < p., where

Ry — 0 as N — oo, and the sum over n absolutely converges.
In the following, we are interested in the limit N — oo of the above identity, which
reads
7(0,2) =8, + 9(0,2) +p > T(u,x)+p > g(0,y)7(/, ) (E.4)
lul=1 ly—y'|=1
or .
k) L+ g(k) (E.5)

T 1—2dpD(k) {1+ g(k)}
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with

oo

g(0,2) =Y (=1)"¢"(0, z) (E.6)
n=0

Asp & p,,, the susceptibility 7(0) diverges, while g(k) remains uniformly bounded.
So letting &k =0, p / p. in (E.5), we have

2dp. = (E.7)

L+ 4(0)’
where on the right hand side, §(0) in fact denotes lim,, », §(0). So to get a 1/d-expansion
for p,, it is sufficient to get a 1/d-expansion for g(0) at the critical point, p = p.. In the
following, we always consider quantities at p = p. — 0.

To derive 1/d-expansions for §(0), our strategy is basically the same as that in the
previous sections. That is, we start from simple bounds derived in [14], and by an
iterative procedure derive better bounds on x-space quantities and k-space quantities.

We use notation which is slightly different from that of [14], but which is more
consistent with that of previous sections. We define

B(x)= > 7(0,y)7(y,x), B"(x)=> 7(0,w)7(w,x)

y#oir w

T"(x) =Y 7(0,y)7(y, 2)7 (2, 2)

Y,z

Note that in [14] we wrote T + 1 instead of 7" here.

E.2 First iteration: A

In [14], it was proven that (for d > dy; currently we can take dy = 19)

K/d (n=20,1)
M0
0< Z;g (0,2) < { (K/d)" (n > 2) (E.8)
and
K/a’ (n=0,1)
2 n) ’ )
with a calculable constant K which is independent of d.
As an immediate consequence of (E.8), we have
1 1
2dp, = = =14 O(s). (E.10)

14+ g(0) 14 0(s)
Now we estimate 7(k). We will find the following identity extremely useful:
1

(k) = 2dpi L — DU 1 AR (E.11)

where

#(0) — (k)
{1+ 9O+ a9}

A(k) =



To derive (E.11), first note that

o 1+ g(k) B 1
Fk) = 1 — 2dp. D( {1+ g(k)} 1+ g(k) depD(k)

But because of (E.7), we have

o
1+ g(k)

_ (0) — g(k)
{1+ 9(0)H1+ g(k)}

Na)

+ 2dp. {1 — D(k)}.

and (E.11) follows immediately. From (E.11), 7(k) looks quite similar to G(k) for SAW,

(4.8).

E.3 First iteration: B

Here we prove the following estimates:

[ 5+06) (e =)
o ={ 50 TS

[ s+0(s%) (x=0)
m“‘{ou% (v #0)
B0)= > 7(0,2)* = O(s?)

z|z>1

T"(x) = .0 + O(s).

(E.13)

(E.14)
(E.15)

(E.16)

We prove these estimates in a way similar to SAW, this time by applying Lemma B.2

with A(k) defined by (E.12), and

a =2dp. > 1, f(x) i _f(gl() 0)]2’

. [9(0) — g(k)P?
hik) = —[F(0) = f(k)] = [T+ g(O)2[1 + g(k)]

Note that (E.8) and (E.10) imply that we can take

e=0(s), &=0(s).

We begin with 7(0,x). As for SAW, we first note by (E.11),

2L ik
7(0,2) = / (2m)7 2dp,[1 - D(k)] + A(k)

ddk ik
N /(QW)depc[l—ﬁ(k)]

/ ddli A )zAL
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(2m)* {2dp.[1 — D(k)]} {2dpc[L — D(k)] + A(k)}

(E.17)

(E.18)

(E.19)



The first term is just [y o(x)/(2dp.). We can apply Lemma B.2 to the above second term
and conclude (for x # 0) that it is bounded by O(d + es + €2) = O(s?). So we have

Iio(x) + O(s%) — % Y fly) (E.21)

7(0,2) =
( (2dp.)? 20

1
2dp..

Then (E.13) follows from the bounds on [ o(z) of (A.8)-(A.11), (A.16), and on p. of
(E.10).

