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We consider percolation on Zd and on the d-dimensional discrete torus,
in dimensions d ≥ 11 for the nearest-neighbour model and in dimensions d >

6 for spread-out models. For Zd we employ a wide range of techniques and
previous results to prove that there exist positive constants c and C such that
the slightly subcritical two-point function and one-arm probabilities satisfy

Ppc−ε(0↔ x) ≤ C

‖x‖d−2 e−cε1/2‖x‖,

c

r2 e−Cε1/2r ≤ Ppc−ε
(
0↔ ∂[−r, r]d )≤ C

r2 e−cε1/2r .

Using this, we prove that throughout the critical window the torus two-point
function has a “plateau,” meaning that it decays for small x as ‖x‖−(d−2) but
for large x is essentially constant and of order V−2/3 where V is the volume
of the torus. The plateau for the two-point function leads immediately to a
proof of the torus triangle condition, which is known to have many implica-
tions for the critical behaviour on the torus, and also leads to a proof that the
critical values on the torus and on Zd are separated by a multiple of V−1/3.
The torus triangle condition and the size of the separation of critical points
have been proved previously, but our proofs are different and are direct con-
sequences of the bound on the Zd two-point function. In particular, we use
results derived from the lace expansion on Zd , but in contrast to previous
work on high-dimensional torus percolation, we do not need or use a separate
torus lace expansion.

1. Introduction and results.

1.1. Introduction. Percolation on Zd has been intensively studied by mathematicians and
physicists since the 1950s as a fundamental model of a phase transition. Of particular interest
is the universal critical behaviour in the vicinity of the critical value pc. From a mathematical
perspective, the critical behaviour has been established for certain two-dimensional models,
using the breakthroughs enabled by conformal invariance and the Schramm–Loewner evolu-
tion [46, 47], and for a wide class of models above the upper critical dimension d = 6, using
the lace expansion [22, 26]. The critical behaviour in intermediate dimensions d = 3,4,5,6
remains a major challenge for probability theory which, at present, appears not to have ad-
equate tools even to approach the problem. Considerable progress has been also made in
the understanding of the finite-size scaling associated with critical percolation on a high-
dimensional discrete torus. In this paper we consider percolation in dimensions d > 6, both
on Zd and on the torus.

The role of d = 6 as the upper critical dimension for percolation was first pointed out by
Toulouse [49]. The meaning of “upper critical dimension” is that the critical exponents for
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percolation on Zd in dimensions d > 6 are predicted to be the same as for percolation on
a tree (known as mean-field theory), whereas for d < 6 they are not. Critical exponents for
d = 6 are predicted to have logarithmic corrections to mean-field behaviour [16]. Various
one-sided mean-field bounds for critical exponents, such as γ ≥ 1, β ≤ 1, and δ ≥ 2, have
been proven to hold in all dimensions [2, 3]. In addition, results implying that mean-field
behaviour cannot apply in dimensions d < 6 have been obtained in [13, 48] (see also [8]). In
an important paper in 1984, Aizenman and Newman [2] identified a condition predicted to be
valid for d > 6—the triangle condition—as a sufficient condition for γ = 1 which is mean-
field behaviour for the expected cluster size (also called the susceptibility). Then Barsky and
Aizenman [3] proved that the triangle condition also implies that β = 1 (exponent for the
percolation probability) and δ = 2 (exponent for the magnetisation); see also the recent paper
[34] for alternative proofs of these results.

In 1990, Hara and Slade [22] derived their lace expansion for bond percolation and used it
to verify the triangle condition for the nearest-neighbour model in sufficiently large dimen-
sions (d ≥ 19 is large enough [23]). Later, Fitzner and van der Hofstad [17] extended this to
all d ≥ 11. An extension to d > 6 has not yet been possible and seems to be impossible with-
out the introduction of some significant new idea, due to the fact that convergence of the lace
expansion is proved using a small parameter which is closely related to the triangle diagram
and which is not believed to be small in dimensions close to but above 6. On the other hand,
since the critical exponents are predicted to be universal, meaning that they take the same
values for any symmetric short-range model in a given dimension d , it is natural to introduce
models with a parameter that can be taken to be small in any fixed dimension d > 6. This
was accomplished in [22], where the triangle condition was proved for a wide variety of suf-
ficiently spread-out models in any dimension d > 6. A basic example of a spread-out model
is a finite-range model of bond percolation on Zd with long bonds, not just nearest-neighbour
bonds, and the reciprocal of the degree provides a small parameter for convergence of the
lace expansion in any dimension d > 6. Related results for long-range models have also been
established in [14, 27].

Over the last 30 years, a large literature on high-dimensional percolation has emerged,
using the convergence of the lace expansion as a starting point, typically both for sufficiently
spread-out models in dimensions d > 6 and for the nearest-neighbour model in large enough
dimensions. Reviews can be found in [26, 44]. In particular, Hara proved the square root
decay of the mass (inverse correlation length) [19]; Hara, van der Hofstad and Slade [21]
and Hara [20] proved that the critical two-point function has the Gaussian decay |x|−(d−2);
Kozma and Nachmias [37] proved the mean-field behaviour r−2 for the one-arm exponent,
and Chatterjee and Hanson [11] identified the decay of the critical two-point function in a
half-space. We use these results to prove our main results for high-dimensional percolation
on Zd . Following the methodology of [31], we also use the OSSS theory of decision trees
[42], whose application to statistical mechanical models was pioneered by Duminil-Copin,
Raoufi, and Tassion [15], to obtain a new differential inequality which facilitates the transfer
of certain estimates at the critical point to estimates at nearby subcritical points.

Our results for Zd consist of an upper bound of the form |x|−(d−2) exp[−c|p−pc|1/2|x|],
for the slightly subcritical two-point function, and upper and lower bounds of the form
r−2 exp[−c|p− pc|1/2r] for the (extrinsic) one-arm probability. We stress for the avoidance
of doubt that the inclusion of these sharp exponential factors for p < pc, with the square root
in the exponent, requires substantial new ideas and is not a minor extension of the previous
results.

In a separate line of research initiated by Borgs, Chayes, van der Hofstad, Slade, and
Spencer in [5, 6], the critical behaviour of percolation on a discrete d-dimensional torus has
been studied in depth, both for the nearest-neighbour model with d sufficiently large and for
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sufficiently spread-out models in dimensions d > 6. There is a triangle condition for the torus
(and indeed for general high-dimensional transient graphs) which implies that percolation
on the torus behaves in many respects like the Erdős–Rényi random graph. In particular,
the notion of a critical point, which is valid for Zd , is replaced by the notion of a critical
scaling window of p values. These ideas are developed in [5, 24–26, 29] and are based on the
verification of the triangle condition in high dimensions via a separate lace expansion on the
torus as opposed to on Zd [6].

Our first result for the torus is a proof that the torus two-point function has a “plateau.”
The plateau refers to the fact that the torus two-point function, within and slightly below the
critical window, decays for small x like its Zd counterpart, before levelling off at a constant
value for large x. Related plateaux have been proven to exist for simple random walk (the lat-
tice Green function) for d > 2 [45, 51, 52], for weakly self-avoiding walk for d > 4 [45], and
partially for the Ising model for d > 4 [43]. As we show, the plateau for the torus percolation
two-point function is highly effective for the analysis of torus percolation (a similar situation
applies for weakly self-avoiding walk on a torus for d > 4 [40]). In particular, it directly gives
a proof of the torus triangle condition, a proof that throughout the critical window the torus
susceptibility is of the order of the cube root of the torus volume, and a proof that the Zd

critical value lies in the critical window for the torus. The triangle condition was proved pre-
viously via a separate lace expansion on the torus [6], which we do not need; the behaviour
of the torus susceptibility was obtained previously in [5], while the verification that the Zd

critical value lies in the window was the main topic of [24, 25]. Our work establishes these
results directly by applying results on Zd rather than via a separate torus lace expansion.

1.2. The models. Let G= (V,B) be a finite or infinite graph with vertex set V and edge
(bond) set B. Given p ∈ [0,1], we consider independent and identically distributed Bernoulli
random variables associated to each bond b ∈ B, taking the value “open” with probability p

and the value “closed” with probability 1− p. We denote the probability of an event E by
Pp(E) and the expectation of a random variable X by EpX.

We consider four different choices of G:

(i) Nearest-neighbour model on Zd : V= Zd and B consists of all pairs {x, y} with ‖x −
y‖1 = 1. We assume that d ≥ 11.

(ii) Spread-out model on Zd : V= Zd and B consists of all pairs {x, y}with ‖x−y‖1 ≤ L,
for some (large) fixed L > 1. We assume that d > 6 and L is sufficiently large depending on d .

(iii) Nearest-neighbour model on the torus Td
r : V= (Z/rZ)d for (large) period r > 2 and

B consists of all pairs ‖x − y‖1 = 1 with addition mod r . We assume that d ≥ 11. We write
V = rd for the volume of the torus and are interested in the limit r →∞.

(iv) Spread-out model on the torus Td
r : V = (Z/rZ)d for (large) period r > 2L with

(large) fixed L > 1 and B consists of all pairs ‖x − y‖1 ≤ L with addition mod r . We as-
sume that d > 6 and L is sufficiently large depending on d .

Notation: We set N = {1,2, . . .}. We use c,C for positive constants that can vary from
line to line. We write f ∼ g to mean limf/g = 1, f 
 g to mean f ≤ Cg, f � g to mean
g 
 f , and f � g to mean that f 
 g 
 f , where we require that all constants depend
only on the dimension d and the spread-out parameter L. Constants depending on additional
parameters will be denoted by subscripts so that, for example, “f (n,λ)�λ g(n,λ) for every
n ≥ 1 and λ > 0” means that, for each λ > 0, there exist positive constants cλ,Cλ such that
cλg(n,λ)≤ f (n,λ)≤ Cλg(n,λ) for every n≥ 1. For a, b ∈R, we write a ∨ b =max{a, b}.
We write �d

r = [−r, r]d ∩ Zd for the box of side length 2r + 1 in Zd , omitting the d when
it is unambiguous to do so. The boundary ∂�d

r of �d
r consists of the points x ∈ Zd with

‖x‖∞ = r . To avoid dividing by zero, we use the Japanese bracket notation 〈x〉 := ‖x‖∞ ∨ 1
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for x ∈ Zd . Our notational convention is that objects on the torus have a label T, so the two-
point function on the torus is written as τTp (x). Generally, objects without the torus label are
for Zd .

For Zd the restrictions on the dimension d and the range L described in (i) and (ii) above
are so that previous lace expansion results can be applied. We apply these Zd results to the
torus under the same restriction. We apply existing results, obtained via the lace expansion
for Zd , and do not need to revisit or further develop the expansion itself (nor do we use a
separate torus expansion as in [6]). More precisely, our results hold for any d > 6 and L≥ 1
such that the two-point function τp(x) := Pp(0↔ x) satisfies

τpc(x)� 〈x〉−d+2.(T)

Here and throughout the paper, we write pc for the critical value for percolation on Zd . The
estimate (T) was proven to hold in settings (i) and (ii) above by Hara, van der Hofstad, and
Slade [20, 21] and Fitzner and van der Hofstad [17]. Our results also rely crucially on those
of Kozma and Nachmias [37] and Chatterjee and Hanson [11], who worked under the same
assumptions. We will refer to (i) and (ii) collectively as high-dimensional percolation on Zd

and to (iii) and (iv) as high-dimensional percolation on the torus.

1.3. Results for Zd . The two-point function. Our first result, and main tool for all our
further results, concerns the transition from exponential to power-law decay for the two-point
function.

THEOREM 1.1. Let d > 6, and suppose that (T) holds on Zd . There exist positive con-
stants c and C such that

τp(x)≤ C

〈x〉d−2 exp
[−c(pc − p)1/2〈x〉],(1.1)

for every p ∈ (0,pc] and x ∈ Zd .

Theorem 1.1 is a partial substantiation, via a one-sided bound, of the generally unproven
guiding principle in the scaling theory for critical phenomena in statistical mechanical models
on Zd that two-point functions near a critical point generically have decay of the form

τp(x)≈ 1

〈x〉d−2+η
g
(|x|/ξ(p)

)
(1.2)

in some reasonable meaning for “≈,” when 〈x〉 is of roughly the same order as the correlation
length ξ(p) and p is close to its critical value pc. The universal critical exponent η depends
on the dimension, the correlation length ξ(p) ≈ (1 − p/pc)

−ν diverges as p → pc with a
dimension-dependent universal critical exponent ν, and g is a function with rapid decay. In
high dimensions, η = 0 and ν = 1

2 . The role of (1.2) in the derivation of scaling relations
between critical exponents, such as Fisher’s relation γ = (2 − η)ν, can be found in [18],
Section 9.2.

Let us now summarise how Theorem 1.1 compares to previous results. For high-
dimensional percolation on Zd , (T) is known in the more precise asymptotic form

τpc(x)∼Aτ

1

〈x〉d−2 (x→∞)(1.3)

for some positive constant Aτ with an explicit error estimate [20, 21]. For all dimensions
d ≥ 2 and for p < pc, there is exponential decay, in the sense that the mass (or inverse
correlation length)

m(p)=− lim
n→∞

1

n
log τp(ne1)=− sup

n≥1

1

n
log τp(ne1),(1.4)
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is strictly positive for p < pc [18]. In fact, more is known, in general, and it is shown in [18],
Proposition 6.47), that there is a constant c such that

cpd 1

‖x‖4d(d−1)
1

e−m(p)‖x‖1 ≤ τp(x)≤ e−m(p)‖x‖∞(1.5)

for all d ≥ 2, p ∈ [0,1], and x �= 0. Hara [19] proved that in high-dimensional percolation on
Zd the mass satisfies the asymptotic formula

m(p)∼Am(pc − p)1/2 (
p→ p−c

)
(1.6)

for some positive constant Am. With (1.5) this immediately implies that there is a positive
constant c such that

τp(x)≤ exp
[−c(pc − p)1/2‖x‖∞]

(1.7)

for every p < pc and x ∈ Zd . Theorem 1.1 improves this bound by a polynomial term which
is believed to be sharp. No such estimate on the slightly subcritical two-point function had
previously been proven for high-dimensional percolation on Zd .

For weakly self-avoiding walk in dimension d > 4, a result analogous to Theorem 1.1 was
proved only recently in [45]; that proof does not extend to percolation, and our methods are
different and do not extend to weakly self-avoiding walk. On the basis of the asymptotic be-
haviour for the lattice Green function presented in [41], we believe that the precise asymptotic
behaviour of the subcritical two-point function for fixed p < pc and for d > 6 takes the form

τp(x)∼Ap,x̂m(p)(d−3)/2 1

|x|(d−1)/2
p

e−m(p)|x|p (|x|p →∞)
(1.8)

with | · |p a p-dependent norm on Rd (not the p norm) which interpolates monotonically
between the 1 and 2 norms, as p increases over the interval (0,pc), and with an amplitude
Ap,x̂ that approaches a nonzero constant (independent of the direction x̂) as p ↑ pc. The

polynomial factors in (1.8) can be rearranged as (m(p)|x|p)(d−3)/2|x|−(d−2)
p , so when |x|p

is comparable to the correlation length m(p)−1 the conjectured asymptotic estimate (1.8)
becomes consistent with (1.1).

REMARK. It is impossible for the bound (1.1) to hold for all x if we replace c(pc −
p)1/2 by m(p) in the exponent. To see this, we recall that the Ornstein–Zernike decay
τp(n,0, . . . ,0)∼ Cpn−(d−1)/2e−m(p)n was proved by Campanino, Chayes and Chayes [10]
for p < pc in dimensions d ≥ 2 (but without the control conjectured in (1.8) for the p-
dependence of the constant Cp as p→ pc). From this, by taking n large, we see that (1.1)
can only hold if the constant c is such that c(pc − p)1/2 is strictly smaller than m(p).

The one-arm probability. Our second main result for percolation on Zd concerns the prob-
ability that the cluster of the origin has a large radius in slightly subcritical percolation. Recall
that �r =�d

r = [−r, r]d ∩Zd is the box of side length 2r + 1 and ∂�r is its boundary.

