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Abstract. We use the lace expansion to give a simple proof that the critical two-point function for weakly self-avoiding walk on Zd

has decay |x|−(d−2) in dimensions d > 4. The proof uses elementary Fourier analysis and the Riemann–Lebesgue Lemma.

Résumé. Nous utilisons le développement en lacets afin de montrer que la fonction à deux points de la marche faiblement auto-évitante
au point critique et en dimension d > 4 décroît comme |x|−(d−2). La preuve en appelle de manière élémentaire à la théorie de Fourier
ainsi qu’au Lemme de Riemann–Lebesgue.

MSC2020 subject classifications: 82B41; 82B27; 60K35

Keywords: Self-avoiding walk; Lace expansion; Two-point function

1. Introduction and main result

The lace expansion has been used to prove |x|−(d−2) decay for the long-distance behaviour of critical two-point functions
in a variety of statistical mechanical models on Z

d above their upper critical dimensions, including self-avoiding walk for
d > 4 [3,4,8,10], percolation for d > 6 [8,10], lattice trees and lattice animals for d > 8 [8,10], the Ising model for d > 4
[13], and the ϕ4 model for d > 4 [4,14]. For weakly self-avoiding walk and oriented percolation in dimensions d > 4,
local central limit theorems have also been proved [1,2,20]. Related results for long-range models are proved in [6].

Typically, |k|−2 behaviour for the Fourier transform of the critical two-point function (near k = 0) had been proved
first (as in, e.g, [5,15]). However, this does not directly imply |x|−(d−2) behaviour for the inverse Fourier transform; see
[12, Example 1.6.2] for a counterexample and [18, Appendix A] for further discussion of this point.

Our purpose here is to use the lace expansion to give a simple proof that the critical two-point function for weakly
self-avoiding walk in dimensions d > 4 has Gaussian decay |x|−(d−2). Apart from the derivation of the lace expansion,
which is well documented in the literature and not repeated here, our proof uses little more than elementary Fourier
analysis, the Riemann–Lebesgue Lemma, and the product rule for differentiation. Although the realm of application of
our convergence proof for the lace expansion appears to be less general than other methods, its application to weakly
self-avoiding walk is strikingly simple and provides a new tool for problems of this genre.

To make the presentation as simple as possible, we restrict attention to the two-point function of the nearest-neighbour
weakly self-avoiding walk. For background we refer to [12,15]. We follow the approach in [10] apart from one key
ingredient which is significantly simplified.

Let D : Zd → R be given by D(x) = 1
2d

if ‖x‖1 = 1 and otherwise D(x) = 0. Let D∗n denote the n-fold convolution of
D with itself. For n ∈N, let Wn(x) denote the set of n-step walks from 0 to x, i.e., the set of ω = (ω(0),ω(1), . . . ,ω(n))

with each ω(i) ∈ Z
d , ω(0) = 0, ω(n) = x, and ‖ω(i) − ω(i − 1)‖1 = 1 for 1 ≤ i ≤ n. The set W0(x) consists of the

zero-step walk ω(0) = 0 when x = 0, and otherwise it is the empty set. We write � = 2d for the degree of the nearest-
neighbour graph. The simple random walk two-point function is defined, for z ∈ [0,1/�], by

Cz(x) =
∞∑

n=0

∑
ω∈Wn(x)

zn =
∞∑

n=0

(z�)nD∗n(x). (1.1)

The Green function is C1/�(x).
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For ω ∈Wn(x) and 0 ≤ s < t ≤ n, we define

Ust (ω) =
{

−1 (ω(s) = ω(t)),

0 (otherwise).
(1.2)

Given β ∈ (0,1), z ≥ 0, and x ∈ Z
d , the weakly self-avoiding walk two-point function is then defined by

Gz(x) =
∞∑

n=0

∑
ω∈Wn(x)

zn
∏

0≤s<t≤n

(
1 + βUst (ω)

)
. (1.3)

The susceptibility is defined by χ(z) = ∑
x∈Zd Gz(x). A standard subadditivity argument implies the existence of zc =

zc(β) ≥ zc(0) = 1/� such that χ(z) is finite if and only if z ∈ [0, zc); also χ(z) ≥ zc/(zc − z) so χ(zc) = ∞ (see, e.g.,
[15, Theorem 2.3]). In particular, Gz(x) is finite if z ∈ [0, zc); in fact it decays exponentially in x. We will prove the

following theorem. The constant ad in the theorem is ad = d�( d−2
2 )

2πd/2 .