Proceeding now to B(x), as we did for the self-avoiding walk, we begin with the
related quantity B"(x) = X, 7(0,y)7(y, x). Writing o = 2dp,, and using the fact that
the Fourier transform of a convolution is the product of Fourier transforms, we have

Miy  — ﬁﬁik'm 1 2
B (x) = / (2m)d" (a[l — ﬁ(k)] + A(l‘)>

_ / A% (A( 1 B A(k) )
J@m® \all=D)]  {a[l— D(k)]Hall — D(k)] + A(k)}
(E.22)

2

After expanding the square, the first term gives o 2Iy(x). The cross term is bounded
using Lemma B.2 as was done for 7(0, x), and the final term simply by taking absolute
values. The result is

1
B"(x) = (2dp )2120( 2) + O(5%) = 8p0 lepg%:of (E.23)

With (E.21), the identity

B"(x) = B(x) +27(0,2) — 8, (E.24)
leads to
Bla) = s [ola) =220 1(a) + (28, + 017
= gy [ol®) =g = 20200 Uafo) = ) + (2 =175+ O(2)].

(E.25)

[Here 3, f(y) in (E.21) and (E.23) have almost canceled, with difference O(s?)]. Ap-
pealing to (E.10) and (A.8)—(A.16), we obtain the desired estimates (E.14). Then (E.15)
follows from (E.14) and (E.13) as for SAW, by the analogue of (4.26).

Arguing in a way similar to that for B”( ), we can easily conclude by Lemma B.2,

T"(x) = 8.0 + O(s). (E.26)

E.4 Second iteration: A

We follow the notation of Section 5.5.2 of [22], apart from writing C{1**}(z) instead of
Cluep (). Superscript (n) on an event indicates which of the nested expectations is
relevant for the event.
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Here we prove

> l9(0,2)| = O(s%), (E.27)

x#0
9(0) > —s + O(s?) (E.28)
and
2dp, = 1+ 5 + O(s?) (E.29)

We now introduce a shorthand notation. For x,y € Z?, we denote the event that x
and y are connected by x4y, and the event that x and y are doubly connected by x<y.
And for nearest-neighbour = and y, we denote the event that the bond (z,y) is occupied
by xey, and the event that the bond (z,y) is not occupied by x #y.

E.4.1 Bound on ¢

We begin with an estimate on ¢! (0,u), for v # 0. This is simple [Fig. H-0]. By
definition, we have the lower bound
¢9(0.u) = Prob[0&u] > 0. (E.30)

For an upper bound, we divide the sum into two. First, for |u| > 1, we just use the
BK inequality and our bound (E.15) on B(0) to get

S 990w < ST 7(0,u)? = B(0) = O(sY). (E.31)
wifu|>1 wiju|>1
Second, for |u| = 1, we first classify the contributions according to whether (0,e;) is

occupied or not. We can write

g9(0,e;) = Prob[0&e;] = Prob[(0sey) N (0&e;)] 4+ Prob[(0#e;) N (0<e))]
= Prob[(0ee;) N (e; € C10€}(0))]

+ Prob[(0ge;) N {(e; € C1%1H0)) o (e, € C1O}(0))}], (E.32)

where here and in the following, o Ey denotes the event that £ and Ey occur disjointly.
To bound the above, we will use the following lemma, which with its improved version,
Lemma E.2, will be used repeatedly later.

Lemma E.1 We have ) ’
Prob[e; € C{U’“}(O)] < 0O(s%). (E.33)

Proof. For the event in question to occur, there should be at least one occupied path
from 0 to ey, in addition to (possibly occupied) (0,e1). In other words, we can always
find two occupied bonds (0, e) and (e, e; + f), and an occupied path (this occupation is
done disjointly from two previous occupied bonds) connecting e and (ey + f) [here e # e,
and ey + f # 0]. Overcounting, then applying B, this gives

Prob[e; € 10} (0)] < > Prob[(0ee) o (e<>(e1 + f)) o ((e1 + f)eeq)]
lel=1:e#er
[fl=T:er+f#0
S p62 z T(€7 e+ f)
lel=1:e# ey
[fl=1l:ex+f#0
= pl[(2d =2)7(0,e1) + (2d — 2)(2d — 4)7(0, €1 + €2 + e3)
+  3(2d — 2)7(0,2¢; + e2) + 7(0,3¢1)] = O(s?) (E.34)
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Returning to (E.32), we employ BK and Lemma E.1 to conclude

Prob[0<e4] peProble; € C11(0)] + Prob[e; € C10)(0)]?

<
< 0(s%) (E.35)
As a result, we have by (E.30), (E.31) and (E.35),

> g (0,u) = O(s%). (E.36)

E.4.2 Bound on g(”

Now we proceed to ¢!V, By definition, (see Fig. H-1)

0 =p Y (s Bt et @

[u—u'|=1

where (for details, see [14, 22]) C{“ o 0) is the connected cluster of 0 after setting (u, u’)
vacant, and Ey(u',v; A) is the event that u’ is connected to v through A and there is
no pivotal bond for the connection from «' to v whose first endpoint is connected to o’
through A. Graphically, this is represented as Fig. H-1, where either or both of the two
triangles can be points.