THEOREM 1.2. Let d > 6, and suppose that (T) holds on Zd . There exist positive con-
stants c and C such that

c

r2 exp
(−C(pc − p)1/2r

)≤ Pp(0↔ ∂�r)≤ C

r2 exp
(−c(pc − p)1/2r

)
(1.9)

for every pc/2≤ p ≤ pc and r ≥ 1.
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The restriction p ≥ pc/2 appearing in Theorem 1.2 is only needed for the lower bound,
and pc/2 could be replaced by any constant strictly between 0 and pc. The p = pc case of
this theorem was proven by Kozma and Nachmias [37] and is used crucially in our proof. By
(1.7) and a union bound,

Pp(0↔ ∂�r)≤ 2d(2r + 1)d−1 exp
(−c(pc − p)1/2r

)
(1.10)

for every p < pc and r ≥ 2; the content of the upper bound of Theorem 1.2 is to identify the
correct polynomial prefactor. Similar theorems have been established for the distribution of
the volume and intrinsic radius of slightly subcritical percolation clusters in [33], Section 4;
these proofs apply to arbitrary transitive graphs, satisfying the triangle condition, and are
much easier to prove than Theorem 1.2; see also [33], Section 5, for an overview of what is
expected to hold for slightly supercritical percolation in high dimensions.

REMARK. Shortly after this paper first appeared on the arXiv, we learned of independent
work of Chatterjee, Hanson, and Sosoe [12] containing an alternative proof of the subcritical
one-arm estimate of Theorem 1.2. Their work is largely orthogonal to ours, using very differ-
ent methods to establish Theorem 1.2 and not considering the slightly subcritical two-point
function or finite-size scaling on the torus. Their work also establishes several further new
results on the chemical distance and the number of spanning clusters in a box, which we do
not study here. Six months later, a third proof of the upper bound of Theorem 1.2 appeared
in [50].

1.4. Results for the torus. Percolation on the high-dimensional torus has received much
attention in recent years [5, 6, 24–26, 29], with considerable related work on hypercube
percolation including [7, 26, 28, 30]. That work has concentrated on the torus susceptibility
and on questions with a flavour like those in the literature on the Erdős–Rényi random graph,
such as the cluster size distribution. It was based on a torus triangle condition and required a
lace expansion analysis directly on the torus with the focus on an intrinsically defined torus
critical point which was later related to the critical point pc for Zd . In the following we
analyse torus percolation in the vicinity of pc directly, with our main tool being the near-
critical bound on the Zd two-point function provided by Theorem 1.1. At the end of this
section, we will discuss the intrinsically defined critical point and the torus triangle condition.

Our principal focus here is on the torus two-point function τTp (x) := PT
p(0↔ x) (for x ∈

Td
r ) and its “plateau.” Despite the substantial progress on high-dimensional torus percolation,

a detailed analysis of the behaviour of the torus two-point function τTp (x), within and below
the critical window of width V −1/3 about pc, has been missing until now. A sizeable physics
literature for related models, such as the Ising model (in dimensions d > 4), predicts the
existence of a “plateau” for the torus two-point function, namely, that within the critical
window τTp (x) decays like the Zd two-point function τpc(x) for a certain volume-dependent

range of x values, but beyond this range τTp (x) levels off at an approximately constant value
which exceeds τpc(x). For the Ising model this is discussed, for example, in [43, 51, 52]
and references therein. Different behaviour is expected for free boundary conditions and has
recently been proved for the Ising model in [9]. The plateau has recently been proven to
exist for the simple random walk two-point function (lattice Green function) on the torus in
all dimensions d > 2 [45, 51] and for weakly self-avoiding walk on the torus in dimensions
d > 4 [45]. The plateau is applied in an essential way to analyse the weakly self-avoiding
walk on a torus in dimensions d > 4 in [41]. The differences between free, bulk, and periodic
boundary conditions for percolation have been emphasised in [1], where the focus is on the
maximal cluster size rather than the two-point function plateau; see also [26], Section 13.6.
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Before stating our results on the torus two-point function, let us first recall some relevant
background on the susceptibility. Let χ(p) :=∑

x∈Zd τp(x) be the Zd susceptibility which is
known [2, 17, 22] to satisfy the mean-field asymptotics

χ(p)� 1

1− p/pc

(
p→ p−c

)
(1.11)

for high-dimensional percolation on Zd .
By using the estimate (1.1) on the Zd two-point function, we prove the following theorem.

For notational convenience we sometimes evaluate a Zd two-point function at a point x ∈ Td
r

with the understanding that in this case we regard x as a point in [−r/2, r/2)d ∩ Zd . This
occurs in the statement of Theorem 1.3.

THEOREM 1.3 (The two-point function plateau). Let d > 6, and suppose that (T) holds
on Zd :

• Below the scaling window: There exist positive constants c1 and C1, depending only on d

and L, such that

τTp (x)≤ τp(x)+C1
χ(p)

V
exp

[−c1m(p)r
]

(1.12)

for every r > 2, every x ∈ Td
r , and every p ∈ [0,pc). Moreover, there exist positive con-

stants A1, A2, c2, and M such that

τTp (x)≥ τp(x)+ c2
χ(p)

V
(1.13)

for every r > 2, every x ∈ Td
r with ‖x‖∞ > M , and every p ∈ [pc − A1V

−2/d,pc −
A2V

−1/3].
• Inside the scaling window: For each 0 < δ ≤ 1 and A > 0, there exist positive constants r0

and C3, depending only on d , L, δ, and A, such that

τTp (x)≤ (1+ δ)τpc(x)+ C3

V 2/3(1.14)

for every p ∈ [0,pc +AV −1/3], r > r0, and x ∈ Td
r . In fact, the upper bound (1.14) holds

for p ≤ pc with δ = 0. In addition, there exists a positive constant M , depending only on
d and L, and a positive c3, depending on d,L, and A, such that

τTp (x)≥ (1− δ)τpc(x)+ c3

V 2/3(1.15)

for every r > r0, every x ∈ Td
r with ‖x‖∞ > M , and every p ∈ [pc − AV −1/3,pc +

AV −1/3].
With a choice A≥A2, the above theorem gives upper and lower bounds on the two-point

function throughout the range pc − A1V
−2/d ≤ p ≤ pc + AV −1/3. Below the window the

bounds involve χ(p)/V , which is infinite at pc, whereas within the window this constant
term is replaced by V −2/3.

The upper bound of (1.12) is essentially an immediate consequence of (1.1). The lower
bound also uses (1.1) but requires a more involved argument inspired by the method used for
weakly self-avoiding walk in [45]. For the estimates inside the scaling window, we also use
the critical one-arm result of Kozma and Nachmias [37].

We emphasise that the susceptibility χ(p), appearing in Theorem 1.3, is the susceptibility
for Zd , not for the torus. The upper bound (1.14) at p = pc and with δ = 0 is proved in [29],
Theorem 1.7; we complement the upper bound with a lower bound of the same order and
extend these bounds through the entire scaling window. The following corollary provides a
more compact though less precise version of (1.14)–(1.15).
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COROLLARY 1.4. Let d > 6, and suppose that (T) holds on Zd . Then, for all A > 0,
there exists r0 such that if r > r0, then

τTp (x)�A

1

〈x〉d−2 +
1

V 2/3(1.16)

for every x ∈ Td
r and every p ∈ [pc −AV −1/3,pc +AV −1/3].

PROOF. The upper bound follows immediately from the upper bound (1.14) together
with our assumption (T).

The lower bound also follows immediately from (1.15) if ‖x‖∞ > M , once we assume
that r is sufficiently large that AV −1/3 ≤ A1V

−2/d . If instead ‖x‖∞ ≤M , then it is joined
to the origin by a path of length at most Md . Therefore, if we choose r large enough that
AV −1/3 ≤ pc/2, then we have that τTp (x) ≥ (pc/2)Md ≥ (pc/2)Md〈x〉−(d−2). If we take r

large enough that V −2/3 < Md−2, then for ‖x‖∞ ≤M , we also find that

τTp (x)≥ 1

2

(
pc

2

)Md(
1

〈x〉d−2 +
1

V 2/3

)
.(1.17)

This completes the proof. �

Consequently, for 〈x〉d−2 < V 2/3, we have τTp (x) � 〈x〉−(d−2), whereas for 〈x〉d−2 >

V 2/3, we have τTp (x) � V −2/3. This is the plateau: the torus two-point function levels off
at an approximately constant value once x is large enough.

There is, in fact, a hierarchy of plateaux extending (1.16). Consider p = pc − V −a with

a ∈ ( 2
d
, 1

3 ]. By (1.11) χ(p) � V a and by (1.6) m(p)r � V
1
d
− a

2 → 0 as r →∞. For such
p the plateau effect occurs as soon as 〈x〉d−2 � V 1−a . When a = 2

d
, the constant terms in

(1.12)–(1.13) are of order r−(d−2) which is the smallest order that τp(x) can achieve for
x ∈ Td

r . If a < 2
d

, then m(p)r →∞, and the plateau effect is absent.
The torus susceptibility is defined by χT(p) =∑

x∈Td
r
τTp (x). The following corollary of

Theorem 1.3 shows that χT(p)� V 1/3 for p in the scaling window. It shows that the correct
transfer of the bounds on the two-point in Theorem 1.3 from below the window into the win-
dow is achieved by replacing the Zd susceptibility by the torus susceptibility. The corollary
reproduces a result of [5, 6] via quite different methods and without any torus lace expansion.

COROLLARY 1.5. Let d > 6, and suppose that (T) holds on Zd . For any A > 0, there
exists r0 such that

χT(p)�A V 1/3(1.18)

for all r > r0 and all p ∈ [pc −AV −1/3,pc +AV −1/3].
PROOF. This follows immediately by summation of (1.16) over x ∈ Td

r . Indeed, summa-
tion of τpc(x)� 〈x〉−(d−2) over the torus yields r2 = V 2/d which is smaller when d > 6 than
the sum of the constant term which is V · V −2/3 = V 1/3. �

The cube-root divergence in the volume, given by Corollary 1.5 for periodic boundary
conditions, should be contrasted with the situation for free boundary conditions. For free
boundary conditions, it is a corollary of the bounds on the finite-volume two-point function
in [11], Theorem 1.2, that in our setting of high-dimensional percolation the susceptibility
at p = pc diverges as r2 rather than rd/3. This is one setting where the controversy in the
physics literature detailed, for example, in [52], is rigorously resolved.
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Next, we discuss the torus triangle condition. In general, on a finite graph there is no unique
definition of a critical value because the critical behaviour extends over a scaling window of
p values. In the above we have used the Zd critical value pc as our reference point for the
torus with large volume. In [5], (1.7), instead, an intrinsically defined critical value pT is
defined to be the unique solution, given a fixed λ ∈ [V −1/3,V 2/3], of the equation

χT(pT)= λV 1/3.(1.19)

We are interested in large volume V , so given any λ > 0 eventually we do have λ ∈
[V −1/3,V 2/3] and pT is then well defined. Of course, pT depends on λ, but only slightly,
and, as we show below, pT is an effective critical point no matter which λ is chosen.

The torus triangle diagram is

TT
p(x)= ∑

u,v∈Td
r

τTp (u)τTp (v − u)τTp (x − v),(1.20)

and it attains its maximum value when x = 0 by [2], Lemma 3.3. The torus triangle condition
is the statement that TT

pT
(x) is bounded by a constant independent of r and x. Extensive

consequences of the torus triangle condition are derived in [5, 24–26]. These consequences
often require the stronger assumption that

TT
pT

(x)≤ 1(x = 0)+ a0(1.21)

for x ∈ Td
r and some small context-dependent constant a0. We refer to the condition (1.21) as

the a0-strong torus triangle condition. The (strong) torus triangle condition is proved in [6],
using a finite-graph version of the lace expansion, under the assumption that either d is very
large or d > 6 and L is large. We do not need or use the finite-graph lace expansion in this
paper and give an alternate proof of the torus triangle condition based on Theorem 1.3. Our
proof of the a0-strong torus triangle condition relies also on its Zd counterpart, namely, that

Tpc(x)= ∑
u,v∈Zd

τpc(u)τpc(v − u)τpc(x − v)≤ 1(x = 0)+ a0.(1.22)

Given any a0 > 0, the a0-strong triangle condition (1.22) is proved in [22] if d ≥ d0 for the
nearest-neighbour model, and if d > 6 and L≥ L0 for the spread-out model, with d0 and L0
sufficiently large depending on a0.

THEOREM 1.6. Let d > 6, and suppose that (T) holds on Zd :

• pT in scaling window: There exists λ0 > 0 such that, for any λ ∈ (0, λ0], there exist con-
stants C1, r0 (both depending on λ) such that if we define pT = pT(λ) via χT(pT) =
λV 1/3, then |pT − pc| ≤ C1V

−1/3 for every r > r0.
• Torus triangle condition: With λ0, r0 as above, there exists C2 such that TT

pT(λ)(x)≤ C2 for

every λ ∈ (0, λ0], r > r0 and x ∈ Td
r .

• Strong torus triangle condition: Fix any a0 > 0, and assume further that the 1
2a0-strong

triangle condition (1.22) holds on Zd . There exists λ1 > 0 (depending on a0) such that
TT

pT(λ)(x)≤ 1(x = 0)+ a0, for every λ ∈ (0, λ1], r > r0(λ, a0), and x ∈ Td
r .

The critical window for the torus Td
r was defined in [5] (see [5], Theorem 1.3) to consist of

the values of p lying within distance of order V −1/3 from pT. It was not proven at that time
that the critical value pc for Zd lies in the window, and it was not until several years later
that this fact was proved [25]. Theorem 1.6 gives an alternate proof. In Theorem 1.3 we have
defined the window as being centred at pc rather than at pT. The fact that |pc−pT| 
 V −1/3

indicates that either choice of centre can be used. We emphasise that the analysis of [5, 25]
relied on performing a separate lace expansion on the torus to establish the torus triangle
condition, which our proof bypasses.
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1.5. About the proof. We now give a brief overview of the structure of the paper and the
proofs of our main theorems:

• In Sections 2 and 3, we prove our results concerning near-critical percolation on Zd , The-
orems 1.1 and 1.2. Both theorems rely on the notion of pioneer edges which are those
through which the cluster of the origin enters some halfspace for the first time:
– In Section 2 we formulate an estimate on the expected number of pioneer edges for

a hyperplane, Theorem 2.3, which we then show to imply Theorems 1.1 and 1.2 in
conjunction with the critical two-point estimate (T) and the critical one-arm results of
Kozma and Nachmias [37].

– In Section 3 we prove our main estimate on pioneer edges, Theorem 2.3. This proof has
two components: First, in Section 3.1 we apply diagrammatic methods utilising the half-
space two-point function estimates of Chatterjee and Hanson [11] to prove at criticality
that the expected number of pioneers for the hyperplane {x : x1 = n} is bounded by a
constant independent of n (Proposition 3.1). Using this together with the aforementioned
one-arm estimates of Kozma and Nachmias [37], we deduce a power-law tail bound with
exponent 2/3 on the total number of pioneer edges at criticality (Lemma 3.10). Second,
in Section 3.2 we use the theory of decision trees and the OSSS inequality, which we
review in Section 3.2.1, to obtain a differential inequality applying to the distribution of
the total number of pioneers (Lemma 3.11). This differential inequality is of the same
form as that obtained for the distribution of the radius by Menshikov [39] (see also [15])
and for the distribution of volume by Hutchcroft [31]. Using this differential inequality
together with our results on the distribution of the number of pioneers at pc, we deduce
sharp estimates on the distribution of the total number of pioneers at pc − ε (Proposi-
tion 3.9) and conclude the proof of Theorem 2.3.

• In Section 4 we apply our Zd results to prove the case of Theorem 1.3 in which p lies
below the scaling window. This eventually leads us to easily derive in Section 4.4 the (two
versions of the) torus triangle condition presented in Theorem 1.6. In order to apply the
Zd result of Theorem 1.1 to the torus, we crucially rely on a coupling of percolation on Zd

and on the torus that was first introduced by Benjamini and Schramm [4] and developed
extensively in the works of Heydenreich and van der Hofstad [24, 25]. The massive decay
of τp(x) for p < pc then directly gives the upper-bound (1.12) while the lower bound
requires fine control of diagrammatic estimates and thus occupies the bulk of this section.
Much of this work follows the same general strategy used to analyse weakly self-avoiding
walk on the torus in [40] but differs in the details.

• Finally, in Section 5 we prove the part of Theorem 1.3 in which p lies inside the scaling
window. The relevant lower bounds are easy consequences of the “below the scaling win-
dow” estimates since τTp (x) is monotone in p. The upper bounds are proven first at pc

using the coupling between Zd and Td
r percolation as well as the extrinsic one-arm result

from Kozma and Nachmias [37] using a variation on the methods of van der Hofstad and
Sapozhnikov [29]. We then extend the result for p ∈ (pc,pc +AV −1/3] by the combina-
tion of an elementary coupling of Bernoulli percolation at different probabilities and of the
input of the intrinsic one-arm exponent controlled in Kozma and Nachmias [36].