Theorem 1.1. Let d > 4, and let β > 0 be sufficiently small. There is a constant cd = ad(1 + O(β)) such that

Gzc(x) = cd

1

|x|d−2
+ o

(
1

|x|d−2

)
. (1.4)

For d > 5, the error term is improved to o(|x|−(d−1)).

In [17], the method of proof of Theorem 1.1 is extended to analyse the near-critical two-point function. Namely, it
is proved in [17] that for d > 4 and for β sufficiently small, there are constants κ0 > 0 and κ1 ∈ (0,1) such that for all
z ∈ (0, zc) and all x ∈ Z

d ,

Gz(x) ≤ κ0
1

1 ∨ |x|d−2
e−κ1(zc−z)1/2|x|. (1.5)

The estimate (1.5) is applied in [17] to prove existence of a “plateau” for the weakly self-avoiding walk two-point function
on a large discrete torus in dimensions d > 4.

An alternate proof of Theorem 1.1 is given in [3], based on Banach algebras and a fixed-point theorem. That proof
avoids explicit use of the Fourier transform, though it does rely on an expansion of the Green function C1/�(x) which
is proved using the Fourier transform. Theorem 1.1 is proved for the strictly self-avoiding walk (the case β = 1) in [8],
and for spread-out strictly self-avoiding walk in [10]. Thus Theorem 1.1 is not new or best possible; our goal here is to
present a new and simple method of proof rather than to obtain a new result. A sample consequence of Theorem 1.1 is
that the bubble condition holds for d > 4, and this implies the matching upper bound χ(z) ≤ O((zc − z)−1) (see [15,
Theorem 2.3]).

We use the Fourier transform. Let Td = (R/2πZ)d denote the continuum torus of period 2π . For a summable function
f : Zd →C we define its Fourier transform by

f̂ (k) =
∑
x∈Zd

f (x)eik·x (
k ∈ T

d
)
. (1.6)

The inverse Fourier transform is

f (x) =
∫
Td

f̂ (k)e−ik·x dk

(2π)d

(
x ∈ Z

d
)
. (1.7)

2. Lace expansion

The lace expansion was introduced by Brydges and Spencer [5] to prove that the weakly self-avoiding walk is diffusive
in dimensions d > 4. In the decades since 1985, the lace expansion has been adapted and extended to a broad range of
models and results.

For the weakly self-avoiding walk, the lace expansion [5,12,15] produces an explicit formula for the Z
d -symmetric

function 
z : Zd → R which satisfies, for z ∈ [0, zc),

Gz(x) = δ0,x + z�(D ∗ Gz)(x) + (
z ∗ Gz)(x)
(
x ∈ Z

d
)
, (2.1)
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or equivalently,

Ĝz(k) = 1

1 − z�D̂(k) − 
̂z(k)

(
k ∈ T

d
)
. (2.2)

Let δ : Zd → R denote the Kronecker delta δ(x) = δ0,x . Then δ̂(k) = 1. We define

Fz = δ − z�D − 
z, F̂z = 1 − z�D̂ − 
̂z. (2.3)

Then

(Gz ∗ Fz)(x) = δ0,x , Ĝz(k) = 1

F̂z(k)
. (2.4)

For simple random walk, the above equations simplify to Cz ∗ Az = δ and Ĉz = 1/[1 − z�D̂] with Az = δ − z�D.

3. Proof of main result

3.1. Diagrammatic estimate

As in many applications of the lace expansion, we use a bootstrap argument. We define the bootstrap function

b(z) = sup
x∈Zd

Gz(x)

C1/�(x)

(
z ∈ [0, zc]

)
. (3.1)

The bootstrap function can be seen to be finite and continuous in z ∈ [0, zc), using the fact that Gz(x) is continuous and
decays exponentially for large |x|. We do not know a priori that Gzc(x) is finite. By definition, b(z) ≤ 1 for z ∈ [0, 1

�
].

The next proposition gives consequences of the assumption that b(z) ≤ 3. We will not need to know more about the
function 
z than Proposition 3.1, so we do not give its explicit formula here. The formula can be found in [5,12,15].