We first note that if at least one of these triangles is not shrunk to a point, we have
in essence a two-loop or three-loop diagram, which are at most O(s*). More precisely,
we have

more than one-loop contribution to Y g™ (0, z')] = 0(s%).
v
So we have only to consider the case where both triangles are shrunk to a point, to get
O(s) results.

To bound this one-loop term, we first introduce

0.0 = ((Bafer,: 0 10) ") (E.39

and note again by symmetry, we can write [Fig. H-1-1] (notice: now u = 0,u' = ¢y)

one-loop contributions toz g0, L)] = 2dp, Z ql (0,v).

v

We classify the above sum by the values of v. First, the sum for v # 0,e; is simply
bounded by BK as

Z gfl)((),'v) < z Prob® [OH?)]PI‘()I)U)[(le?J] < Bley) = O(5%).
v:vZ£0,eq v:w#£0,e;

Second, v = 0 is bounded as

¢17(0,0) < ProbM[e;30] = 7(0, ¢1) = s + O(s?)
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[The reason why the above is NOT an equality is that we have to have a condition that
v = 0 is the “first” intersection of the connection e;«»v with C'(0). This condition is
rather hard to treat exactly, though it will be done later, and here we will be satisfied

with an upper bound only.] Third, when v = ey,
g{l)((),(il) < ProbW[e, € C’éo’cl}(O)] = 0(s?)

by Lemma E.1.
Summing up all these three, we have

S gi(0,0) <O(s?) + O(s%) = O(s%),  ¢17(0,0) < s + O(s?).
v£0

E.4.3 Higher order contributions, and a new bound on p.

Contributions from n-loop diagrams (n > 2) are at most O(s"), by (E.8). Summing over
n we get (E.27) and (E.28).

Now a new bound on p.. To get an upper bound, we use our bounds just derived for
¢, combined with (E.7):

1

< =145+ 0(s%).
T390 STosg0( L Te+ o)

2dp,. =

For a lower bound, we just use (/3. is the critical point of the self-avoiding walk)
Pe > fe=s+5+0(s).

(It is possible to get the above bound solely in the percolation context, but this would
require calculations like those of later sections.)

E.5 Second iteration: B

Now we prove

s+25°+0(s) (o] =1)
o s2+0(s) (v =2¢)
m(0,) = 252+ 0(s%) (a= ell—l- ) (E.39)
O(s%) (|2 >2)
(s +65° + O(s?) (x=0)
453 + O(sé) (|l =1)
B(zx) = 2+ 0(s%) (1= 2ey) (E.40)
252 + ()(sfg) (x = e + e9)
(") (o] >2)
(254457 +0(s?) (|2| =1)
weon 35+ 0(s®) (v = 2e) )
B(x) = 65>+ O(s?) (v = e ]—l— ) (E.41)
\ O(s°) (x| >2)
B(0) = 25 4+ O(s%), 7(0,2)? = O(s%) (E.42)
x|z |>2



Again, we use Lemma B.2, where f, iz, A, « are defined as in the proof of (E.14), i.e.
by (E.12), (E.17), (E.18). But thanks to our effort in the previous section, in particular
due to (E.27), we have instead of (E.19) the bounds:

e=0(s"), 6=0(s". (E.43)

We start from 7(0, ). This time Lemma B.2 apphed to (E.20) gives

7(0.2) = 5T o(x) + O(s7) to (E.44)

2dp, 20

and if we estimate the right side using the expansions of Section A.2, we get our goal,
(E.39).
Now, we proceed to B(a). Lemma B.2 applied to (E.22) now gives

1"y 1 2 . ) _
B (x) = (2dp.)? ————Do(r) + O(s”) — 54&0(2(1]%)3?;)“?/)- (E.45)
and thus
B(x) = (Qd;)g [[2.,0(1‘) — 00 — 2(2dp.) {110(x) = 0p 0} + (2dpe — 1)25x,() + O(@g)] .
(E.46)

Using (A.13)—(A.16), we get (E.40). And (E.42) now follows in exactly the same way as
for SAW, using the analogue of (4.26).

E.6 Third iteration: A

We prove

3 . .
go0) = 55"+ 07

JV0) = 546574+ 0(s%)
d200) = 2524 0(s?), (B.47)
and thus get
1
2(1’,%:7,—1—1—54— —s> 4+ 0 E.48
Pe =150 5 (5), (E.48)

completing the proof.