2. Near-critical percolation: Proof of Theorems 1.1–1.2. In this section we prove The-
orems 1.1–1.2, subject to Theorem 2.3, which concerns the expected number of pioneer
edges.

2.1. Pioneer edges. For each n ∈ Z, let Sn be the hyperplane {(y1, . . . , yd) ∈ Zd : y1 =
n}, and let Hn be the halfspace Hn = {(y1, . . . , yd) ∈ Zd : y1 ≥ n}. We will often write H =
H0 to lighten notation.
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FIG. 1. Pioneer edges of a cluster in Z2. Edges that are pioneers with respect to the distinguished vertex x are
thick and red, while other edges are thin and black.

DEFINITION 2.1. Given x ∈ Zd , we call an edge {y, z} ∈ B an x-pioneer if x1 < z1,
y1 < z1, {y, z} is open, and x is connected to y by an open path contained in the half-space
{(w1, . . . ,wd) : w1 < z1}. That is, {y, z} is an x-pioneer if z lies to the right of x and there
exists an open path starting at x whose last edge is {y, z} with the path lying strictly to the
left of z at every previous time. For each x ∈ Zd and n ≥ 1, we define Px(n) to be the set
of x-pioneers {y, z} with y1 < x1 + n ≤ z1 and define Px =⋃

n≥1 Px(n) to be the set of all
x-pioneers; see Figure 1.

Since we are only interested in finite-range models, we have that Px(n) ∩ Px(m) = ∅

when m≥ n+L and hence that 1
L

∑
n≥1 |Px(n)| ≤ |Px | ≤∑

n≥1 |Px(n)|. For each p ∈ [0,1]
and n ≥ 1, we define Pp(n) = Ep|P0(n)| which may be infinite. We begin by noting that
Pp(n) satisfies the following elementary submultiplicativity property.

LEMMA 2.2. Pp(n+m)≤ Pp(n)max0≤i≤L−1 Pp(m− i) for every p ∈ [0,1] and n≥ 1
and m≥ L.

It is convenient to simplify the inequality of Lemma 2.2, as follows. Let e1 = (1,0, . . . ,0)

be the basis vector in the positive horizontal direction. First, we observe that if Am denotes
the event that each of the m unit-length edges of the horizontal path connecting 0 to me1 are
open, then

Ep

∣∣P0(n+m)
∣∣≥ Ep

[∣∣P0(n+m)
∣∣1(Am)

]≥ Ep

[∣∣Pme1(n)
∣∣1(Am)

]
≥ Ep

∣∣Pme1(n)
∣∣pm = Ep

∣∣P0(n)
∣∣pm,

(2.1)

where we used the Harris–FKG inequality for the third inequality. A complementary bound
can be obtained by a similar argument, with the result that

pmPp(n)≤ Pp(n+m)≤ p−mPp(n)(2.2)

for every 0 < p ≤ 1 and n,m ≥ 1. Therefore, by Lemma 2.2 we obtain the simplified sub-
muliplicative inequality

Pp(n+m)≤ p−L+1Pp(n)Pp(m)(2.3)

for every 0 < p ≤ 1 and n,m≥ 1.

PROOF OF LEMMA 2.2. Suppose that {y, z} ∈ P0(n+m) and that y1 < z1 so that there
exists a simple open path γ , starting at 0, that has {y, z} as its last edge and lies strictly to the
left of z at every previous step. Letting {a, b} be the first edge crossed by γ as it enters Hn for
the first time (where a1 < b1), we see that the portion of γ up to and including the edge {a, b}
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and the portion of γ after this edge are disjoint witnesses for the events that {a, b} ∈ P0(n)

and that {y, z} ∈ Pb(n+m− b1). It follows by a union bound and the BK inequality that

Pp(n+m)= ∑
y1<z1

Pp

({y, z} ∈ P0(n+m)
)

(2.4)

≤ ∑
a1<b1

Pp

({a, b} ∈P0(n)
) ∑
y1<z1

Pp

({y, z} ∈ P0(n+m− b1)
)
.(2.5)

Now, if a1 < b1 and {a, b} ∈ P0(n), then we must have that n≤ b1 ≤ n+L−1 and the claim
follows by translation-invariance. �

Theorems 1.1 and 1.2 will both be deduced from the following theorem.

THEOREM 2.3. Let d > 6, and suppose that (T) holds. There exist positive constants c

and C such that

exp
[−C(pc − p)1/2n

]
 Pp(n)
 exp
[−c(pc − p)1/2n

]
(2.6)

for every n≥ 1 and pc/2≤ p ≤ pc.

The lower bound of Theorem 2.3 is an easy consequence of (2.3), as follows. First, by
Fekete’s lemma − limn→∞ 1

n
logPp(n) is well-defined, as an element of [−∞,∞], and sat-

isfies

− lim
n→∞

1

n
logPp(n)= sup

n≥1
−1

n
log

[
p−L+1Pp(n)

]
(2.7)

for every 0 < p ≤ 1. Also, P0(n) must be nonempty on the event that 0 is connected to
ne1 and hence by Markov’s inequality τpc(ne1)≤ Pp(n) for every n≥ 1. Using this together
with (1.6), one may verify that the exponential decay rate of Pp(n) is equal to the mass m(p),
whenever p < pc, and hence that

pL−1 exp
[−m(p)n

]≤ Pp(n)≤ exp
[−m(p)n+ o(n)

]
,(2.8)

as n→∞ for each fixed p < pc, where the subexponential correction in the upper bound
may depend on the value of p < pc. (Indeed, explicit upper bounds of this form can be de-
duced from (1.7) by direct summation.) This is, of course, consistent with Theorem 2.3 since
m(p)� |p − pc|1/2 as p ↑ pc in the high-dimensional setting [20]. Theorem 2.3 eliminates
the subexponential term from this upper bound for high-dimensional models at the cost of re-
placing m(p) with cm(p) for some positive constant c. This will be used to obtain the sharp
control of the subexponential terms in Theorems 1.1 and 1.2.

2.2. Proof of Theorems 1.1–1.2.

2.2.1. Proof of Theorem 1.1 and the upper bound of Theorem 1.2. We now show how
Theorem 2.3 easily implies Theorem 1.1 and the upper bound of Theorem 1.2.

PROOF OF THEOREM 1.1, GIVEN THEOREM 2.3. Note that it is enough to prove the
result for p ∈ [pc/2,pc] so that Theorem 2.3 applies. Indeed, for p ≤ pc/2, we can simply
use monotonicity to bound τp(x)≤ τpc/2(x) and deduce a bound of the desired form (with a
smaller constant in the exponential).

We may assume without loss of generality that the point x ∈ Zd satisfies x1 = 〈x〉 ≥ 4L≥
1. Let n = �x1/2�. Suppose that the origin is connected to x by some simple open path γ ,
and let {a, b} be the edge that is crossed by γ , as it enters the halfspace Hn for the first time,
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with a1 < b1. Then the portion of γ up to and including the edge {a, b} and the portion of
γ after this edge are disjoint witnesses for the events {a, b} ∈ P0(n) and {b↔ x}. Thus, we
have by a union bound and the BK inequality that

Pp(0↔ x)≤ ∑
a1<b1

Pp

({a, b} ∈ P0(n)
)
Pp(b↔ x)


 ∑
a1<b1

Pp

({a, b} ∈ P0(n)
) · 〈x − b〉−d+2

(2.9)

for every 0 ≤ p ≤ pc, where we used (T) in the second inequality. Now, if {a, b} ∈ P0(n),
then we must have that n≤ b1 ≤ n+L− 1 and hence that 〈x − b〉 ≥ x1 − b1 ≥ x1/4 so that
there exists a positive constant c such that

Pp(0↔ x)
 〈x〉−d+2
∑

a1<b1

Pp

({a, b} ∈ P0(n)
)= 〈x〉−d+2Pp(n)


 〈x〉−d+2 exp
[−c(pc − p)1/2〈x〉]

(2.10)

by Theorem 2.3. This completes the proof of Theorem 1.1. �

PROOF OF UPPER BOUND OF THEOREM 1.2, GIVEN THEOREM 2.3. Recall that Hn

denotes the halfspace {y ∈ Zd : y1 ≥ n}. It suffices by symmetry to prove that there exists a
positive constant c such that

Pp(0↔H2n)
 1

n2 exp
[−c(pc − p)1/2n

]
(2.11)

for every n≥ 0 and pc/2≤ p ≤ pc. Let n≥ 2L≥ 1, and suppose that the origin is connected
to the halfspace H2n by some simple open path γ . Letting {a, b} with a1 < b1 be the edge that
is crossed by γ , as it enters the halfspace Hn for the first time, we observe that the portion
of γ up to and including the edge {a, b} and the portion of γ after this edge are disjoint
witnesses for the events {a, b} ∈ P0(n) and {b↔H2n}. Thus, we have by a union bound and
the BK inequality that

Pp(0↔H2n)≤
∑

a1<b1

Pp

({a, b} ∈ P0(n)
)
Pp(b↔H2n).(2.12)

Since b1 ≤ n+L− 1≤ 3n/2, we deduce by the main result of [37] (i.e., the p = pc case of
Theorem 1.2) that

Pp(0↔H2n)
 n−2
∑

a1<b1

Pp

({a, b} ∈ P0(n)
)

= n−2Pp(n)
 n−2 exp
[−c(pc − p)1/2n

]
,

(2.13)

as claimed, where we used Theorem 2.3 in the final inequality. �

2.2.2. Proof of lower bound of Theorem 1.2. In this section we apply Theorem 2.3 to
prove the lower bound of Theorem 1.2. We give the proof for the nearest-neighbour model,
the general finite-range proof being similar but requiring more involved notation.

We begin with some definitions. Recall that Sr denotes the hyperplane {x ∈ Zd : x1 = r}
for each r ∈ Z. For each −∞≤ n ≤ m ≤∞, let Sn,m denote the slab Sn,m :=⋃m

i=n Si . For
each r ≥ 0, let Xr be the number of points in the hyperplane Sr that are connected to the
origin by an open path lying within the halfspace S−∞,r , and let Yr ≤ Xr be the number of
points in the hyperplane Sr = {x ∈ Zd : x1 = r} that are connected to the origin by an open
path lying within the slab S−r,r . Since we are working with nearest-neighbour models, every
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edge in P0(r + 1) must be of the form {(r, x), (r + 1, x)} for some x ∈ Zd−1, and the edge
{(r, x), (r + 1, x)} belongs to P0(r + 1) if and only if it is open and (r, x) is connected to 0
inside the halfspace lying to the left of (r, x). From this it follows that

EpXr = 1

p
Ep

∣∣P0(r + 1)
∣∣(2.14)

for every r ≥ 0 and 0 < p ≤ 1.

PROOF OF LOWER BOUND OF THEOREM 1.2. Let r ≥ 1. The lower bound we wish to
prove asserts that

Pp(0↔ ∂�r)≥ c

r2 exp
(−C(pc − p)1/2r

)
.(2.15)

Since {Yr > 0} ⊂ {0↔ ∂�r}, it suffices to prove that the above lower bound holds with in-
stead Pp(Yr > 0) on the left-hand side. We will prove this via the Cauchy–Schwarz inequality

Pp(Yr > 0)≥ (EpYr)
2

Ep[Y 2
r ]

(2.16)

together with suitable estimates on the first and second moments of Yr .
It follows from (2.14) and Theorem 2.3 that there exist positive constants c and C such

that

exp
[−C(pc − p)1/2r

]
 EpXr 
 exp
[−c(pc − p)1/2r

]
(2.17)

for every pc/2≤ p ≤ pc and r ≥ 0. We write {x A←→ y} to mean that x and y are connected
by an open path using only vertices of A. Observe that for each r ≥ 1 and x ∈ Sr , we have
the inclusion of sets

{0 S−∞,r←−−→ x} \ {0 S−r,r←−→ x} ⊆ ⋃
y∈S−r

{0 S−r,r←−→ y} ◦ {y S−∞,r←−−→ x}.(2.18)

Indeed, if the event on the left-hand side of this inclusion holds, γ is an open path connecting
0 and x in S−∞,r , and y is the first point of S−r visited by γ then the portions of γ before and

after visiting y are disjoint witnesses for the events {0 S−r,r←−→ y} and {y S−∞,r←−−→ x}, as claimed.
It follows by a union bound, the BK inequality, and translation and reflection symmetry that

EpXr ≤ EpYr +EpYr ·EpX2r(2.19)

for every 0 ≤ p ≤ 1 and r ≥ 0. Applying the estimate (2.17), it follows that EpYr � EpXr

for every pc/2≤ p ≤ pc and r ≥ 0 and hence that

exp
[−C(pc − p)1/2r

]
 EpYr 
 exp
[−c(pc − p)1/2r

]
(2.20)

for every pc/2≤ p ≤ pc and r ≥ 0.
We turn now to the second moment of the random variable Yr . Suppose that x and y are

two points in Sr , both of which are connected to the origin in S−r,r . There must exist a point

z ∈ S−r,r such that the events {0 S−r,r←−→ z}, {z S−r,r←−→ x}, and {z S−r,r←−→ y} all occur disjointly. It
follows by a union bound and the BK inequality that

Ep

[
Y 2

r

]≤ r∑
k=−r

∑
z∈Sk

Pp(0
S−r,r←−→ z)

∑
x,y∈Sr

Pp(z
S−r,r←−→ x)Pp(z

S−r,r←−→ y)(2.21)
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and hence by (2.17) that

Ep

[
Y 2

r

]
 r∑
k=−r

∑
z∈Sk

Pp(0
S−r,r←−→ z) exp

[−2c(pc − p)1/2(r − k)
]

(2.22)

for every pc/2≤ p ≤ pc. Our next goal is to bound the resulting sum over z for each −r ≤
k ≤ r . Suppose that z ∈ Sk for some −r ≤ k ≤ r , and suppose that the origin is connected
to z by a simple open path in S−r,r . By considering the right-most point that this path visits,

we see that there must exist 0 ≤ a ≤ r and w ∈ Sa such that the events {0 S−r,a←−→ w} and

{w S−r,a←−→ z} occur disjointly. Thus, applying a union bound and the BK inequality again as
above, we obtain that

∑
z∈Sk

Pp(0
S−r,r←−→ z)≤

r∑
a=k∨0

∑
w∈Sa

∑
z∈Sk

Pp(0
S−r,a←−→w)Pp(w

S−r,a←−→ z)

≤
r∑

a=k∨0

∑
w∈Sa

∑
z∈Sk

Pp(0
S−∞,a←−−→w)Pp(w

S−∞,a←−−→ z),

(2.23)

and a further application of (2.17) gives that

∑
z∈Sk

Pp(0
S−r,r←−→ z)


r∑
a=k∨0

exp
[−c(pc − p)1/2a − c(pc − p)1/2(a − k)

]


 r exp
[−c(pc − p)1/2|k|],

(2.24)

for every pc/2≤ p ≤ pc, r ≥ 1, and −r ≤ k ≤ r . Putting these estimates together, we obtain
that

Ep

[
Y 2

r

]
 r

r∑
k=−r

exp
[−2c(pc − p)1/2(r − k)− c(pc − p)1/2|k|]


 r2 exp
[−c(pc − p)1/2r

](2.25)

for every pc/2≤ p ≤ pc and r ≥ 1. Putting this together with the lower bound of (2.20), we
obtain

Pp(Yr > 0)≥ (EpYr)
2

Ep[Y 2
r ]
� 1

r2 exp
[−(2C − c)(pc − p)1/2r

]
(2.26)

for every pc/2≤ p ≤ pc and r ≥ 1. This completes the proof. �

3. Expected number of pioneers: Proof of Theorem 2.3. In this section we complete
the proof of Theorems 1.1–1.2 by proving Theorem 2.3.

3.1. The expected number of critical pioneers.

3.1.1. The critical case of Theorem 2.3. In this section we prove the p = pc case of
Theorem 2.3.

PROPOSITION 3.1. Let d > 6, and suppose that (T) holds. There exist positive constants
c and C such that c ≤ Ppc(n)≤ C for every n≥ 1.
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Note that the lower bound Ppc(n) ≥ pL−1
c holds in every dimension by taking p ↑ pc in

the estimate (2.8) above; the main content of the proposition is that a matching upper bound
holds in the high-dimensional case.