Proposition 3.1. Let d > 4 and let β be sufficiently small. Fix z ∈ [ 1
�

, zc]. If b(z) ≤ 3 then there is a constant K depending
only on d (and on “3”) such that

∣∣
z(x)
∣∣ ≤ Kβ

1

1 + |x|3(d−2)

(
x ∈ Z

d
)

(3.2)

and hence 
̂z ∈ Cs(Td) for any nonnegative integer s < 2d − 6, in particular 
̂z ∈ Cd−2(Td). In addition, the infrared
bound holds, i.e., there exists c > 0 (independent of β, z, k) such that

F̂z(k) ≥ c|k|2 (
k ∈ T

d
)
. (3.3)

Proof. The bound (3.2) is a diagrammatic estimate proved via well-developed technology (e.g., [3, (12)]) and we omit
its proof. It follows immediately from (3.2) that |x|s |
z(x)| is summable for all s < 2d − 6 and hence that 
̂z ∈ Cs(Td)

for any nonnegative integer s < 2d − 6. For (3.3), we use

F̂z(k) = F̂z(0) + [
F̂z(k) − F̂z(0)

] = F̂z(0) + z�
[
1 − D̂(k)

] + [

̂z(0) − 
̂z(k)

]
. (3.4)

The first term on the right-hand side is F̂z(0) = χ(z)−1 ≥ 0. By definition, the second term obeys 1 − D̂(k) =
d−1 ∑d

j=1(1 − coskj ) ≥ 4|k|2
π2�

. By (3.2), the second derivative of 
̂z(k) with respect to k is O(β), and (3.3) then fol-

lows by a Taylor estimate on 
̂z(0) − 
̂z(k) (by symmetry there is no linear term in k). �

3.2. Isolation of leading term

Following [10], we isolate the leading term by writing Gz as a z-dependent multiple of the random walk two-point
function Cμ at a z-dependent value of μ. Let Az = δ − z�D, λ > 0 and μ ∈ [0, 1

�
]. Since Cμ ∗ Aμ = δ and Gz ∗ Fz = δ,
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we have

Gz = λCμ + δ ∗ Gz − λCμ ∗ δ

= λCμ + Cμ ∗ Aμ ∗ Gz − λCμ ∗ Fz ∗ Gz

= λCμ + Cμ ∗ Ez,λ,μ ∗ Gz, (3.5)

with

Ez,λ,μ = Aμ − λFz. (3.6)

Given z ∈ [ 1
�

, zc), we choose λ = λz and μ = μz in order to achieve

∑
x∈Zd

Ez,λz,μz(x) =
∑
x∈Zd

|x|2Ez,λz,μz(x) = 0, (3.7)

namely (since
∑

x |x|2D(x) = 1)

λz = 1

F̂z(0) − ∑
x |x|2Fz(x)

= 1

1 − 
̂z(0) + ∑
x |x|2
z(x)

, (3.8)

μz� = 1 − λzF̂z(0) = z� + ∑
x |x|2
z(x)

F̂z(0) + z� + ∑
x |x|2
z(x)

. (3.9)

By Proposition 3.1, if we assume b(z) ≤ 3 then the second moment of 
z is O(β), and hence the above formulas are well
defined, λz = 1 + O(β), and μz� ∈ [0,1). In particular, if b(zc) ≤ 3 (as we will eventually show to be the case), then,
since F̂zc (0) = χ(zc)

−1 = 0, we see from (3.9) that μzc = 1/� is the critical value for Cμ.
With these choices of λz,μz, we have

Gz = λzCμz + fz, fz = Cμz ∗ Ez ∗ Gz, (3.10)

with

Ez = Ez,λz,μz = (1 − λz)(δ − D) − λz
̂z(0)D + λz
z. (3.11)

By definition,

f̂z(k) = Ĉμz(k)Êz(k)Ĝz(k). (3.12)

Roughly, since we have arranged via (3.7) that the Taylor expansion of Êz(k) has no constant term or term of order |k|2,
we expect it to be of order β|k|4. On the other hand, according to the infrared bound, the Fourier transform of Ĝz(k)

will be of order |k|−2 for small |k|. The same is true for Ĉμz(k), so f̂z(0) = O(β). We will show that this less singular
behaviour of f̂z(k) translates into better decay than |x|−(d−2) for fz(x). This will permit the bootstrap argument to be
completed by proving b(z) ≤ 2, and the proof will essentially be complete. The details in this rough sketch are given
below.

3.3. The bootstrap

The bootstrap argument is encapsulated in the following proposition.