This part is the most complicated. First, let us recall again that an n-loop diagram
is bounded by s, by (E.8). Because we want to get estimates which are accurate to
O(s?), we have only to consider one- and two-loop diagrams.

E.6.1 Bound on ¢\
We start from ¢%. By definition, (see Fig. H-0)

gV (0) = 3 g"(0,u) = 3 Prob0e]

u#0
= 2dProbl0&e] 4+ 2d(d — 1) Prob[0< (e + e3)] + 2d Prob[0<(2¢)]
+ Y Prob[0su]. (E.49)
[u|>2



We bound each term one by one. First,

0< > Prob0su] < > 7(0,u)* = O(s?) (E.50)
[u|>2 [u|>2
by (E.42). And
0 < 2d Prob[0&(2¢1)] < 2d7(0,2¢;)* = O(s%) (E.51)

by (E.39).
To deal with Prob[0<e;] we use the following refinement of Lemma E.1.

Lemma E.2 We have
Proble; € C1%1}(0)] = 52 4 O(s?). (E.52)

Proof. The upper bound is now easy. We just employ (E.34), now with our improved
estimates (E.39) on 7(0, x).

For a lower bound, we reason in a way similar to the proof of Lemma E.1, but now
concentrate on configurations where e = f there. Unfortunately, we have to be quite
careful not to overcount in getting lower bounds. For this, we introduce a notation: Let
F; (j = £2,43,...,4d) be the event

Fj = (006]‘) N (ejo(ej + 6])) N (<€j + 6’]).6]). (E53)
Then .
Proble; € C1043(0)] > Prob[UY,, Fj]
and now we use inclusion-exclusion to get

+d +d
> > Prob[F;]— Y Prob[F;N Fj]
j==+2 1A, j =42

> (2d — 2)p.” — (2d)°p.’ = s* + O(s?).

a
Now by (E.32) and the above lemma,
Prob[0<e1] > Prob[(0se;) N (e € C("F(0))] = p. Proble; € Ci*(0)] = 5* + O(sY).
Combining this with (E.35), we have

Prob[0&e;] = s* + O(s?). (E.54)

Next we move on to Prob[0< (e; 4 €3)]. For a lower bound,

Prob[0< (e1 + €2)] > Prob[(Oee;) N (e1e(e; + €)) N ((e1 + €2)0e3) N (e900)]

= p)=s"+0(5). (E.55)

For an upper bound, we note that there should be two distinct occupied bonds, emanating
from the origin, both connected to (e; + es):

Prob[0< (e + e2)] < >~ Prob[(0ee) o (0ef) o (ess(e1 + e2)) o (fé>(e1 + €2))]
lel=|f|=1ef

DN | —
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<- plT(e,er 4+ ex)T(f, er + ey).

le|=|/|=1:e#f

We classify terms according to whether (i) {e, f} = {e1.,ea}: (ii) [{e. f} N{er.ea}| = 1;
(iii) {e, f} N{e1,e2} = ¢. The contribution to the sum from each class of terms is (i)

pl2T(0,€)* = st + O(s%); (i) O(d)O(s*)O(s)O(s?); (iil) O(d?)O(s*)O(s?)*. Therefore
Prob[0& () + e2)] = s* + O(s°). (E.56)
Summarizing, by (E.49)—(E.56), we now get g (0) = 25% + O(s%).

l\;\»—\

E.6.2 Bound on ¢!

Unfortunately, g/ is more complicated. This is given by Diagram H-1, and by (E.37).

This diagram usually has three loops and gives O(s?), except when one or both of
the triangles are shrunk to a point. We consider separately the cases where both v = 0
and z' = v (i.e. both triangles shrunk to a point), and where one of the triangles is not
shrunk to a point. Here we are using the notation' of Figure 4 of [14].

Case 1. uw =10,z = v. This case is schematically depicted in Fig. H-1-1. As was noted
in Section E.4.2, we have

{’u, = 0,z = v contribution to f/(]) (O)} = 2dp, Z g}l)((),, v),

where g"' (0, v) was defined in (E.38). Note that we can write

9" (0,0) = <I[u e I (0)] (1[Ex(er, v: G 0)]) )>(0) (E.57)

in this special case. The inserted indicator comes from the definition of E,, and is
redundant, but will be useful later. We consider five cases (A)—(E) separately, depending
on the values of v.