To ease notation, we will prove the upper bound of Proposition 3.1 only for nearest-
neighbour percolation. The general proof for finite-range models is very similar but sub-
stantially more involved, as one must introduce various additional summations to most cal-
culations. This assumption will be in force for the remainder of Section 3.1. We write
P(n) = Ppc(n) and P = Ppc to lighten notation. Recall that H denotes the half-space
{(n, x) : n≥ 0, x ∈ Zd−1} and that the edge {(n− 1, x), (n, x)} belongs to P0(n) if and only
if it is open and (n−1, x) is connected to 0 inside the halfspace lying to the left of (n−1, x).

We again write {x A←→ y} to mean that x and y are connected by an open path, using only
vertices of A. By (2.14)

P(n)= E
∣∣P0(n)

∣∣= ∑
x∈Zd−1

pc · P(
(0,0)

S−∞,n−1←−−−→ (n− 1, x)
)
.(3.1)

By translation and reflection symmetry, this gives (with term-by-term equality)

P(n)= ∑
x∈Zd−1

pc · P(
(0, x)

H←→ (n− 1,0)
)
.(3.2)

A further translation by (0,−x), followed by replacement of −x by x, gives

P(n)= ∑
x∈Zd−1

pc · P(
(0,0)

H←→ (n− 1, x)
)
.(3.3)

This equality makes it convenient for us to consider, for each n≥ 0, the quantity

(3.4) P̄ (n) := 1

pc

P (n+ 1)= ∑
x∈Zd−1

P
(
(0, x)

H←→ (n,0)
)= ∑

x∈Zd−1

P
(
(0,0)

H←→ (n, x)
)
,

instead of P(n) itself. A very similar proof to that of Lemma 2.2 yields that P̄ is submulti-
plicative in the sense that P̄ (n+m)≤ P̄ (n)P̄ (m) for each n,m≥ 0.

In order to upper bound P(n), we will prove a complementary supermultiplicative-type
estimate on P̄ (n) via diagrammatic methods. For each n≥ 0, define

P̄ ∗(n)= max
0≤k≤n

P̄ (k).(3.5)

We deduce Proposition 3.1 from the following two estimates.

PROPOSITION 3.2. Let d > 6, and suppose that (T) holds. There exist positive constants
c > 0 and  ∈N such that

P̄ ∗(2n+ )≥ cP̄ ∗(n)2(3.6)

for every n≥ 0.

LEMMA 3.3. Let d > 6, and suppose that (T) holds. Then P̄ ∗(n)
 log(n+ 2) for every
n≥ 0.

We now show how Proposition 3.1 follows from Proposition 3.2 and Lemma 3.3. In brief,
Proposition 3.2 implies that if P̄ ∗ is unbounded, then it must grow exponentially rapidly. This
contradicts Lemma 3.3, so P̄ ∗ must be bounded, as desired.



596 T. HUTCHCROFT, E. MICHTA AND G. SLADE

PROOF OF PROPOSITION 3.1, GIVEN PROPOSITION 3.2 AND LEMMA 3.3. Let c > 0
and  ∈N be the constants from Proposition 3.2. If there exists n≥  such that P̄ ∗(n)≥ 2/c,
then we have by induction that

P̄ ∗
(
3kn

)≥ P̄ ∗
(
2 · 3k−1n+ 

)≥ 1

c
22k

(3.7)

for every k ≥ 1. This contradicts Lemma 3.3, and so we must in fact have that P̄ ∗(n) < 2/c

for every n≥  and hence for every n≥ 0, as claimed. �

We now prove Lemma 3.3 which was used above in the proof of Proposition 3.1 and which
will also be used in the proof of Proposition 3.2. The proof is based on the upper bounds

P(x
H←→ y)
 〈x − y〉−d+1 for every x ∈ Zd with x1 = 0 and every y ∈H ,(3.8)

P(x
H←→ y)
 〈x − y〉−d for every x, y ∈ Zd with x1 = y1 = 0.(3.9)

of Chatterjee and Hanson [11], Theorems 7.2 and 1.1(b), as well as their lower bound [11],
Theorem 1.1(b),

P(x
H←→ y)� 〈x − y〉−d+1

for every x ∈ Zd with x1 = 0 and every y ∈H with 〈y − x〉 ≤ 2y1.

(3.10)

The above bounds are valid for d > 6, assuming that (T) holds.

REMARK 3.4. For d > 2 and given x, y ∈ H with y = (y1, . . . , yd), we set ȳ =
(−y1, y2, . . . , yd). By the method of images (see, e.g., [38], Proposition 8.1.1), the half-space
lattice Green function is given by GH(x, y)=G(x,y)−G(x, ȳ) where the unrestricted lat-
tice Green function G(x,y) is asymptotic to a multiple of |x − y|2−d . It is natural to assume
that the critical two-point function has the same behaviour, which suggests an extended ver-
sion

P(x
H←→ y)
 (x1 + 1)(y1 + 1)

〈x − y〉d for every x, y ∈H(3.11)

of the Chatterjee–Hanson bounds, which we believe to be sharp when x1 ∨ y1 ≤ K〈x − y〉
for some fixed K > 0. If this bound were proven, it would be possible to deduce Proposi-
tion 3.1 directly by summation. Although [12], Theorem 6, proves a strengthened form of the
Chatterjee–Hanson half-space two-point function estimate, the strengthened version is not
sharp when both points lie near the boundary, and it remains an open problem to improve the
estimate for the half-space two-point function to an extent where it could be used to prove
our critical pioneers estimate Proposition 3.1 via direct summation.

PROOF OF LEMMA 3.3. It suffices to prove that P̄ (n)
 log(n+ 2) for each n≥ 0. Let
R = (n+ 1)d . By (3.4) and (3.8),

P̄ (n)= ∑
x∈Zd−1

P
(
(0, x)

H←→ (n,0)
)

(3.12)

 ∑

x∈�d−1
n

(n+ 1)−d+1 + ∑
x∈�d−1

R \�d−1
n

〈x〉−d+1 + ∑
x∈Zd−1\�d−1

R

P
(
(n,0)

H←→ (0, x)
)
.
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To control the final term, we use the Harris–FKG inequality, (3.9) and (3.10) to obtain that∑
x∈Zd−1\�d−1

R

P
(
(0, x)

H←→ (n,0)
)

≤ ∑
x∈Zd−1\�d−1

R

P
(
(0,0)

H←→ (n,0)
)−1 · P(

(0,0)
H←→ (0, x)

)


 ∑
x∈Zd−1\�d−1

R

(n+ 1)d−1〈x〉−d .

(3.13)

Putting these bounds together and using that |{x ∈ Zd−1 : 〈x〉 = r}| = O((r + 1)d−2) for
every r ≥ 0, we deduce that

P̄ (n)= ∑
x∈Zd−1

P
(
(0, x)

H←→ (n,0)
)


 1+
R∑

r=n

r−1 +
∞∑

r=R

(n+ 1)d−1r−2


 1+ log
R + 1

n+ 1
+ (n+ 1)d−1

R

 log(n+ 2),

(3.14)

and the proof is complete. �

3.1.2. Proof of Proposition 3.2. In this section we prove Proposition 3.2. As a first step,
we make the following definition.

DEFINITION 3.5. Let e1 = (1,0, . . . ,0) be the unit vector in the horizontal direction.
Recall that, for each k ∈ Z, Sk denotes the hyperplane Sk = {(k, x) : x ∈ Zd−1} = {x ∈ Zd :
x1 = k} and Hk denotes the halfspace Hk =⋃

i≥k Si . Given 0≤ k < n, x ∈ Sk and y ∈ Sn, we

say that x is a good pivotal vertex for the event {0 H0←→ y} if the following hold:

1. The edge {x, x + e1} is open.
2. 0 is connected to x in H0 off of the edge {x, x + e1}.
3. x + e1 is connected to y in Hk+1.
4. 0 is not connected to y in H0 off of the edge {x, x + e1}.
We claim that if 0 is connected to y in H0, then for each 0 ≤ k < n there is at most one

good pivotal vertex x ∈ Sk for the event {0 H0←→ y}. Indeed, if x is a good pivotal vertex, then
any open path from 0 to y in H0 must pass through the edge {x, x + e1}. If x, z ∈ Sk were
distinct good pivotal vertices, then there would exist simple open paths γ1 and γ2 connecting
0 to y in H0 such that γ1 visits Sk for the last time at x and γ2 visits Sk for the last time at
z. The concatenation of the portion of γ1, up until its visit to z with the portion of γ2 after
it visits z, would, therefore, be an open simple path connecting 0 and y in H0 that avoids x,
contradicting the assumption that x is a good pivotal vertex.

The fact that there is at most one good pivotal vertex implies by (3.4) that

P̄ (n)= ∑
y∈Sn

P(0
H0←→ y)≥ ∑

x∈Sk

∑
y∈Sn

P(0
H0←→ y, x a good pivotal vertex for this event)

(3.15)
= pc

1− pc

∑
x∈Sk

∑
y∈Sn

P(0
H0←→ x, x

H0
x + e1, and x + e1

Hk+1←−→ y)
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for every 0≤ k < n. By symmetry we have equivalently that

P̄ (n+ k)≥ pc

1− pc

∑
y∈Sn

∑
x∈S−k

P(x
H−k←−→ 0,0

H−k

e1, and e1
H1←→ y)(3.16)

for every n≥ 1 and k ≥ 0.
To make use of this inequality, we will first prove the following lemma. Like many results

in high-dimensional percolation, its proof relies on a bound on the open triangle diagram

Tp(x)= ∑
y,z∈Zd

τp(y)τp(z− y)τp(x − z)(3.17)

at the critical value p = pc. The triangle diagram was introduced by Aizenman and Newman
in 1984 [2], and the finiteness of Tpc(x) was proved in [22] for sufficiently large d for the
nearest-neighbour model and for d > 6 for sufficiently spread-out models and extended in
[17] to the nearest-neighbour model in dimensions d ≥ 11. Although historically the proof of
(T) relied on this finiteness of the triangle diagram, a posteriori (T) yields (for d > 6)

Tpc(x)
 ∑
y,z∈Zd

〈y〉2−d〈z− y〉2−d〈x − z〉2−d 
 〈x〉6−d(3.18)

via the elementary convolution estimate [21], Proposition 1.7.
Indeed, [21], Proposition 1.7, states more generally that, for each a, b > 0 with a+ b < d ,

there exists a constant C = C(d, a, b) such that∑
y∈Zd

〈y〉a−d〈x − y〉b−d ≤ C〈x〉a+b−d(3.19)

for every x ∈ Zd , and it follows by applying this estimate twice that, for each a, b, c > 0 with
a + b+ c < d , there exists a constant C = C(d, a, b, c) such that∑

y,z∈Zd

〈y〉a−d〈z− y〉b−d〈x − z〉c−d ≤ C〈x〉a+b+c−d(3.20)

for every x ∈ Zd . The following proof will, in fact, apply (3.19) with a, b, c = 2+ ε rather
than the usual triangle estimate (3.18).

LEMMA 3.6. Let d > 6, and suppose that (T) holds. There exists a positive constant 

such that ∑
x∈S−n

∑
y∈Sn+

P(x
H−n←−→ 0,0

H−n

e1, e1
H←→ y)≥ 1

2
P̄ (n)2(3.21)

for every n≥ 0 such that P̄ (n)= P̄ ∗(n).

PROOF. Fix n≥ 0. We follow a variation on the strategy of [36], Lemma 3.2, illustrated
in Figure 2. Let K0,n denote the cluster of 0 in H−n, and let C0 be the set of finite connected
subsets of Zd containing 0. By conditioning on K0,n, we see that

(3.22) P(x
H−n←−→ 0,0

H−n

e1, e1
H←→ y)= ∑

A∈C0
A�x

P(K0,n =A,e1
H←→ y)1(e1 /∈A)

for each ≥ 1, x ∈ S−n, and y ∈ Sn+. Note, moreover, that if A ∈ C0 is such that y /∈A, then

P(K0,n =A,e1
H←→ y)1(e1 /∈A)= P(K0,n =A,e1

H←→ y off A),(3.23)
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FIG. 2. Schematic illustration of the diagrammatic estimate used to prove Lemma 3.6. The squiggly red line
indicates that 0 and e1 are not connected by an open path in the half-space H−n. To prove the lemma, it suffices to
prove that the second diagrammatic sum on the right-hand side is much smaller than the first when the separation
parameter  is large.

where we write “e1
H←→ y off A” to mean that there is an open path from e1 to y in H

that does not visit any vertex of A, including at its endpoints. Since the events {K0,n = A}
and {e1

H←→ y off A} depend on disjoint sets of edges (namely, those edges with at least one
endpoint in A and those edges with neither endpoint in A), these two events are independent,
and we deduce that

P(K0,n =A,e1
H←→ y)1(e1 /∈A)= P(K0,n =A)P(e1

H←→ y off A).(3.24)

Next, we observe that

P(e1
H←→ y off A)= P(e1

H←→ y)− P(e1
H←→ y only via A),(3.25)

where we write “e1
H←→ y only via A” to mean that there is an open path from e1 to y in

H but every such path must visit a vertex of A. (This holds, in particular, if e1 is connected
to y in H and belongs to the set A.) It follows that

P(x
H−n←−→ 0,0

H−n

e1, e1
H←→ y)= ∑

A∈C0
A�x

P(K0,n =A)P(e1
H←→ y)

(3.26)
− ∑

A∈C0
A�x

P(K0,n =A)P(e1
H←→ y only via A)

and hence that

P(x
H−n←−→ 0,0

H−n

e1, e1
H←→ y)= P(x

H−n←−→ 0)P(e1
H←→ y)

(3.27)
− ∑

A∈C0
A�x

P(K0,n =A)P(e1
H←→ y only via A)

for every ≥ 1, x ∈ S−n, and y ∈ Sn+.
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Our goal is to prove that the sum over x ∈ S−n and y ∈ Sn+ of the left-hand side of
(3.27) is bounded below by 1

2 P̄ ∗(n)2, assuming that P̄ (n)= P̄ ∗(n). For the first term on the
right-hand side, it follows from (3.4) that

∑
x∈S−n

∑
y∈Sn+

P(x
H−n←−→ 0)P(e1

H←→ y)= P̄ (n)2.(3.28)

It, therefore, suffices to prove that we can choose  large in order to obtain

∑
x∈S−n

∑
y∈Sn+

∑
A∈C0
A�x

P(K0,n =A)P(e1
H←→ y only via A)≤ 1

2
P̄ (n)2(3.29)

for every n≥ 0 such that P̄ (n)= P̄ ∗(n). The remainder of the proof is devoted to establishing
(3.29).

As a first step, we observe by the BK inequality that

P(e1
H←→ y only via A)≤ ∑

a∈A

P
({e1

H←→ a} ◦ {a H←→ y})

≤ ∑
a∈A

P(e1
H←→ a)P(a

H←→ y)

(3.30)

for every  ≥ 1 and y ∈ Sn+. Indeed, if the event on the left-hand side occurs, then there
must exist a simple open path connecting e1 to y in H that passes through A at some point
a, and the portions of this path before and after visiting a are disjoint witnesses for the events

{e1
H←→ a} and {a H←→ y}. It follows that

∑
A∈C0
A�x

P(K0,n =A)P(e1
H←→ y only via A)

≤ ∑
A∈C0
A�x

P(K0,n =A)
∑
a∈A

P(e1
H←→ a)P(a

H←→ y)(3.31)

= ∑
a∈H

P(0
H−n←−→ x,0

H−n←−→ a)P(e1
H←→ a)P(a

H←→ y)

for each ≥ 1, x ∈ S−n, and y ∈ Sn+. Now, if 0 is connected to both x and a in H−n, there

must exist z ∈ H−n such that the events {0 H−n←−→ z}, {z H−n←−→ x}, and {z H−n←−→ a} all occur
disjointly, so it follows by the BK inequality that

P(0
H−n←−→ x,0

H−n←−→ a)≤ ∑
z∈H−n

P(0
H−n←−→ z)P(z

H−n←−→ x)P(z
H−n←−→ a).(3.32)

We insert (3.32) into (3.31) and insert the result into (3.29). The sums over x and y can
then be performed explicitly, since these variables each appear in just one factor. For the sum
over x, we use the fact that, for z ∈ Sj with j ≥−n, we have

∑
x∈S−n

P(z
H−n←−→ x)= P̄ (n+ j).(3.33)
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For the sum over y, we use that

∑
y∈Sr

P(0
H−m←−→ y)≤ ∑

y∈Sr

m∑
k=−(r∧0)

∑
w∈S−k

P
({0 H−k←−→w} ◦ {w H−k←−→ y})

≤
m∑

k=−(r∧0)

P̄ (k)P̄ (r + k)

(3.34)

for every m ≥ 0 and r ≥ −m, which follows by decomposing a simple open path from 0 to
y, according to its left-most point, and using the BK inequality. The result is∑

x∈S−n

∑
y∈Sn+

∑
A∈C0
A�x

P(K0,n =A)P(e1
H←→ y only via A)

≤
∞∑
i=

∑
a∈Si

∞∑
j=−n

∑
z∈Sj

P(0↔ z)P̄ (n+ j)P(z↔ a)P(e1
H←→ a)

(3.35)

×
i−∑

k=0∨(i−n−)

P̄ (k)P̄ (n+ − i + k)

≤ P̄ ∗(n)2
∞∑
i=

∑
a∈Si

∞∑
j=−n

∑
z∈Sj

P(0↔ z)P(z↔ a)P(e1
H←→ a)(i + 1)P̄ (j ∨ 0)P̄ ∗(i),

where in the last step we used P̄ (k)≤ P̄ ∗(i) and P̄ (n+ − i + k)≤ P̄ ∗(n) for k ≤ i −  as
well as the submultiplicative property of P̄ to see that P̄ (n+ j)≤ P̄ ∗(n)P̄ (j ∨ 0).