Proposition 3.2. Let d > 4 and fix z ∈ [�−1, zc). If b(z) ≤ 3 then for β sufficiently small (not depending on z) it is in fact
the case that b(z) ≤ 2.

The next proposition is a replacement for the bound on Cμz ∗ Ez in [10, Proposition 1.9] which required a delicate
Fourier analysis of Cμz , and of the bound of [3, Lemma 4] which used the expansion C1/�(x) = a|x|−(d−2) + b|x|−d +
O(|x|−(d+2)) from [19] which was also proved by careful Fourier analysis.
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Proposition 3.3. Let d > 4 and let β be sufficiently small. Let z ∈ [ 1
�

, zc]. Under the assumption that b(z) ≤ 3, the

derivatives ∇αf̂z(k) obey∥∥∇αf̂z

∥∥
L1(Td )

≤ O(β) (3.13)

provided |α| ≤ d − 2 when d = 5 and |α| ≤ d − 1 for d ≥ 6, with constant depending only on d (not on z).

The importance of (3.13) resides in the fact that the smoothness of a function on the torus implies bounds on the
decay of its (inverse) Fourier transform. More precisely, it is proved in [7, Corollary 3.3.10] using integration by parts
that there is a constant κd,s , depending only on the dimension d and the maximal order s of differentiation, such that if
∇αψ̂ ∈ L1(Td) for all multi-indices α with |α| ≤ s then

∣∣ψ(x)
∣∣ ≤ κd,s

1

1 ∨ |x|s max
|α|∈{0,s}

∥∥∇αψ̂
∥∥

L1(Td )
. (3.14)

In addition to the quantitative estimate (3.14), it follows from the integrability of ∇αψ̂ together with the Riemann–
Lebesgue Lemma (e.g., [7, Proposition 3.3.1]) that the inverse Fourier transform of ∇αψ̂ vanishes at infinity, so
|x|sψ(x) → 0 as |x| → ∞.

Proof of Proposition 3.2. Suppose that b(z) ≤ 3. Let nd = d − 2 for d = 5 and nd = d − 1 for d ≥ 6. By (3.13), as
discussed around (3.14), |fz(x)| = o(|x|−nd ) and |fz(x)| ≤ O(β|x|−nd ), with z-independent constant in the latter bound.
Therefore,

Gz(x) = λzCμz(x) + o
(|x|−nd

)
, (3.15)

Gz(x) = λzCμz(x) + O
(
β|x|−nd

)
, (3.16)

with the constant in (3.16) independent of x and z. As is well known (e.g., [11,19]), C1/�(x) ∼ ad |x|−(d−2). From (3.16),
we see that by taking β sufficiently small we can obtain

Gz(x) ≤ (
1 + O(β)

)
C1/�(x) + O(β)C1/�(x) ≤ 2C1/�(x), (3.17)

i.e., b(z) ≤ 2. This completes the proof. �

Proof of Theorem 1.1. Since b(z) ≤ b(�−1) ≤ 1 for z ≤ �−1 by definition, it follows from Proposition 3.2 and the
continuity of the function b that the interval (2,3] is forbidden for values of b(z), so b(z) ≤ 2 for all z ∈ [0, zc). By
monotone convergence, also b(zc) ≤ 2. Thus λz approaches a limit λzc = 1 + O(β) as z → z−

c . Since b(zc) ≤ 2, (3.15)
holds for z = zc so Gzc(x) = λzcC1/�(x) + o(|x|−nd ). Thus Theorem 1.1 is proved subject to Proposition 3.3. �

3.4. Proof of Proposition 3.3

It remains only to prove Proposition 3.3. The next lemma is closely related to [10, Lemma 7.2]. It reflects our choice of
λz,μz to achieve (3.7).