(A) First, v = ey [Fig. H-1-2]. We have by Lemma E.2,

a0, e1) = ProbP[e; € C"(0)] = 52 + O(s%).
(B) Second, v = 0 [Fig. H-1-3]. An upper bound is easy:
@(0,0) < 7(0, 1) = s + 257 + (5%). (E.58)

The lower bound is complicated by the fact that the inner expectation has the con-
straint that v = 0 is the first site which is “through” @0(0) To express this fact, right now
we can only proceed as follows: We classify inner configurations according to whether
(0, e1) is occupied or not,

00.0) = ({1 (er.0: 000 )
= {((1"[(c100) 1 Bafer, 0 6*0{07‘”}<0))]>(”>(0)
+ <<1 [(0ger) N Ey(er, 0: Ci™ (0 ))]>(”>(0). (E.59)

!There is an error in (2.9) of [14]: in the case where ' = x in Fig. 4 of [14], we cannot say that =’ is
connected to v in Z%\ A. Instead, we should have said z, in place of z’. This error is avoided in [22].
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In the above, the first term can be rewritten as

< [€1§ZC{O Fl}( 0)] <I )[€1OO]>(1)>(0) = Prob® [eﬁ?é&o’el}(())] ProbV[e;e0]
= {1-Probe; € (" (0)]} pe. (E.60)

The reason why we could insert I[e; C{" (0)] was that if e; € C{"“}(0), we could have
cut at e, and thus the contribution is v = €1, not v = 0. Using Lemma E.2 to bound
ProbP[e; € C{"(0)] = O(s?), we now have

[the first term of (B.59)] = s + s + O(s).

To deal with the second term, we use the notation F; defined in (E.53). Extracting
the shortest path contribution to the second term, we write

[second term of (E.59) ]

N 0y (0
> {{10ge) N {UZEFD) 0 0 (e 000 o))

S = {0,e1} 1\ ©
> << [(0fer) N ﬁEf) ((31,0;00’ (()))]> >
j=%2
. (1) (1) (1) = {01}, M\ (©)
> <<I[Fi NED B Lo oy men
iF# =12

where we removed the constraint (0ge;) in the last term via an upper bound. If F (1)

occurs and in addition eq, e, €1 +(32¢é§0’01}(0), then the event Fj(l) ﬂEé )( e, 0; C{O ”}(O))
occurs. Therefore the first sum of (E.61) is bounded below by

[the first sum of (E.61) ] > (1 — p.)(2d — 2)p.* Prob? [e1, €2,e1 + (32¢é§0’01}(0)].
Now we apply inclusion-exclusion to rewrite the above as

[the first sum of (E.61) ]
> (1 —=p.)(2d = 2)p. [1 — Prob® [el, or €9, Or €1 + €9 € CNT{U"E‘}(())]]

> (1= p)(2d = 2)p.* [1 = Prob"[e; € C§"(0)] — Prob®[e, € 1" (0)]
—Prob 0)[(1 +ey € C{O ‘1}( )]]

(1= p)(2d = 2)p.* [L = O(s?) = 7(e2,0) = 7(e1 + €2,0)] = 52+ O(s"). (E.62)

v

On the other hand, the second term of (E.61), without the minus sign, is bounded as

: , (0 1\ O . I
<<I[E(l) N Fj(l) N Eél)((zl,o; Céo’ 1}(0))]>( > < ProbM[EF; N Fj] < pb = O(s°).

Adding these two, we have

[the second term of (E.59)] > (E.61) > s>+ O(s?), (E.63)
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and thus by (E.58), (E.60) and (E.63)
g(0,0) = 5+ 252 + O(s%).

(C) Third,

v| = 1,v # ey [Fig. H-1-4]. For an upper bound we argue

PO (RIS <I[vEC’o(O)]<I[vE51{0761}(61)]>(1)>(0)

|v|=1,v#e; [v|=1,v#e;

. . . ~ {0,e1}
where in the innermost expectation, we have v € C}

. . ~ {061}, . L
Ci(e1), because if v € C'(ey) but U%Cl{ 61}(‘e]) we could have “cut” at 0, rather than
at v, to define g;. (The above inequality appears to be strict, because there are cases
where the RHS contains an “earlier cut” case.) So arguing in a way similar to the proof