To estimate the right-hand side of (3.35), we use Lemma 3.3 to bound P̄ (j ∨0) and P̄ ∗(i),
and (T) to bound P(0↔ z) and P(z↔ a). Also, we use the half-space estimate (3.8) to see
that

P(e1
H←→ a)(i + 1)P̄ ∗(i)
 〈e1 − a〉−d+1(i + 1) log(i ∨ 2).(3.36)

Here i ≥ , so i ≤ + 〈e1 − a〉 and, therefore,

P(e1
H←→ a)(i + 1)P̄ ∗(i)


 〈e1 − a〉−d+2 log
(〈e1 − a〉 ∨ 2

)+  log(∨ 2)〈e1 − a〉−d+1


 〈e1 − a〉−d+2+1/4 + 5/4〈e1 − a〉−d+1.

(3.37)

Thus, with the left-hand side of our goal (3.29) temporarily written as Tn,, using the crude
bound P̄ (j ∨ 0)
 log(j ∨ 2)
 〈z〉1/4 yields that

Tn, 
 P̄ ∗(n)2
∞∑
i=

∑
a∈Si

∞∑
j=−n

∑
z∈Sj

〈z〉−d+2+1/4〈z− a〉−d+2〈e1 − a〉−d+2+1/4

+ 5/4P̄ ∗(n)2
∞∑
i=

∑
a∈Si

∞∑
j=−n

∑
z∈Sj

〈z〉−d+2+1/4〈z− a〉−d+2〈e1 − a〉−d+1

(3.38)

from which for d ≥ 7 (3.20) yields

Tn, 
 P̄ ∗(n)2(〈e1〉−d+6+1/2 + 5/4〈e1〉−d+5+1/4)
(3.39)


 −d+6+1/2P ∗(n)2 ≤ −1/2P ∗(n)2.
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FIG. 3. Schematic illustrations of the events Bi (x, y) (left) and Ci (x, y) (right). The blue edges represent those
that are forced to be open in ωi−1. The squiggly red line indicates that (− i)e1 and (+ 1− i)e1 lie in distinct
clusters in the half-space H−n.

Since this bound holds uniformly over n≥ 0 and ≥ 1 and since the prefactor −1/2 tends to
zero as →∞, we deduce that there exists a constant  such that

Tn, ≤ 1

2
P̄ ∗(n)2.(3.40)

This proves (3.29) and, therefore, completes the proof. �

Finally, we deduce Proposition 3.2 from (3.16) and Lemma 3.6. In preparation for this
and inspired by [32], Section 4, we define three events and prove a lemma relating them, as
follows. Fix any n≥ 0, x ∈ S−n, and y ∈ Sn+, where  is fixed as in Lemma 3.6. We define
the event

A (x, y)= {x H−n←−→ 0,0
H−n

e1, e1
H←→ y}.(3.41)

Then (3.21) can be rewritten more compactly as∑
x∈S−n

∑
y∈Sn+

P
(
A (x, y)

)≥ 1

2
P̄ (n)2(3.42)

for every n≥ 0 such that P̄ (n)= P̄ ∗(n).
Let η be the left-directed horizontal geodesic connecting e1 to 0, and for each 1≤ i ≤ ,

let ηi be the ith edge crossed by η. Given a Bernoulli bond percolation configuration ω on
Zd , let ωi be the configuration obtained from ω by setting

ωi(e)=
{

1, e ∈ {ηj : 1≤ j ≤ i},
ω(e), e /∈ {ηj : 1≤ j ≤ i}.(3.43)

In particular, ω0 = ω. For each 1 ≤ i ≤ , let Bi (x, y) be the event that 0 and e1 are con-
nected in H−n in ωi but not in ωi−1, 0 is connected to x in H−n in ωi−1, and e1 is connected
to y in H in ωi−1. Finally, for each 1≤ i ≤  let

Ci (x, y)= {
x

H−n←−→ (− i)e1, (− i)e1
H−n

(+ 1− i)e1,

(+ 1− i)e1
H+1−i←−−−→ y

}
.

(3.44)

The events Bi (x, y) and Ci(x, y) are depicted in Figure 3.

LEMMA 3.7. With the above setup and with p = pc,

P
(
A (x, y)

)≤ ∑
i=1

p−i+1
c P

(
Ci(x, y)

)
.(3.45)
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PROOF. Given a configuration ω, let i be minimal such that 0 and e1 are connected in
ωi . When the event A (x, y) holds, i cannot be zero and hence must be between 1 and .
Since the clusters of 0 and e1 are both larger in ωi−1 than they are in ω, we must have that 0
is connected to x in H−n in ωi−1 and that e1 is connected to y in H in ωi−1 which means
that Bi (x, y) holds. It follows that

A (x, y)⊆
⋃

i=1

Bi (x, y).(3.46)

Since we also have the inclusion of events Ci (x, y)⊇Bi (x, y) ∩ {ω(ηj )= 1 for every 1 ≤
j ≤ i − 1} and since the two events on the right of this inclusion are independent, we have
that

P
(
Ci (x, y)

)≥ pi−1
c P

(
Bi (x, y)

)
.(3.47)

With (3.46) this completes the proof. �

PROOF OF PROPOSITION 3.2. It suffices to prove that there exist positive constants c > 0
and  ∈ N such that P̄ ∗(2n+ ) ≥ cP̄ ∗(n)2 for every n ≥ 0. Let  be as in Lemma 3.6, and
suppose that n≥ 0 has P̄ (n)= P̄ ∗(n). Constants in this proof are permitted to depend on .
In view of (3.42), the desired inequality will follow, for such n, if we show that∑

x∈S−n

∑
y∈Sn+

P
(
A (x, y)

)
 (+ 1)P̄ ∗(2n+ − 1).(3.48)

However, this is, in fact, sufficient for general n≥ 0, since we may take 0≤ n′ ≤ n such that
P̄ (n′)= P̄ ∗(n) to then deduce that

P̄ ∗(2n+ )≥ P̄ ∗
(
2n′ + 

)� P̄
(
n′

)2 = P̄ ∗(n)2(3.49)

for every n≥ 0, as claimed.
It remains to prove (3.48). Since both sides of the inequality are positive and the right-hand

side is finite by Lemma 3.3, it suffices to consider the case n≥ 1. By Lemma 3.7

P
(
A (x, y)

)
 ∑
i=1

P
(
Ci (x, y)

)
.(3.50)

By translation invariance applied to the event Ci (x, y), this gives∑
x∈S−n

∑
y∈Sn+

P
(
A (x, y)

)



∑

i=1

∑
x∈S−n−+i

∑
y∈Sn+i−1

P(x
H−n−+i←−−−→ 0,0

H−n−+i

e1, e1
H1←→ y).

(3.51)

Using the assumption that n ≥ 1, we have by (3.16) that the right-hand side of (3.51) is
bounded above by

∑
i=1

1− pc

pc

P̄ (2n+ − i)
 (+ 1)P̄ ∗(2n+ − 1).(3.52)

This proves (3.48) and, therefore, completes the proof. �
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3.2. Proof of Theorem 2.3.

3.2.1. Randomised algorithms and the OSSS inequality. Our deduction of Theorem 2.3
from Proposition 3.1 relies crucially on the OSSS inequality of O’Donnell, Saks, Schramm,
and Servedio [42], which we now briefly review. This inequality has recently been recognised
as a powerful and flexible tool in the study of critical and near-critical percolation models,
following the breakthrough work of Duminil-Copin, Raoufi, and Tassion [15]. We build, in
particular, on the techniques developed to apply this inequality to prove inequalities between
critical exponents in [31].

Let E be a countable set. Informally, a decision tree is a deterministic procedure for query-
ing the values of ω ∈ {0,1}E that starts by querying the value of some fixed element of E and
chooses which element of E to query at each subsequent step as a function of the values it has
already observed. Formally, a decision tree is a function T : {0,1}E →EN from subsets of E

to infinite E-valued sequences T = (T1, T2, . . .) such that T1(ω)= e1 for some e1 ∈E not de-
pending on ω and such that, for each n≥ 2, there exists a function Sn : (E × {0,1})n−1 →E

such that

Tn(ω)= Sn

[(
Ti,ω(Ti)

)n−1
i=1

]
,(3.53)

where we think of Tn(ω) as the element of E that is queried at time n when given ω as an
input to the procedure.

Let μ be a probability measure on {0,1}E , and let ω be a random variable with law μ.
For each decision tree T and n ≥ 1, we define Fn(T ) to be the σ -algebra generated by
the random variables {Ti(ω) : 1 ≤ i ≤ n} and define F(T ) = ⋃

n≥1 Fn(T ). We say that T

computes a measurable function f : {0,1}E → R if f (ω) is measurable with respect to the
μ-completion of the σ -algebra F(T ). This is equivalent by Lévy’s 0-1 law to the statement
that

μ
[
f (ω) |Fn(T )

]−−−→
n→∞ f (ω), μ-a.s.(3.54)

To allow for exploration algorithms that are naturally described as parallel rather than serial
algorithms, it is convenient to introduce the slightly more general notion of decision forests.
A decision forest is defined to be a collection of decision trees F = {T i : i ∈ I } indexed by
a countable set I . Given a decision forest F = {T i : i ∈ I } and a probability measure μ on
{0,1}E , we let F(F ) be the smallest σ -algebra containing all of the σ -algebras F(T i) and
say that a measurable function f : {0,1}E → R is computed by F if it is measurable with
respect to the μ-completion of the σ -algebra F(F ).

Let E be a countable set, let μ be a probability measure on E, and let F = {T i : i ∈ I } be
a decision forest on E. For each e ∈E, we define the revealment probability

δe(F,μ)= μ
(
there exists i ∈ I and n≥ 1 such that T i

n(ω)= e
)

(3.55)

so that δe(F,μ) is the probability that the status of e is ever queried when implementing the
decision forest F on a sample from the measure μ. Finally, we define for each probability
measure μ on {0,1}E and each pair of measurable functions f,g : {0,1}E →R the quantity

CoVrμ[f,g] = (μ⊗μ)
[∣∣f (ω1)− g(ω2)

∣∣]−μ
[∣∣f (ω1)− g(ω1)

∣∣],(3.56)

where ω1,ω2 are drawn independently from the measure μ. Thus, if f and g are {0,1}-
valued, then

CoVrμ[f,g] = 2 Covμ[f,g]
= 2μ

(
f (ω)= g(ω)= 1

)− 2μ
(
f (ω)= 1

)
μ

(
g(ω)= 1

)
.

(3.57)

We are now ready to state the version of the OSSS inequality that we will use which is a
special case of [31], Corollary 2.4.
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THEOREM 3.8 (OSSS for decision forests). Let E be a finite or countably infinite set,
and let μ be a product measure on {0,1}E . Then for every pair of measurable, μ-integrable
functions f,g : {0,1}E →R and every decision forest F computing g, we have that

∑
e∈E

δe(F,μ)Covμ

[
f,ω(e)

]≥ 1

2

∣∣CoVrμ[f,g]∣∣.(3.58)

See [15] for an extension of the OSSS inequality to monotonic measures, such as the law
of the Fortuin–Kasteleyn random-cluster model.

3.2.2. Differential inequalities for Dini derivatives. In order to discuss how the OSSS
inequality leads to differential inequalities in the infinite-volume setting (without any need
for finite-volume approximation and limit), it is convenient to introduce the notion of Dini
derivatives; see, for example, [35] for further background. The lower-right Dini derivative of
a function f : [a, b]→R is defined to be(

d

dx

)
+
f (x)= lim inf

ε↓0

f (x + ε)− f (x)

ε
(3.59)

for each x ∈ [a, b). In our setting it is a classical and elementary fact [18], Theorem 2.34, that
if A is an event depending on at most finitely many edges, then Pp(A) is a polynomial in p

with derivative

d

dp
Pp(A)= 1

p(1− p)

∑
e∈E

Cov
[
ω(e),1(A)

]
.(3.60)

If A is an increasing event depending possibly on infinitely many edges, we still have the
lower-right Dini derivative bound(

d

dp

)
+
Pp(A)≥ 1

p(1− p)

∑
e∈E

Cov
[
ω(e),1(A)

]
.(3.61)

A detailed proof of this is given in [31], Proposition 2.1. Thus, the OSSS inequality allows us
to prove lower bounds on derivatives of increasing events by exhibiting decision forests that
compute these events and have small maximum revealment.

Lower bounds on the lower-right Dini derivatives of monotone functions can often be used
in much the same way as bounds on the classical derivative of a differentiable function. For
example, the usual logarithmic derivative formula(

d

dx

)
+

logf (x)= 1

f (x)

(
d

dx

)
+
f (x)(3.62)

remains valid. Also, if f : [a, b]→R is increasing, then

f (b)− f (a)≥
∫ b

a

(
d

dx

)
+
f (x) dx.(3.63)

Since every measurable function has measurable Dini derivatives [35], Theorem 3.6.5, the
above integral is well defined.

3.2.3. Slightly subcritical pioneers: Proof of Theorem 2.3. Our goal in this section is to
study the distribution of the total number of 0-pioneers |P0| in critical and slightly subcritical
percolation. The main result is the following proposition which strengthens Theorem 2.3.
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PROPOSITION 3.9. Let d > 6, and suppose that (T) holds. There exists a positive con-
stant c such that

Epc−ε|P0| 
 ε−1/2 and Ppc−ε

(|P0| ≥ k
)
 k−2/3 exp

[−cε3/2k
]

(3.64)

for every 0≤ ε ≤ pc/2 and k ≥ 1.

The exponential tail bound on |P0| is not needed for the proofs of the main theorems but
is included since it may be of independent interest. Before proving this proposition, we show
how it implies Theorem 2.3.

PROOF OF THEOREM 2.3, GIVEN PROPOSITION 3.9. Recall that Pp(n) = Ep|P0(n)|.
We have already observed that the lower bound of Theorem 2.3 holds, and we have already
proved the desired upper bound when p = pc in Proposition 3.1. It, therefore, suffices to
prove that there exists a positive constant c such that

Pp(n)
 exp
[−c(pc − p)1/2n

]
(3.65)

for every n≥ 1 and pc/2≤ p < pc. Fix p in this interval. As discussed below, Definition 2.1,
P0(n)∩P0(m)=∅ when |n−m| ≥ L and hence by Proposition 3.9

1

N

N∑
n=1

Pp(n)≤ L

N
Ep|P0| 
 1

(pc − p)1/2N
(3.66)

for every N ≥ 1. It follows that there exists a constant C such that there exists np with
1≤ np ≤ C(pc − p)−1/2 such that Pp(np)≤ pL−1/2. It follows inductively by the submul-
tiplicativity estimate (2.3) that Pp(knp)≤ pL−12−k for every k ≥ 1. Since we also have that
Pp(n) ≤ Ppc(n) 
 1, it follows by another application of (2.3) that Pp(knp + r) 
 2−k for
every k ≥ 1 and 0 ≤ r < np . If now we write arbitrary n as n = � n

np
�np + r , then we see

that the above gives Pp(n)
 2−�n/np�, and the desired exponential estimate follows from the
upper bound np 
 (pc − p)−1/2. �

To begin the proof of Proposition 3.9, we first note that Proposition 3.1, together with the
result of Kozma and Nachmias [37] that Theorem 1.2 holds for p = pc, yield the following
important corollary describing the distribution of the total number of pioneers at criticality.