Lemma 3.4. Let d > 4 and let β be sufficiently small. Let z ∈ [ 1
�

, zc] and suppose that b(z) ≤ 3. There is a c0 > 0

(independent of z) such that |∇αÊz(k)| ≤ c0β for |α| < 2d − 6, and moreover

∣∣∇αÊz(k)
∣∣ ≤ c0β ×

{
|k|4−|α| (d > 5),

|k|4−|α| log |k|−1 (d = 5),

(|α| ≤ 3
)
. (3.18)

Proof. We first prove that |∇αÊz(k)| ≤ c0β for |α| < 2d − 6, via the inequality |∇αÊz(k)| ≤ ∑
x |xαEz(x)| together

with term-by-term estimation in the formula for Ez in (3.11). Indeed, since λz = 1 + O(β), the contribution from all
moments of the term (1 − λz)(δ − D) is O(β), and since |
̂z(0)| ≤ O(β) by (3.2), all moments of λz
̂z(0)D are also
O(β). Finally, the moments of λz|
z| with order less than 2d − 6 are bounded by O(β) using (3.2). In the remainder of
the proof, we can therefore restrict to |α| ≤ 3.
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Let gx(k) = cos(k · x) − 1 + (k·x)2

2! . By symmetry and by (3.7),

Êz(k) =
∑
x∈Zd

Ez(x) cos(k · x) =
∑
x∈Zd

Ez(x)gx(k). (3.19)

By explicit computation of the derivatives and elementary properties of sine and cosine,

∣∣gx(k)
∣∣ ≤ c

(|k|4|x|4 ∧ (
1 + |k|2|x|2)), ∣∣∇igx(k)

∣∣ ≤ c
(|k|3|x|4 ∧ (|x| + |k||x|2)), (3.20)∣∣∇2

ij gx(k)
∣∣ ≤ c

(|k|2|x|4 ∧ |x|2), ∣∣∇3
ij lgx(k)

∣∣ ≤ c
(|k||x|4 ∧ |x|3), (3.21)

where ∧ denotes minimum. In the upper bound |∇αÊz(k)| ≤ ∑
x |Ez(x)||∇αgx(k)|, we estimate the sum over |x| ≤ |k|−1

using the |x|4 bound on ∇αgx(k), and we estimate the sum over |x| > |k|−1 using the other alternative in the minimum.
By a term-by-term estimate using (3.11) with (3.2) (as in the previous paragraph), for |α| ≤ 3 and d ≥ 5, and for small
|k|,

∑
|x|≤|k|−1

|x|4∣∣Ez(x)
∣∣ ≤ O(β)

∫ |k|−1

1

rd−1+4

r3(d−2)
dr = O(β)

∫ |k|−1

1

1

r2d−9
dr =

{
O(β) (d > 5),

O(β log |k|−1) (d = 5),
(3.22)

∑
|x|>|k|−1

|x||α|∣∣Ez(x)
∣∣ ≤ O(β)

∫ ∞

|k|−1

rd−1+|α|

r3(d−2)
dr = O(β)

∫ ∞

|k|−1

1

r2d−5−|α| dr = O
(
β|k|2d−6−|α|), (3.23)

and the desired result then follows after some bookkeeping. �

Proof of Proposition 3.3. Let nd = d − 2 for d = 5 and nd = d − 1 for d ≥ 6; then nd < 2d − 6. Our goal is to prove the
bound (3.13) on derivatives of f̂z of order up to nd . By the infrared bound and Lemma 3.4, for d > 5 we have

∣∣f̂z(k)
∣∣ ≤ |k|−2O(β)|k|4|k|−2 = O(β), (3.24)

and a similar estimate holds for d = 5 with an additional factor log |k|−1 in the upper bound.
Estimation of the L1 norm of derivatives of f̂z(k) is an exercise in power counting, as follows. For |α| ≤ nd , by the

product rule for differentiation ∇αf̂z(k) involves terms

∇α1Ĉμz(k)∇α2Êz(k)∇α3Ĝz(k),
(|α1| + |α2| + |α3| = |α|). (3.25)

By Lemma 3.4, each derivative on Ê up to the fourth order reduces by 1 the original power |k|4 for that factor (an
unimportant factor log |k|−1 is present for d = 5), and subsequent derivatives do not cause further reduction; the net
effect is therefore reduction by min{|α2|,4}. Similarly, each derivative on Ĉμz or Ĝz reduces (worsens) its power |k|−2

by 1; we illustrate the idea for d = 5, for which nd = d − 2 = 3:

∣∣∣∣∇i

1

F̂

∣∣∣∣ =
∣∣∣∣∇i F̂

F̂ 2

∣∣∣∣ ≤ c1
|ki |
|k|4 ≤ c1

1

|k|3 ,

∣∣∣∣∇2
i

1

F̂

∣∣∣∣ ≤
∣∣∣∣∇2

i F̂

F̂ 2

∣∣∣∣ +
∣∣∣∣2(∇i F̂ )2

F̂ 3

∣∣∣∣ ≤ c2
k0
i

|k|4 + c2
k2
i

|k|6 , (3.26)