of Lemmas E.1, E.2,

(€1) rather than simple v €

1), 0
< Z <I[’U € Cy(0)] < z I[(ero(ey + f)) o ((ep + j)Hu)]) >
ol =Loer |fI=1:f Fe1£0
< Y Y 000 ) (e + f) = 2+ 0(sY). (E.64)
[v|=1v#e1 |f|=1:f4+e1 70
[In the above, most of the terms, except for f = v, contribute O(s?®) in all.]
For a lower bound,
> 0 (0.0) 2 (24 = 291 (0. e5)
[v|=1,v#e4
> (2d — 2)Prob ¥ [0ee,) ProbV[ese(er + €5)] ProbV[(eg + e3)ee;]
= 574+ 0(s"). (E.65)
(D) Fourth, |v —e;| =1,v # 0 [Fig. H-1-5]. We can argue similarly. Concretely,
| {0} ©
Yoo £ Y (a0l e )
|[v—eq|=1,07#0 [v—e1]|=1,0#0
(0)
< > < > TI[(0ef)o (f<—>v)]> T(v,e1)
[v—e1|=1,0#£0 V| f|=1,f#er
S Z Z ch(fa U)T(:l’%e])
lv—e1|=1,070 | f|=1,/#e1
= 2+ 0(s%). (E.66)
For a lower bound, similarly,
> gﬁl)((),, v) > (2d — 2)9%1)(07 e1 + e)
lo—e1]=1,070
> (2d — 2)ProbV[0eey]Prob @ ese(e; + €5)]ProbM (e + es)eeq]
= 52+ 0(s") (E.67)
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(E) Finally, when |v|,
D (0 - SR A (RO LS (Y

v—ep| > 1, we can simply bound as

vilvl,Jv—e1|>1 vilo|,Jv—e1|>1
B(ey) —2(2d —2)7(0,e1 + e2)7(e1, €1 + €2)
Bley) — |45 + 0(s*)| = O(s%). (E.68)

Combining all these (A)—(E), we have

Zgil)(o, ”()) =5+ 532 + ()(53)

Case 2: either u # 0 or 2’ # v. These are easier, and are O(s?).

We have to consider two cases, depicted in Fig. H-1-8, H-1-9. We denote them
respectively by gél)((), viu', z) and g;gl)(:(), v;u,u’). We just use the BK inequality.
Remark. The reason why y is not included as an argument is that there can be several
such y’s, and it cannot appear in the summation (if we want to avoid overcounting).
Also, we use the convention that gél)(O7 v;u', z) does not carry the factor of p. of the
pivotal bond. Thus we want to show that these quantities are O(s?).

Case 2-1. We begin with gél)(O,v;u',z). As shown in the Figure, 2 and v should be
nontrivially doubly connected. And in this case there should be a y as in the figure. We
first classify the following three cases. (A) Ounly such y is y = v, (B) Ounly such y is
y = z, (C) Other cases, i.e. we can choose y # v, z.

(C) First, when y # v, z. By BK, we have (by symmetry we have changed v’ into e; and
multiplied by 2d, and similarly below)

Case (C) contribution to »_ gél)((), vy, 2)

< 2 > 7(0,y)7(y, v)7(v, 2)7(2, )7 (2, €1)
/ -«u¢~7éy¢u
= 2d Z (2, )7 (2, e1) Bly — 2)
2 YAy
< ZdT'"(el)supB(m)—‘)dO( )O0(s%) = O(s7). (E.69)
2 #£0

(A) Second, when y = v. We use BK only to connections between 0, v = y and ey, 2

{Case (A) contribution to Z q2 10, v; ,Z) } <2d > T 2, e1)ProbVve 2]
v,z v, 20F %
= 2d Y ProbW[0ev]r(v, 2)7(z,e1) = 24> ProbM[0s0] B (v — e) (E.70)
v,z:07#0 v#£0

where we interchanged the order of convolution. We further classify whether v = ¢, or
not:

= Qd{Prob(l)[ Se|B"0)+ S ProbM[0ev]B" (v — el)}
v:iw#£0,e1



< 2 {Pr()b(l) [0 e1]B"(0) + ¢V (0) sup B"(v — (1)}
vivFe)

= (2d) [0(s*)O(1) + O(s*)O(s)] = O(s). (E.71)
Thus we finally get
[Case (A) contribution] = O(s?).

(B) Third, when z = y. In a similar way,

{Case (B) contribution to Y gél)((),v;u',z)} <2d Y 7(0,2)7(2, e1)ProbM [ve 2]
v,2:0F2

v’z

= {{B" ZPI()b()[O(:)r]}—Qa’O( )O(s%) = O(s57). (E.72)
x#£0

Combining (A)—(C), we finally get
5 05 = 0.

v,z

Case 2-2. Next, gél)(O,v;u,u’); this is almost the same as Case 2-1. We use BK; see
Fig. H-1-9. We classify according to the values of y, v, u, u’, but first, we use translation
invariance to rewrite Fig. H-1-9 into H-1-9” (the graph is with those for section C).

Now in the figure, 0 and z are nontrivially doubly connected (in particular z # 0).
So there should be a y as in the figure. Then we classify into three cases: (A) only such
yis y=0. (B) only such y is y = 2., (C) Other cases, where we can take y # 0, z.