LEMMA 3.10. Let d > 6, and suppose that (T) holds. Then Ppc(|Px | ≥ k) 
 k−2/3 for
every x ∈ Zd and k ≥ 1.

PROOF. It suffices to consider the case x = 0. Let n, k ≥ 1, where n is a parameter we
will optimise over shortly. By Markov’s inequality

Ppc

(|P0| ≥ k
)≤ Ppc

(|P0| ≥ k and 0 is not connected to Hn

)
(3.67)

+ Ppc(0 is connected to Hn)

≤ 1

k
Epc

[
n∑

i=0

∣∣P0(i)
∣∣]+ Ppc(0 is connected to Hn)
 n

k
+ 1

n2(3.68)

for every k,n≥ 1, where the first bound follows from Proposition 3.1 and the second follows
from the aforementioned result of Kozma and Nachmias. The claim follows by taking n =
"k1/3#. �

We now apply the OSSS inequality to deduce Proposition 3.9 from Lemma 3.10. We follow
closely the proof of [31], Theorem 1.1. For each p ∈ [0,1] and h≥ 0, we write Pp,h for the
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law of the pair (ω,G) where ω is distributed as Bernoulli-p bond percolation and G is a
ghost field independent of ω, that is, a random subset of the edge set B in which each edge is
included independently at random with inclusion probability 1− e−h. We call an edge green
if it belongs to G. (While it is more standard to consider ghost fields to be random sets of
vertices, it is more convenient for our purposes to take them to be random sets of edges.) As
a first and key step, we use the OSSS inequality to prove a differential inequality.

LEMMA 3.11. The differential inequality

(
d

dp

)
+

logPp

(|P0| ≥ k
)≥ 1

2p(1− p)

[
k(1− e−1)∑k

i=0 Pp(|P0| ≥ i)
− 1

]
(3.69)

holds for every k ≥ 1 and 0 < p < 1.

PROOF. By (3.61) and (3.62),

(3.70)
(

d

dp

)
+

logPp

(|P0| ≥ k
)≥ 1

Pp(|P0| ≥ k)

1

p(1− p)

∑
e∈B

Cov
[
ω(e),1

(|P0| ≥ k
)]

,

where B is the set of edges. It, therefore, suffices to prove that

∑
e∈B

Cov
[
ω(e),1

(|P0| ≥ k
)]≥ 1

2

[
k(1− e−1)∑k

i=0 Pp(|P0| ≥ i)
− 1

]
Pp

(|P0| ≥ k
)
.(3.71)

For this we will use Theorem 3.8.
For the setup for Theorem 3.8, we let (ω,G) have law Pp,h, where we think of Pp,h as a

product measure on {0,1}B×{perc,ghost}. Consider the two Boolean functions

f (ω,G)= f (ω)= 1
(|P0| ≥ k

)
and g(ω,G)= 1(P0 ∩ G �=∅).(3.72)

We say that an edge is horizontal if its endpoints have distinct first coordinates. We can
determine the value of g by first revealing the value of the ghost field at each horizontal edge
and then exploring the cluster of each green horizontal edge in the halfspace lying strictly to
the left of its rightmost endpoint. This exploration process can be encoded as a decision forest
F = {T e : e ∈ B} in which the decision tree T e first queries the status of the ghost field at the
edge e, halting if it discovers that G(e) = 0. If the decision tree discovers that G(e) = 1, it
next checks whether e is open in ω, halting if it is closed and otherwise exploring the cluster
of the leftmost endpoint of e in the halfspace lying strictly to the left of the rightmost endpoint
of e; see the proof of [31], Proposition 3.1, to see how such a decision forest may be defined
formally. This decision forest clearly computes g.

Its revealments satisfy

δe,perc(F,Pp,h)
(3.73)

≤ Pp,h(e ∈ G or at least one of the endpoints of e has a pioneer in G),

δe,ghost(F,Pp,h)= 1(3.74)

for each e ∈ B. We can bound the revealment probabilities of edges by the union bound

δe,perc(F,Pp,h)≤ Pp,h(e ∈ G)+ 2Pp,h(0 has a pioneer in G)

= 1− e−h + 2Ep,h

[
1− e−h|P0|].(3.75)
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It, therefore, follows from the OSSS inequality Theorem 3.8 that

Cov[f,g] = 1

2

∣∣CoVr[f,g]∣∣
≤∑

e∈B
δe,perc(F,Pp,h)Cov

[
f,ω(e)

]+∑
e∈B

δe,ghost(F,Pp,h)Cov
[
f,G(e)

]
(3.76)

=∑
e∈B

δe,perc(F,Pp,h)Cov
[
f,ω(e)

]

≤ (
1− e−h + 2Ep,h

[
1− e−h|P0|]) ∑

e∈B
Cov

[
f,ω(e)

]
,

where we used that f (ω,G)= f (ω) is independent of the ghost field G in the equality on the
second line. On the other hand, we can also compute that

Cov[f,g] = Pp,h

(|P0| ≥ k, |P0 ∩ G| ≥ 1
)− Pp

(|P0| ≥ k
)
Pp,h

(|P0 ∩ G| ≥ 1
)

= Ep

[(
1− e−h|P0|)1(|P0| ≥ k

)]−Ep

[
1− e−h|P0|]Pp

(|P0| ≥ k
)

≥ (
1− e−hk)Pp

(|P0| ≥ k
)−Ep

[
1− e−h|P0|]Pp

(|P0| ≥ k
)(3.77)

so that ∑
e∈B

Cov
[
f,ω(e)

]≥ (1− e−hk)−Ep[1− e−h|P0|]
1− e−h + 2Ep[1− e−h|P0|] Pp

(|P0| ≥ k
)

(3.78)

for every k ≥ 1, 0 ≤ p ≤ 1, and h ≥ 0. The claimed inequality (3.71) follows by taking
h= 1/k and using the elementary fact that

(3.79) 1− e−1/k +Ep

[
1− e−|P0|/k]≤ 1

k
+ 1

k
Ep

[
min

{
k, |P0|}]= 1

k

k∑
i=0

Pp

(|P0| ≥ i
)
.

This completes the proof. �

PROOF OF PROPOSITION 3.9. We now analyse the differential inequality (3.69) to prove
the desired slightly subcritical bounds. We begin with the proof of the inequality Ep|P0| 

(pc − p)−1/2. Since Pp(|P0| ≥ k) is an increasing function of p, we have by Lemma 3.11
and Lemma 3.10 that there exist positive constants c1 and C1 such that(

d

dp

)
+

logPp

(|P0| ≥ k
)≥ 1

2p(1− p)

[
k(1− e−1)

C1
∑k

i=0(i + 1)−2/3
− 1

]

≥ 1

2p(1− p)

[
c1k

2/3 − 1
](3.80)

for every 0 < p ≤ pc and k ≥ 1. Integration of this inequality over the interval [p,pc], to-
gether with (3.63), shows that there exist positive constants c2 and C2 such that

Pp

(|P0| ≥ k
)≤ Ppc

(|P0| ≥ k
)

exp
(
−

∫ pc

p

1

2q(1− q)

[
c1k

2/3 − 1
]
dq

)

≤ C2k
−2/3 exp

(−c2(pc − p)k2/3)(3.81)

for every pc/2≤ p ≤ pc and k ≥ 1. It follows by calculus that there exists a positive constant
C3 such that

Ep|P0| ≤ C2

∞∑
k=1

k−2/3e−c2(pc−p)k2/3 ≤ C3(pc − p)−1/2(3.82)

for every pc/2≤ p < pc, as claimed.
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Finally, we prove that Pp(|P0| ≥ k)
 k−2/3 exp[−c(pc−p)3/2k]. The case of p = pc has
been proved already in Lemma 3.10, so we can restrict attention here to pc/2≤ p < pc. The
differential inequality (3.69) implies the simplified inequality(

d

dp

)
+

logPp

(|P0| ≥ k
)≥ 1

2p(1− p)

[
k(1− e−1)

1+Ep|P0| − 1
]
.(3.83)

We again integrate the above inequality and conclude that there exist positive constants c3,
c4, and C3 such that if 0 < ε ≤ pc/4, then

Ppc−2ε

(|P0| ≥ k
)≤ Ppc−ε

(|P0| ≥ k
)

exp
(
−

∫ pc−ε

pc−2ε

1

2q(1− q)

[
c3ε

1/2k− 1
]
dq

)

≤ C3k
−2/3 exp

(−c4ε
3/2k

)

(3.84)

for every k ≥ 1. This completes the proof. �

4. Plateau below the window: Proof of Theorem 1.3. In this section we apply our
bound on the slightly subcritical Zd two-point function from Theorem 1.1 to prove the plateau
estimates for the torus two-point function below the scaling window in Theorem 1.3. As a
corollary we also prove the torus triangle condition, Theorem 1.6.

4.1. Preliminaries. We start by recording some preliminary estimates that we will use
repeatedly in the rest of the section. For each x ∈ Zd and 0≤ p ≤ 1, the Zd open bubble and
open triangle diagrams Bp(x) and Tp(x) are defined by

Bp(x)= ∑
u∈Zd

τp(u)τp(x − u)= (τp ∗ τp)(x),(4.1)

Tp(x)= ∑
u,v∈Zd

τp(u)τp(v − u)τp(x − v)= (τp ∗ τp ∗ τp)(x).(4.2)

Upper bounds on these two quantities are given in the next lemma. The notation pc always
refers to the critical value for Zd .

LEMMA 4.1. Let d > 6, and suppose that (T) holds on Zd . There exist positive constants
C1,C2 such that

Bp(x)≤ C1

〈x〉d−4 e−c1m(p)‖x‖∞,(4.3)

Tp(x)≤ C2

〈x〉d−6 e−c1m(p)‖x‖∞(4.4)

for every x ∈ Zd and every p ≤ pc.

PROOF. We insert the bound of Theorem 1.1 into the convolutions defining the bubble
and triangle diagrams. By the triangle inequality, the exponential factors are bounded above
by an overall factor e−c1m(p)|x|. For the powers, let f (x)= 〈x〉−(d−2). Since d > 6, we have
by (3.19)–(3.20) that (f ∗ f )(x)
 〈x〉−(d−4) and (f ∗ f ∗ f )(x)
 〈x〉−(d−6). Together, this
gives the desired result. �

Observe that if x ∈ Td
r is regarded as a point in [− r

2 , r
2)d ∩ Zd , then 〈x + ru〉 � r〈u〉

uniformly in nonzero u ∈ Zd since

‖x + ru‖∞ ≥ ‖ru‖∞ − r

2
≥ ‖ru‖∞ − 1

2
‖ru‖∞ = 1

2
‖ru‖∞(4.5)
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and

‖x + ru‖∞ ≤ r

2
+ ‖ru‖∞ ≤ 1

2
‖ru‖∞ + ‖ru‖∞ = 3

2
‖ru‖∞.(4.6)

The following elementary lemma will be useful with ν = cm(p).

LEMMA 4.2. Let r ≥ 2, a > 0, and ν > 0. Then∑
u∈Zd :u�=0

1

‖x + ru‖d−a∞
e−ν‖x+ru‖∞ 
a

1

νard
e−

1
4 νr(4.7)

for every x ∈ Td
r ≡ [− r

2 , r
2)d ∩Zd .

PROOF. Let a > 0. It follows from (4.5) that for any nonzero u ∈ Zd and r ≥ 2, 〈x +
ru〉 ≥ 1

2‖ru‖∞ and thus

∑
u�=0

1

‖x + ru‖d−a∞
e−ν〈x+ru〉 ≤∑

u�=0

1

(1
2‖ru‖∞)d−a

e−
1
2 ν‖ru‖∞

≤ 2d−ae−
1
4 νr

∞∑
N=1

∑
u:‖u‖∞=N

1

‖ru‖d−a∞
e−

1
4 ν‖ru‖∞(4.8)


a ra−de−
1
4 νr

∞∑
N=1

Nd−1−d+ae−
1
4 νrN .

We bound the sum on the right-hand side by an integral to obtain an upper bound which is a
constant multiple of

ra−de−
1
4 νr

∫ ∞
1

ua−1e−
1
4 νru du= 1

νard
e−

1
4 νr

∫ ∞
νr

ta−1e−t/4 dt.(4.9)

The integral is uniformly bounded since a > 0. This concludes the proof. �

REMARK 4.3. Bounds expressed in terms of the mass m(p), such as the one in
Lemma 4.2 with ν = cm(p), can also be expressed in terms of the susceptibility χ(p) since

1

m(p)2 
 χ(p).(4.10)

To prove (4.10), we first fix any p1 ∈ (0,pc). For p ≤ p1, since m is decreasing and since
1= χ(0)≤ χ(p), we have m(p)−2 ≤m(p1)

−2 ≤m(p1)
−2χ(p) and the desired upper bound

follows for p ∈ (0,p1]. We can choose p1 close enough to pc that m(p)−2 and χ(p) are
comparable for p ∈ (p1,pc), since both are asymptotic to (1−p/pc)

−1. In particular, for p1
close enough to pc there exists C such that m(p)−2 ≤ Cχ(p) for those p ∈ [p1,pc).

The following three estimates will be useful.

LEMMA 4.4. Let d > 6, and suppose that (T) holds on Zd . For r ≥ 2, x ∈ Td
r , and

0≤ p < pc,
∑

u∈Zd

τp(x + ru)≤ τp(x)+C
χ(p)

V
e−

c
4 m(p)r ,(4.11)

∑
u∈Zd

Bp(x + ru)≤ Bp(x)+C
χ(p)2

V
e−

c
4 m(p)r ,(4.12)



HIGH-DIMENSIONAL PERCOLATION 611

∑
u∈Zd

Tp(x + ru)≤ Tp(x)+C
χ(p)3

V
e−

c
4 m(p)r .(4.13)

PROOF. For the first inequality, we separate the u = 0 term from the sum and apply
Theorem 1.1, as well as Lemma 4.2 with a = 2, to obtain that there exist positive constants
c, C1, and C2 such that∑

u∈Zd

τp(x + ru)≤ τp(x)+∑
u�=0

C1

〈x + ru〉d−2 e−cm(p)‖x+ru‖∞(4.14)

≤ τp(x)+C2
χ(p)

V
e−

c
4 m(p)r .(4.15)

For the bubble and triangle diagrams, in place of Theorem 1.1 we instead use the bounds of
Lemma 4.1, which modify the power d − 2 in the above inequality to d − 4 for the bubble
and d − 6 for the triangle. We then apply Lemma 4.2 and Remark 4.3 with a = 4 and with
a = 6 to complete the proof. �

4.2. Upper bound on the torus two-point function. PROOF OF (1.12). The proof is as
in [45]. For each 0≤ p < pc and x ∈ Td

r ≡ [− r
2 , r

2)d ∩Zd , we define

ψr,p(x)= ∑
u∈Zd :u�=0

τp(x + ru),(4.16)

which is finite only when p < pc. It follows by a simple coupling argument, originating in
the work of Benjamini and Schramm [4] and further developed in [24], Proposition 2.1, that

τTp (x)≤ τp(x)+ψr,p(x)(4.17)

for every r > 2, x ∈ Td
r and 0≤ p ≤ 1. By Lemma 4.4

ψr,p(x)≤ C
χ(p)

V
e−

c
4 m(p)r ,(4.18)

and with (4.17) this immediately yields the upper bound (1.12). �

4.3. Lower bound on the torus two-point function below the window. We now turn to
the proof of the lower bound (1.13) on the torus two-point function for p below the scaling
window. This proof is model dependent and although it follows the general strategy used for
weakly self-avoiding walk in [45], it differs in details.

We seek a lower bound of the form r−dχ for the difference

ψT
r,p(x)= τTp (x)− τp(x)

(
x ∈ Td)

.(4.19)

To this end, we first make the decomposition

ψT
r,p(x)=ψr,p(x)− (

ψr,p(x)−ψT
r,p(x)

)
.(4.20)

We can then deduce the lower bound (1.13) as an immediate consequence of the following
two lemmas.