∣∣∣∣∇3
i

1

F̂

∣∣∣∣ ≤
∣∣∣∣∇3

i F̂

F̂ 2

∣∣∣∣ +
∣∣∣∣6(∇i F̂ )(∇2

i F̂ )

F̂ 3

∣∣∣∣ +
∣∣∣∣6(∇i F̂ )3

F̂ 4

∣∣∣∣ ≤ c3
k0
i

|k|4 + c3
k1+0
i

|k|6 + c3
k3
i

|k|8 . (3.27)

A detail in the above calculation is that |∇i F̂ | can be bounded by a multiple of |∇i D̂|+ |∇i
̂|, with the first term of order
ki by explicit calculation and the second also of order ki by Taylor’s Theorem, symmetry, and the boundedness of ∇2

i 
.
In the general case, in advancing from one derivative to the next, when the derivative acts on the numerator it either

maintains the same power of |k| or reduces it by 1, and if it acts on the denominator then it increases the power of the
denominator by |k|2 and increases the power of the numerator by 1; the net result is reduction of the overall power of |k|
by at most 1. For |α| ≤ nd , the total resulting power is (for small |k|) at worst

|k|4−min{|α2|,4}

|k|2+|α1||k|2+|α3| = 1

|k||α1|+min{|α2|,4}+|α3| ≤ 1

|k||α| ≤ 1

|k|nd
. (3.28)
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This is in L1(Td) (also with the additional logarithmic factor when d = 5) and the norm in L1(Td) is O(β) due to the
factor β in the bound on Êz in Lemma 3.4. This completes the proof.1 �

3.5. Concluding remarks

(i) The main difference between the above proof and the proofs in [3,8,10] is our avoidance of any need to convert the
decay in x-space of factors in a convolution Cμz ∗ Ez ∗ Gz into decay of the convolution (which is delicate since,
e.g., the convolution of two factors each with decay |x|−(d−2) has worse decay |x|−(d−4) when d > 4). In the above
proof, we encounter instead the Fourier transform ĈμzÊzĜz and the corresponding step is handled simply via the
product rule for differentiation.

(ii) To control the lace expansion, the analysis in any of [3,8,10] only requires a bound of the form |
(x)| ≤
O(|x|−(d+2+ε)) for ε > 0 (with ε = 2 in [3]), whereas the above proof requires the more demanding bound
|
(x)| ≤ O(|x|−(2d−2+ε)) in order for 
̂(k) to have derivatives of order d − 2. For self-avoiding walk, the up-
per bound (3.2) has power 3(d − 2) = 2d − 2 + (d − 4) which is sufficient. For the Ising and ϕ4 models, 
(x) also
obeys an upper bound |x|−3(d−2) [4,13,14]. However, the above proof appears not to apply to percolation or to lattice
trees and lattice animals, where the bound on 
(x) is |x|−2(d−2) for percolation and |x|−3(d−2)+d for lattice trees
and lattice animals [10]. It would be of interest to understand better why this breakdown occurs and whether there is
any possiblity to overcome it in these settings with upper critical dimension equal to 6 or 8.

(iii) With further effort, it may be possible to extend our approach to spread-out models of strictly self-avoiding walk
or the Ising or ϕ4 models in dimensions d > 4 by proving a version of (3.13) in those settings. Possibly this could
simplify aspects of the analysis in [4,10,13,14]. However, this is beyond our current scope and we do not draw a
conclusion about this question here.

(iv) It is natural to ask whether our approach could be used for the nearest-neighbour strictly self-avoiding walk in
dimensions d ≥ 5, to give an alternate proof of the |x|−(d−2) decay proved in [8]. This certainly could not be done,
at present, without a portion of the very sizeable and computer-assisted input from [9] listed in [8, Proposition 1.3];
in fact results beyond those of [9] may be needed to deal with the higher derivatives of 
̂(k) encountered here.
A further and serious obstacle, as pointed out and overcome with a different method in [8], is that the amplitude
ad = d

2 π−d/2�((d − 2)/2) in the asymptotic formula for the critical simple random walk two-point function (and
appearing in Theorem 1.1) grows rapidly with d , so the small parameter that facilitates the bootstrap argument is
more hidden and more delicate to exploit.
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