(C) When we can take y # 0, z, we use BK to obtain

{Case (C) contribution to > gél) (0,v;u, u')}

I~
v,z

<2 ) 70707y v)T(v,e). (E.73)
y,v,2:27£0;y7#0,2

We classify according to the values of |y — e1]. First, when y = ey,
2d > 7(0,2)7(z, y)m(y, 0)7(y, v) (v, e1)I[y = €]
y,0,2:27£05y#0,2

= 2d > 7(0,2)7(z,e1)7(e1,0)7(e1, 0)7(v, €1)

v,z:27#£0,e1
— 2dB(e1)r(e1,0)B"(0) = 2d0(s2)0(s)O(1) = O(s7). (E.74)

Second, when |y —ey| = 1,

2d > 7(0,2)7(2,y)7(y, 0)7(y, v)7(v, e[|y — e1] = 1]

9,0,2:2705y 70,2
= 2d #DX;D 7(0.2)7(z,9)7(y, 0) B"(y — e))l[ly — e1| = 1]
< (2d)B"(ey) Z 7(0,2)7(z, )T (y, O)I[|y — e1| = 1]
045240
= (2d)B"(ey) [(2d — 2)B(ey + e3)7(e1 + €2,0) + B(2e1)7(2¢1,0)]
= (2d)0(s) [(2d — 2)0(s*)O(s*) + O(s*)O(s”)| = O(5"). (E.75)
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Third, when |y — e > 1,

2d Z 7(0,2)7(z, )T (y, 0)7(y, v) (v, e[|y — 1] > 1]
y,0,2:220;y#£0,z

< (24) Z T(O,:)T(Z,;(/)T(j(/,())l sup  7(y,v)7(v,ep)

y,0,2:27£05y#£0,z ly—e1]>1

< (2d)[T"(0) —1][ sup B”(y—el)l = (2d)0(s5)0(s*) = O(s*).  (E.76)

ly—e1|>1

(A) y = 0. In this case, we should have 0<>v and a connection 0<z, disjointly. So we
can use BK

{Case (A) contribution to Y g57(0,v; u, “’/)} <243 Prob[0e2] 3" 7(0, v)7(v, e1)
z#0 v

< (2d)§™(0)B"(e)) = (2d)O(s*)O(s) = O(s?). (E.77)

vl z

(B) y = z. Similar.

Case (B) contribution to »_ g (0, v;u,u’)

vz

<243 Prob"[0e2] Y 7(z,v)7(v, e1)
220 v

< 2d {Prob(U> [0<e]B"(0) + { > Prob”) [O@z]} lsup B"(z — 6])‘| }
z#0,e1 ##er

< 24[0(s*)0(1) + 0(s?)0(s)] = O(s?). (E.78)

where we used (E.54) to bound Prob”[0<e,].
So from (A)—(C), we have

S (0 viu,u) = O(s2). (E.79)

vz

E.6.3 Bound on ¢?

To deal with ¢¥, we again emphasize that we only have to consider the effectively 2-loop
diagrams. There is only one such diagram, i.e. the diagram in which all shaded triangles
are shrunk to a point. This diagram is schematically presented in Fig. H-2-1. Again we
do not include “p.” of a pivotal bond in the figure.

By symmetry,

z {“truly two-loop” contribution to g(2>(07 w)]
= 2dp? > [Fig. H-2-1] = 2dp,* > gfz)((),?,u; v,v") (E.80)
w,0,0":|v—o'|=1 w,v,0:v—v!|=1

In the following, we consider several cases, depending on the values of v, w (and ¢ in the
figure).
(1) First, v = 0,w = e case.



For an upper bound, just use BK as

3 952)(& e;0,0) < > Prob(])[el<—>O]Prob(2) [e10] = s + O(s%).

v’ |=1 o:v!|=1
For a lower bound, we just pick up the v = 0,w = v/ = ¢ term:

S oP0,00.0) > 90,0120, 01

vz o' |=1

] ~ N\ (0 N
> (B e 0:C80 0 00) ) 2 Prob e g G 0)Prons feyo0

> {1 — Prob® [e; € CN‘éO’m}(O)]}pC =5+ O(s?), (E.81)

where we used Lemma E.2 in the last step.