LEMMA 4.5. Let d > 6, and suppose that (T) holds on Zd . There exist positive constants
A2 and cψ such that if r > 2 and pc −A2r

−2 ≤ p < pc, then

ψr,p(x)≥ cψ

χ(p)

V
(4.21)

for every x ∈ Td
r .
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LEMMA 4.6. Let d > 6, and suppose that (T) holds on Zd . Let cψ be as in Lemma 4.5.
There exist positive constants A1 and M such that if r > 2 and 0≤ p ≤ pc −A1V

−1/3, then

ψr,p(x)−ψT
r,p(x)≤ 1

2
cψ

χ(p)

V
(4.22)

for every x ∈ Td
r with ‖x‖∞ ≥M .

PROOF OF (1.13) SUBJECT TO LEMMAS 4.5 AND 4.6. By definition,

τTp (x)= τp(x)+ψr,p(x)− [
ψr,p(x)−ψT

r,p(x)
]
.(4.23)

By Lemmas 4.5 and 4.6, if ‖x‖∞ ≥M and pc −A2r
−2 ≤ p ≤ pc −A1V

−1/3, then we have
the lower bound

τTp (x)≥ τp(x)+ cψ

χ(p)

V
− 1

2
cψ

χ(p)

V
= τp(x)+ 1

2
cψ

χ(p)

V
,(4.24)

which is the desired estimate. �

4.3.1. Proof of Lemma 4.5. In this section we prove the lower bound on ψr,p(x) stated
in Lemma 4.5. We begin with the following simple observation.

LEMMA 4.7. Let d > 6, and suppose that (T) holds on Zd . The inequality

τpc(x)− τp(x)
 pc − p

〈x〉d−4(4.25)

holds for every pc/2≤ p ≤ pc and x ∈ Zd .

PROOF. The proof of (4.25) is a consequence of the following standard differential in-
equality (cf. [2]). Let τn

p(x) = P(0 ↔ x inside [−n,n]d). It is easy to see that, for every

n > 0, τn
p(x) is differentiable in p and that τn

p(x)→ τp(x) as n→∞. Let p ∈ [1
2pc,pc]. By

Russo’s Formula and the BK inequality (with the sum over the undirected bonds in [−n,n]d ),
we have

d

dp
τn
p(x)= 1

p

∑
{u,v}

Pp

({u, v} is pivotal for 0↔ x inside [−n,n]d, {u, v} is open
)

≤ 1

p

∑
{u,v}

Pp

({0↔ u inside [−n,n]d} ◦ {u↔ x inside [−n,n]d})(4.26)


 (τp ∗ τp)(x).

It follows by monotonicity in p and the bound on the bubble from Lemma 4.1 that

d

dp
τn
p(x)
 (τpc ∗ τpc)(x)
 1

〈x〉d−4 .(4.27)

Integration of (4.27) over [p,pc], followed by the limit as n→∞, gives (4.25). �

We now apply Lemma 4.7 to complete the proof of Lemma 4.5.

PROOF OF LEMMA 4.5. Let x ∈ Td
r . To obtain a lower bound on ψr,p , we may sum in

(4.16) over only those u ∈ Zd with ‖u‖∞ ≤ R with R ≥ 1 a large number depending on r
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and pc − p to be chosen shortly. By (T) and (4.25), there exist positive constants c1 and C1
such that, for every y ∈ Zd ,

τp(y)= τpc(y)− (
τpc(y)− τp(y)

)≥ c1

〈y〉d−2 −
C1(pc − p)

〈y〉d−4 .(4.28)

With this, together with (4.5)–(4.6), we see that there exist positive constants c2,C2,C3 such
that ∑

u∈Zd :u�=0

τp(x + ru)≥ ∑
1≤‖u‖∞≤R

τp(x + ru)

≥ 2

3
c1

∑
1≤‖u‖∞≤R

1

‖ru‖d−2∞
− 2C1(pc − p)

∑
1≤‖u‖∞≤R

1

‖ru‖d−4∞
(4.29)

≥ c2

rd−2 R2 − C2(pc − p)

rd−4 R4 = c2

rd−2 R2(
1−C3(pc − p)r2R2)

for every r,R ≥ 1 and pc/2≤ p < pc. Now we choose R2 = (2C3(pc−p)r2)−1 and require
pc − p ≤A2r

−2 with A2 chosen small enough for R to be indeed greater than 1. This gives

∑
u∈Zd :u�=0

τp(x + ru)≥ c2R
2

2rd−2 =
c3

(pc − p)rd
� χ(p)

V
,(4.30)

for every r ≥ 2 and p ∈ [pc −A2r
−2,pc), and completes the proof. �

4.3.2. Proof of Lemma 4.6. We now prove Lemma 4.6, which states that there exist con-
stants M and A1 such that if p ≤ pc −A1V

−1/3, then

ψr,p(x)−ψT
r,p(x)≤ 1

2
cψr−dχ(p)(4.31)

for every x ∈ Td
r with ‖x‖∞ ≥M , where cψ is the constant from Lemma 4.5. In order to

prove this, we will prove the following more general inequality.

LEMMA 4.8. Let d > 6, and suppose that (T) holds on Zd . There exists a constant C

such that the inequality

ψr,p(x)−ψT
r,p(x)≤ C

χ(p)

V

(
Tp(x)+ χ(p)3

V

)
(4.32)

holds for every r > 2, x ∈ Td
r , and p < pc.

PROOF OF LEMMA 4.6, GIVEN LEMMA 4.8. By taking p ≤ pc−A1V
−1/3, we see from

the bound on the susceptibility in (1.11) that χ(p) 
 A−1
1 V 1/3, so the term V −1χ(p)3 can

be made as small as desired by taking A1 sufficiently large. By (4.4) the triangle term Tp(x)

can be made as small as desired by taking ‖x‖∞ ≥M with M sufficiently large. Thus, we
can choose the constants A1,M in such a way that the right-hand side of (4.32) is at most
1
2cψχ(p)/V . This gives the desired inequality (4.31). �

We turn now to the proof of Lemma 4.8. We build upon the coupling of percolation on
Zd and Td

r developed by Heydenreich and van der Hofstad [24], Proposition 2.1. With this
coupling they proved that

ψr,p(x)−ψT
r,p(x)≤ 1

2

∑
u∈Zd

∑
v �=u

P(0↔ x + ru, x + rv)

+ ∑
u∈Zd

P
({0↔ x + ru} ∩ {0←→

T
x}c)(4.33)
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for every x ∈ Td
r , where {x←→

T
y} denotes the event that x is connected to y by an open path

in Td
r in the coupling (see [24], (5.4)).

The proof of Lemma 4.8 is immediate, using the following two lemmas to bound the two
terms in (4.33). In the first lemma, there is room to spare by a factor χ in the last term; this is
consistent with [24]. Also, we see the bubble rather than the triangle which again has room
to spare.

LEMMA 4.9. Let d > 6, and suppose that (T) holds on Zd . The inequality

∑
u∈Zd

∑
v �=u

P(0↔ x + ru, x + rv)
 χ

V

(
Bp(x)+ χ2

V

)
(4.34)

holds for every 0≤ p < pc, r > 2, and x ∈ Td
r .

PROOF. We use x, y for torus points, u, v,w for translating points in Zd , and, for clarity,
write the two-point function as τ(u, v) in place of the usual τp(v− u). By the BK inequality,∑

u∈Zd

∑
v �=u

P(0↔ x + ru, x + rv)

≤ ∑
z,u∈Zd

∑
v �=u

τ (0, z)τ (z, x + ru)τ (z, x + rv)

= ∑
y∈Td

r

∑
w∈Zd

τ (0, x + y + rw)
∑

u∈Zd

τ
(
y, r(u−w)

) ∑
v �=u

τ
(
y, r(v−w)

)

= ∑
y∈Td

r

∑
w∈Zd

τ (0, x + y + rw)
∑

u∈Zd

τ (y, ru)
∑
v �=u

τ (y, rv),

(4.35)

where in the third line we replaced z by x+ y+ rw and in the fourth we replaced u by u+w

and v by v+w. For the sum over v, it follows from Lemma 4.4 that∑
v �=u

τ (y, rv)= ∑
v �=u

τ (y, rv)(1u=0 + 1u�=0)

= 1u=0
∑
v �=0

τ(y, rv)+ 1u�=0
∑
v �=u

τ (y, rv)(4.36)


 1u=0
χ

V
+ 1u�=0

(
τ(0, y)+ χ

V

)

 1u�=0τ(0, y)+ χ

V
.

This leads, using Lemma 4.4 again, to

(4.37)
∑

u∈Zd

τ (y, ru)
∑
v �=u

τ (y, rv)
 τ(0, y)
χ

V
+ χ

V

(
τ(0, y)+ χ

V

)

 χ

V

(
τ(0, y)+ χ

V

)
.

Thus, we have an upper bound on (4.35), given by

χ

V

∑
y∈Td

r

∑
w∈Zd

τ (0, x + y + rw)

(
τ(0, y)+ χ

V

)

= χ3

V 2 +
χ

V

∑
y∈Td

r

∑
w∈Zd

τ (0, x + y + rw)τ(0, y).

(4.38)
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We extend this last sum over y to all of Zd and use the inequality for the bubble from
Lemma 4.4 to finally get that

∑
u∈Zd

∑
v �=u

P(0↔ x + ru, x + rv)
 χ

V

(
Bp(x)+ χ2

V

)
,(4.39)

as claimed. �

LEMMA 4.10. Let d > 6, and suppose that (T) holds on Zd . The estimate

∑
u∈Zd

P
({0↔ x + ru} ∩ {0←→

T
x}c)
 χ(p)

V

(
Tp(x)+ χ(p)3

V

)
(4.40)

holds for every 0≤ p < pc, r > 2, and x ∈ Td
r .

PROOF. Our starting point is the set inclusion

{0↔ x + ru} ∩ {0←→
T

x}c ⊆ ⋃
z∈Zd

⋃
a∈Td

r

⋃
v1,v2∈Zd :v1 �=v2

{0↔ z} ◦ {z↔ a + rv1}

◦ {z↔ a + rv2} ◦ {a + rv2 ↔ x + ru}
(4.41)

for every x ∈ Td
r and u ∈ Zd which arises from the coupling of torus and Zd percolation

in [24], Proposition 2.1. We use a, b, x, y, z for torus points and use u, v,w for translating
vectors. It follows from the set inclusion (4.41), together with a union bound and the BK
inequality, that

P
({0↔ x + ru} ∩ {0←→

T
x}c)

(4.42)
≤ ∑

a∈Td
r

∑
z,v1∈Zd

∑
v2 �=v1

τp(z)τp(a + rv2 − z)τp(a + rv1 − z)τp(x + ru− a − rv2).

We translate to more convenient vertices, as follows. First, we write the Zd point a+ rv2−
x uniquely as a torus point y plus rv with v ∈ Zd and, similarly for the others, to obtain

a + rv2 − x = y + rv, y ∈ Td
r , v ∈ Zd,

a + rv1 − x = y + rv+ rv′, v′ = v2 − v1 �= 0,(4.43)

z− x = y + z′ + ru′, z′ ∈ Td
r , u′ ∈ Zd .

This gives ∑
u∈Zd

P
({0↔ x + ru} ∩ {0←→

T
x}c)

≤ ∑
y,z′∈Td

r

∑
v,u′∈Zd

τp

(
x + y + z′ + ru′

)
τp

(−z′ + r(v − u′)
)

(4.44)

× ∑
v′ �=0

τp

(−z′ + r(v′ + v− u′)
) ∑
u∈Zd

τp

(−y + r(u− v)
)
.

We bound the sums over u and v′ with Lemma 4.4 and obtain∑
u∈Zd

τp

(−y + r(u− v)
)= ∑

u∈Zd

τp(−y + ru)≤ τp(y)+C
χ(p)

V
,(4.45)

∑
v′ �=0

τp

(−z′ + r
(
v′ + v− u′

))= ∑
v′ �=v−u′

τp

(−z′ + rv′
)≤ τp

(
z′

)
1v �=u′ +C

χ(p)

V
.(4.46)
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Then we perform the sum over v, which after translating v by u′, is bounded similarly us-
ing

∑
v∈Zd

τp

(−z′ + r
(
v − u′

))(
τp

(
z′

)
1v �=u′ +C

χ(p)

V

)

= ∑
v∈Zd

τp

(−z′ + rv
)(

τp

(
z′

)
1v �=0 +C

χ(p)

V

)

≤ C
χ(p)

V
τp

(
z′

)+C
χ(p)

V

∑
v∈Zd

τp

(−z′ + rv
)


 χ(p)

V
τp

(
z′

)+ χ(p)2

V 2 .

(4.47)

This leads to∑
u∈Zd

P
({0↔ x + ru} ∩ {0←→

T
x}c)

(4.48)


 χ(p)

V

∑
y,z′∈Td

r

∑
u′∈Zd

τp

(
x + y + z′ + ru′

)(
τp(y)+ χ(p)

V

)(
τp(z′)+ χ(p)

V

)
.

We expand out the brackets and recognise that the term containing the product τp(y)τp(z′)
obeys ∑

u′∈Zd

∑
y,z′∈Td

r

τp

(
x + y + z′ + ru′

)
τp

(
z′

)
τp(y)

= ∑
u′∈Zd

∑
y,z′∈Td

r

τp

(
z′

)
τp

(
y + z′ − z′

)
τp

(
x + y + z′ + ru′

)
(4.49)

≤ ∑
u′∈Zd

Tp

(
x + ru′

)
 Tp(x)+ χ(p)3

V
.

Meanwhile, the two terms containing exactly one of τp(y) or τp(z′) are equal and can be
expressed as

χ(p)

V

∑
u′∈Zd

∑
y,z′∈Td

r

τp

(
x + y + z′ + ru′

)
τp

(
z′

)

= χ(p)

V

∑
w∈Zd

∑
z′∈Td

r

τp

(
x + z′ +w

)
τp

(
z′

)≤ χ(p)3

V
,

(4.50)

where we extended the sum over z′ to all of Zd in the last inequality. Finally, the term not
containing either τp(y) or τp(z′) can be expressed as

χ(p)2

V 2

∑
y,z′∈Td

r

∑
u′∈Zd

τp

(
x + y + z′ + ru′

)
(4.51)

= χ(p)2

V 2

∑
z′∈Td

r

∑
w∈Zd

τp

(
x + z′ +w

)= χ(p)3

V
.
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Summation of these contributions gives

∑
u∈Zd

P
({0↔ x + ru} ∩ {0←→

T
x}c)
 χ(p)

V

(
Tp(x)+ χ(p)3

V

)
,(4.52)

and the proof is complete. �

PROOF OF LEMMA 4.8. Lemmas 4.9 and 4.10 give bounds on the two terms on the
right-hand side of (4.33), namely,

ψr,p(x)−ψT
r,p(x)
 χ

V

(
Bp(x)+ χ2

V

)
+ χ

V

(
Tp(x)+ χ3

V

)
.(4.53)

Since the bubble is bounded above by the triangle and the susceptibility is at least 1, this gives
the desired estimate

ψr,p(x)−ψT
r,p(x)
 χ

V

(
Tp(x)+ χ3

V

)
,(4.54)

and the proof is complete. �

4.4. The torus triangle condition: Proof of Theorem 1.6. To conclude this section, we
show how the torus plateau leads to easy proofs that pT lies in the scaling window and that
the torus triangle condition holds.

PROOF OF THEOREM 1.6. Fix ε > 0 sufficiently small that ε−1 ≥A2, where A2 is as in
Theorem 1.3. Recalling from (1.11) that χ � (pc − p)−1 and setting p0 = pc − ε−1V −1/3,
we have that χ(p0) � εV 1/3. On the other hand, for sufficiently large r (depending on M)
the lower bound of (1.13) applies to give

χT(p0)�
∑

x∈Td
r : ‖x‖∞>M

V −1χ(p0)� (
V − (2M + 1)d

)
V −1χ(p0)� εV 1/3.(4.55)

Since we also have by the coupling that χT ≤ χ , it follows that there exist positive constants
c1 and C2 such that

c1εV
1/3 ≤ χT(p0)≤ χ(p0)≤ C2εV

1/3.(4.56)

A second application of (1.11) yields that there exists a constant C3 ≥ 1 such that if we define
p1 = pc − C3ε

−1V −1/3, then χT(p1) ≤ χ(p1) ≤ c1εV
1/3. It follows by the intermediate

value theorem that if we define λ = λ(ε) = c1ε, then the pT defined by χT(pT) = λV 1/3

(which does exist if r exceeds some value r0(λ)) satisfies p1 ≤ pT ≤ p0 and hence that 0≤
pc−pT 
 ε−1V −1/3. With the choice λ0 = c1A

−1
2 , this concludes the proof that pT = pT(λ)

lies in the scaling window if λ ∈ (0, λ0] and r > r0(λ).
Let p < pc and x ∈ Td

r . The open torus triangle diagram is defined by

TT
p(x)= ∑

y,z∈Td
r

τTp (y)τTp (z− y)τTp (x − z),(4.57)

and (4.17) then implies that

TT
p(x)≤ ∑

y,z∈Td
r

∑
u,v,w∈Zd

τp(y + ru)τp(z− y + rv)τp(x − z+ rw).(4.58)
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We replace the index v by v′ − u and then replace w by w′ − v′. The above right-hand side
becomes (after setting y′ = y + ru and z′ = z+ rv′)∑

y′,z′,w′∈Zd

τp

(
y′

)
τp

(
z′ − y′

)
τp

(
x − z′ + rw′

)= ∑
w′∈Zd

Tp

(
x + rw′

)
(4.59)

with Tp(x + rw′) the open Zd triangle diagram. By Lemma 4.4 this gives that

TT
p(x)≤ Tp(x)+C1

χ(p)3

V
≤ Tpc(x)+C1

χ(p)3

V
.(4.60)

With pT as in the previous paragraph, this implies that

TT
pT

(x)≤ Tpc(x)+C1C
3
2ε3.(4.61)

With the bound ε ≤A−1
2 , this concludes the proof of the torus triangle condition.

It remains to prove that the a0-strong version of the triangle condition holds when its Zd

counterpart holds with 1
2a0. But under this assumption it follows from (4.61) that

TT
pT

(x)≤ 1(x = 0)+ 1

2
a0 +C1C

3
2ε3.(4.62)

We require that ε3 ≤ ε3
0 = a0(2C1C

3
2)−1. With λ≤ λ1 = c1ε0, the right-hand side of (4.62) is

at most 1(x = 0)+ a0, and the proof is complete. �

5. Plateau within the scaling window: Proof of Theorem 1.3. We now turn to the part
of Theorem 1.3 concerning the case that p lies within the scaling window of the torus. The
window consists of p values with |p− pc| ≤AV −1/3 with A arbitrary but fixed.

5.1. Lower bound in the window. We begin by proving the lower bound (1.15), which
follows simply from the monotonicity of τTp in p, the lower bound below the window, and
the comparison of τp with τpc provided by Lemma 4.7.

PROOF OF (1.15). Let A1 and A2 be the constants from the “below the scaling window”
part of Theorem 1.3. Fix A > 0. It suffices by monotonicity of the torus two-point function
to prove the claimed estimate in the case that A ≥ A1 and p = pc − AV −1/3. We denote
this value of p by p′. Thus, there exists a constant r0, depending on A, such that AV −1/3 ≤
A2r

−2 =A2V
−2/d lepc/2 for every r ≥ r0.

By (1.11), χ(p′)≥ cχA−1V 1/3 for some constant cχ depending only on d and L. It then
follows from (1.13) that there exists a constant M (depending on d and L) such that

τTp′(x)≥ τp′(x)+ c2cχ

AV 2/3(5.1)

for every x ∈ Td
r with ‖x‖∞ ≥M . By Lemma 4.7 (with our assumption that r ≥ r0 guaran-

teeing that p′ ≥ pc/2), we have moreover that

τpc(x)− τp′(x)
 A

V 1/3〈x〉d−4 

Ar2

V 1/3 τpc(x).(5.2)

Since the prefactor Ar2V −1/3 tends to zero, as r →∞, it follows from (5.1)–(5.2) that, for
each δ > 0, there exists an r1 ≥ r0, depending on A, such that

τTp′(x)≥ (1− δ)τpc(x)+ c2cχ

AV 2/3(5.3)

for every x ∈ Td
r with ‖x‖∞ ≥M and every r ≥ r1. This completes the proof. �
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5.2. Upper bound in the window. It remains to prove the upper bound. To do so, we first
consider the case p = pc. We then extend the upper bound to the window (pc,pc+AV −1/3]
by proving that, in this window, the two-point function changes only up to a multiplicative
factor (that can be chosen to be arbitrarily close to one) plus an additive constant term of
order V −2/3.

At pc the upper bound is not new and was proven previously in [29], Theorem 1.7. How-
ever, our proof, which is based on the extrinsic (Euclidean) distance, seems more direct than
that of [29] where the intrinsic distance was used. Our proof relies on the extrinsic one-arm
exponent estimate

Ppc(0↔ ∂�)� 1

2(5.4)

of Kozma and Nachmias [37] (i.e., the p = pc case of Theorem 1.2).

PROPOSITION 5.1. Let d > 6, and suppose that (T) holds on Zd . There is a C > 0 such
that

τTpc
(x)≤ τpc(x)+CV −2/3(5.5)

for all r > 2 and all x ∈ Td
r .

PROOF. Fix some large and positive integer M . Since Zd covers the torus Td
r , every

path in Td
r can be lifted to a path in Zd that is unique up to the choice of starting point. For

x, y ∈ Td
r , we define E≥(x, y) to be the event that x and y are connected by a simple Td

r -
path that lifts to a Zd -path of diameter greater than or equal to , and we define E≤(x, y)

similarly. In addition, we define A≥(x) to be the event that there exists some simple Td
r -

path, starting from x, that lifts to a Zd -path of diameter at least . We have trivially that
{0←→

T
x} =E≤3Mr(0, x)∪E≥3Mr(0, x) so that

PT
pc

(
0←→

T
x
)≤ PT

pc

(
E≤3Mr(0, x)

)+ PT
pc

(
E≥3Mr(0, x)

)
.(5.6)

Note that on E≥3Mr(0, x), the events A≥Mr(0) and A≥Mr(x) must occur disjointly. Also, in
the coupling between torus and Zd percolation we have

A≥(0)⊂ {
0←→

Z
∂�

}
and A≥(x)⊂ {

x←→
Z

x + ∂�

}
,(5.7)

where we recall that � = [−, ]d ∩Zd . Thus, by the BK inequality on the torus,

PT
pc

(E≥3Mr(0, x))≤ PT
pc

(A≥Mr(0) ◦A≥Mr(x))

≤ PT
pc

(AMr(0))PT
pc

(AMr(x))≤ Ppc(0↔ ∂�Mr)
2.

(5.8)

Using the one-arm upper bound of (5.4), this gives

PT
pc

(
E≥3Mr(0, x)

)
 1

M4r4 .(5.9)

For the first term of (5.6), we simply use the coupling and a union bound to see that

PT
pc

(
E≤3Mr(0, x)

)≤ Ppc

( ⋃
‖u‖∞≤3M

{0↔x + ru}
)

(5.10)
≤ τpc(x)+ ∑

1≤‖u‖∞≤3M

τpc(x + ru).
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The latter sum can be bounded above by an integral over the d-dimensional box of radius
3M , namely, ∑

1≤‖u‖∞≤3M

τpc(x + ru)

∫
‖u‖∞≤3M

1

〈ru〉d−2 du
M2r−(d−2).(5.11)

Together, these bounds imply that there exists a constant C such that

τTpc
(x)≤ τpc(x)+CM2r−(d−2) +CM−4r−4.(5.12)

The choice M = r(d−6)/6 gives the desired upper bound τpc(x)+CV −2/3 at p = pc. �

Next, we prove an upper bound at the top of the scaling window. For p ∈ (pc,pc +
AV −1/3], we use the intrinsic distance dint which is the graph distance on the percolation
configuration. If x, y are not connected in the configuration, then dint(x, y) =∞. Given a
percolation configuration, we define the (random) intrinsic ball centred at x and of radius 

by

Bint(x, )= {
y ∈ Td

r : dint(x, y)≤ 
}
.(5.13)

Thus,

{x↔ y by a path of length≤ } = {
y ∈ Bint(x, )

}
.(5.14)

We write the boundary of the intrinsic ball as

∂Bint(x, )= Bint(x, ) \Bint(x, − 1)= {
y ∈ Td

r : dint(x, y)= 
}
.(5.15)

Given a subset g of edges of the edge set B of Td
r or Zd , we define B

g
int(x, ) similarly

as Bint(x, ), except that the intrinsic distance from x to y is determined only using paths
consisting of edges of g.

Kozma and Nachmias [36] computed the asymptotic behaviour of the critical instrinsic
one-arm probability in high dimensions to be

Ppc

(
∂Bint(0, ) �=∅

)� 1


(5.16)

for every ≥ 1. In fact, they also proved an extension of the upper bound of (5.16) involving
the intrinsic ball restricted to a subgraph g; their proof also extends immediately to the torus,
as explained in [29], Theorem 2.1(i), and implies, in particular, that

max
g⊂B(Td

r )
PT

pc

(
∂B

g
int(0, ) �=∅

)
 1


(5.17)

for every r, ≥ 1. (An important remark is that the proof of (5.17) does not require the lace
expansion on Td

r but, instead, uses results for Zd along with the coupling of torus and Zd

percolation—this is discussed in greater detail in the verification of [25], Theorem 4.1(b). As
such, there is no circular reasoning here nor an appeal to any result obtained via the torus lace
expansion.)

We first isolate two estimates in the following lemma, whose proof uses a standard cou-
pling of percolation at different values of p.

LEMMA 5.2. For 0≤ p < q ≤ 1, ≥ 1, and g ⊂ B(Td
r ),

PT
q

(
∂B

g
int(0, ) �=∅

)≤ (
q

p

)

PT
p

(
∂B

g
int(0, ) �=∅

)
,(5.18)

PT
q

(
x ∈ Bint(0, )

)≤ (
q

p

)

PT
p

(
x ∈ Bint(0, )

)
.(5.19)
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PROOF. Let 0 ≤ p < q ≤ 1. We begin with (5.18). Given a subset g of the edge set
of Td

r , we write Rg() = {∂B
g
int(0, ) �= ∅}. We use the standard coupling of percolation

configurations via uniform random variables assigned to each edge of the torus (see [18],
p. 11); these uniform random variables are defined on some probability space (�,A,Q). We
write ηTp for the induced percolation configuration. Since Rg() depends on the edges inside
Td

r only, hence on finitely many edges, we can write

Q
(
ηTp ∈Rg(), η

T
q ∈Rg()

)= ∑
ω∈{0,1}Td

r

Q
(
ηTp ∈Rg(), η

T
q = ω,ω ∈Rg()

)

= ∑
ω∈Rg()

Q
(
ηTp ∈Rg() | ηTq = ω

)
Q

(
ηTq = ω

)
.

(5.20)

Since the above left-hand side is at most Q(ηTp ∈Rg()), (5.18) follows once we prove that

Q
(
ηTp ∈Rg() | ηTq = ω

)≥ (
p

q

)

.(5.21)

To prove (5.21), we first observe that on a specific configuration ω ∈ Rg(), there exists
inside ω a deterministic path of open edges, starting from 0, of length . A fortiori, on the
event {ηTq = ω} there exist  independent uniform random variables U1, . . . ,U attached to

these open edges such that Ui ≤ q for all 1 ≤ i ≤ . For {ηTp ∈ Rg()} to occur, it is enough
that Ui ≤ p for all 1≤ i ≤  which gives

Q
(
ηTp ∈Rg() | ηTq = ω

)≥Q

(
⋂

i=1

{Ui ≤ p} | ηTq = ω

)
.(5.22)

Since U1, . . . ,U are independent of the other uniform random variables, the above right-
hand side is equal to

Q

(
⋂

i=1

{Ui ≤ p} | ηTq = ω

)
=Q

(
⋂

i=1

{Ui ≤ p} |
⋂

i=1

{Ui ≤ q}
)
=

(
p

q

)

,(5.23)

which proves (5.21) and hence completes the proof of (5.18).
The proof of (5.19) is almost identical, using the fact that on {x ∈ Bint(0, )} there must

exist a path of length less than or equal to  connecting 0 to x. Then keeping the uniform
random variables along this path open upon reducing q to p gives the result. �

We now prove (1.14) in the following proposition.

PROPOSITION 5.3. Let d > 6, and suppose that (T) holds on Zd . Fix δ ∈ (0,1]. For all
A > 0, there exists a constant CA such that

τTp (x)≤ (1+ δ)τpc(x)+CAδ−2V −2/3(5.24)

for all r > 2, x ∈ Td
r and p ∈ (pc,pc +AV −1/3].

PROOF. Let x ∈ Td
r , A > 0 and δ > 0. By the monotonicity of τTp (x) in p and the inde-

pendence of the upper bound on p, it suffices to prove (5.24) for p = pc+ε with ε =AV −1/3.
We set γ = �δ/ε� and begin with the decomposition

PT
pc+ε(0↔ x)= PT

pc+ε

(
x ∈ ∂Bint(0, ) for some 

)
(5.25)

≤ PT
pc+ε

(
x ∈ Bint(0,3γ )

)+ PT
pc+ε

(
x ∈ ∂Bint(0, ) for some ≥ 3γ

)
.
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For the first term in (5.25), we use (5.19) and Proposition 5.1 to see that

PT
pc+ε

(
x ∈ Bint(0,3γ )

)≤ (
pc + ε

pc

)3γ

PT
pc

(
x ∈ Bint(0,3γ )

)
≤ e3γ ε/pcPT

pc
(0↔ x)(5.26)

≤ e3δ/pc
(
τpc(x)+CV −2/3)

.

We consider now the second term in (5.25). For this we argue as in the proof of [29], (1.11)
(see also [36], Lemma 2.6). We first observe that on the event {x ∈ ∂Bint(0, ) for some  ≥
3γ }, the two events {∂Bint(0, γ ) �= ∅} and {∂Bint(x, γ ) �= ∅} must both occur. However,
these two events do not necessarily occur disjointly. Indeed, in order for dint(0, y) to be large
there must not only be a long open path from 0 to y but also no shorter path; the sets of closed
edges guaranteeing that no such short path exists may be shared in the common realisation
of the two events. On the other hand, the set of vertices in Bint(0, γ ) and in Bint(x, γ ) are
disjoint. To deal with this situation, we define G to be the random graph whose edge set
consists of all edges which touch Bint(x, γ − 1) (the vertex set of G consists of the vertices
incident to at least one edge in this set); these are exactly the edges needed to determine the
random set Bint(x, γ ). From now on we identify subgraphs of the torus with subsets of B(Td

r )

and write gc for the complement of a subgraph g ⊆ B(Td
r ). Since Bint(0, γ ) and Bint(x, γ )

are disjoint, we see that

PT
pc+ε

(
x ∈ ∂Bint(0, ) for some ≥ 3γ

)
≤ PT

pc+ε

(
∂BGc

int (0, γ ) �=∅, ∂Bint(x, γ ) �=∅
)

(5.27)

= ∑
g⊂B(Td

r )

PT
pc+ε

(
∂B

g
int(0, γ ) �=∅, ∂Bint(x, γ ) �=∅,Gc = g

)
.

By definition of G, the events {∂B
g
int(0, γ ) �= ∅} and {Gc = g, ∂Bint(x, γ ) �= ∅} depend on

different edges (namely, those of g and gc, respectively), and hence

PT
pc+ε

(
x ∈ ∂Bint(0, ) for some ≥ 3γ

)
≤ ∑

g⊂B(Td
r )

PT
pc+ε

(
∂B

g
int(0, γ ) �=∅

)
PT

pc+ε

(
∂Bint(x, γ ) �=∅,Gc = g

)

≤ max
g⊂B(Td

r )
PT

pc+ε

(
∂B

g
int(0, γ ) �=∅

)
PT

pc+ε

(
∂Bint(x, γ ) �=∅

)

≤ max
g⊂B(Td

r )
PT

pc+ε

(
∂B

g
int(0, γ ) �=∅

)2
.

(5.28)

Now, we have by (5.18) with p = pc and q = pc + ε and by (5.17) that

PT
pc+ε

(
∂B

g
int(0, γ ) �=∅

)≤ (
pc + ε

pc

)γ

PT
pc

(
∂B

g
int(0, γ ) �=∅

)
 (
pc + ε

pc

)γ 1

γ
(5.29)

and hence that

PT
pc+ε

(
x ∈ ∂Bint(0, ) for some ≥ 3γ

)
 1

γ 2

(
pc + ε

pc

)2γ


 ε2

δ2 e2δ/pc .(5.30)

Altogether, by (5.26) and (5.30) we, therefore, have

τTp (x)≤ e3δ/pcτpc(x)+Cδ−2e3δ/pcV −2/3.(5.31)

Finally, we replace e3δ/pc by 1+ δ′, and we may obtain in this way any δ′ ∈ (0,1]. This gives
the desired result, and the proof is complete. �
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