(2) Second, v = 0,w = 0 case.
For an upper bound, again just use BK to get

Z 5/}2)(0, 0;0,v") < Z Prob [(3190]P1‘0b(2) [050'] = 5 + O(5?).

o[’ |=1 o':|o’[=1

For a lower bound, (again use Lemma E.2 in the last step)

3 017(0,0:0,0) > (2d — 2)¢17(0, 00, )

o'l |=1

‘ (0)
> (2= ({1901 0w a0 00) ) )
> (2d —2)p.* Prob(l)[BQQ'C'l{EZ’U}(())] Prob¥ e, QC{){Q’U}(O)]
= (2d—2)p.°[L — O(s))]* = 5 + O(s?). (E.82)

(3) Third: other cases, i.e. (v # 0) or (v = 0;w # 0,e1). As we will see, other
contributions all sum up to O(s?). We will prove this by using BK, and also classifying
the contributions by possible values of £ in the figure.

(3-a) The case where we can take ¢ = ¢/ [in addition to (v # 0) or (v = 0,w # 0,¢;)].
We just use BK, to get

g}Q)(O,w; v, v') < 7(0,0)7(v, )T (eq, ) T(V, W)

Now we sum the RHS under the constraint, (v # 0) or (v = 0,w # 0,¢y) [with |[v—'| =
1]. We write o' = v + f. We classify into three cases.
First, f = e;,v = 0: In this case we also have w # 0, ey, and thus

> X 0w et ) <) 3 rlenw)® < 7(0,e) B0) = O(s7),

0=0, f=e1 w#0,e w#0,e1
Second, f =e,v #0:
> 2952)(0,?,11;0717—1—f) < 7(0,¢€1) ZT(O,’{J)ZZT((il,?,IJ)Z

v£0,f=e; W v#£0 w
= 7(0,e1)B(0)B"(0) = O(s?). (E.83)



Third, f # e;:
S Y a 0wt f) < r0e) > YT 0)r(en v+ fr(v + fow)?

fI=t.fe fl=1, ey ©
< 7(0,¢1) Z B”(f—(zl)B”(O):()(52). (E.84)

In the last step, we used the fact that now |f — e > 2.

(3-b) Second, |t —¢'| =1 case: We write v = v+ f, t = v+ f+ g, with |f| = |¢g| = 1.
We classify into six cases, as follows:

First, f +¢g = 0,v = 0 case. This is the most complicated. In this case because we
have already treated v = 0,w = 0,¢; cases in (1) and (2), we can assume w # 0,e;. We
further consider w = f and w # f separately. When w # f, we just use BK,

Z z (0,e1)7(0,w)7(w, f) = Z 7(0,e1)Bley) = O(s?).

| fl=1 w#f,0 [fl=1

and when w = f note that now we have

<> ProbM[(e;430) o (f € 61{07”)]:
[f1=1

from the definition of the event F,. This is bounded using Lemma E.2 by

< > p.O(s%) = 0(s%).
[f1=1
Second, f 4+ g = 0,v = e;. By definition of the diagram, here we must have disjoint
connections from e; + f to w, from w to ey, and finally from 0 to v = ey, with the latter
connection not via the bond (0, e;). This leads to the bound

< Prob@[e; € C{"H0)] 3 S 7(er + f,w)r(w, 1) = O(s%)(2d) B"(f) = O(s7).
=1 e

Third, f+¢g=0,v# 0,¢;.
S Y T Sttt ) = ¥ BB = 06,

|fl=1v£0,e; w lf1=1
Fourth, f = e;. Since the case f + g = 0 has been already taken care of, we only
consider g # —ey here.

< Yo > 0, 0)T(v,o+er+g)T(v+er+g,e)T(v+ e + g, w)T(w, v+ €)
lg|=1,9#—€1 VW
< S 70,61+ 9)B"(—9)B"(e1) < (2d — 1)O(s*)O(s)* = O(s”). (E.85)

‘g|:l‘,g#_61

Fifth, g = e; case is treated quite similarly as above, and is 0(83).
Sixth, finally when f, g # e;, note that we now have |f+g—e;| > 3 because f+¢g =0
has already been taken care of. So

< Z B'"(f+g—e)B"(g)7(0, f + g) < (2d)*0(s*)O(s)O(s”) = O(s").
|fI=lgl=1:fg7e



(3-¢) Finally,

[|[v" —t| > 1 contribution] < > 7(0,0)7 (v, t)7(t, e1) | sup B (y)
Lo, fil fl=L ot f—t]>1 ly>1
< (2d)T'(ey) sup B"(y) < (2d)O(5)O(5%)
ly[>1
= 0O(s%). (E.86)

Combining (3-a) (3-¢), we see that the contributions from case (3) to the summation

Yt g?)(()7 w;v,v') do not exceed O(s?).
Combining cases (1)—(3), we finally have

3" gP(0,w) =257 + O(5°). (B.87)
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