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Abstract

We construct the incipient infinite cluster measure (IIC) for sufficiently spread-out ori-
ented percolation on Zd × Z+, for d + 1 > 4 + 1. We consider two different constructions.
For the first construction, we define Pn(E) by taking the probability of the intersection of an
event E with the event that the origin is connected to (x, n) ∈ Zd×Z+, summing this proba-
bility over x ∈ Zd, and normalising the sum to get a probability measure. We let n →∞ and
prove existence of a limiting measure P∞, the IIC. For the second construction, we condition
the connected cluster of the origin in critical oriented percolation to survive to time n, and
let n → ∞. Under the assumption that the critical survival probability is asymptotic to a
multiple of n−1, we prove existence of a limiting measure Q∞, with Q∞ = P∞. In addition,
we study the asymptotic behaviour of the size of the level set of the cluster of the origin, and
the dimension of the cluster of the origin, under P∞. Our methods involve minor extensions
of the lace expansion methods used in a previous paper to relate critical oriented percolation
to super-Brownian motion, for d + 1 > 4 + 1.

1 Introduction and results

1.1 The incipient infinite cluster

For oriented percolation on Zd × Z+, it was shown in [3, 10] that there is no infinite cluster at
the critical point. For non-oriented percolation on Zd, proofs that there is no percolation at the
critical point are restricted to 2-dimensional and high-dimensional models, and a general proof
has remained an elusive goal. The notion of the incipient infinite percolation cluster (IIC) is an
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attempt to describe the infinite structure that is emerging but not quite present at the critical
point. Various aspects of the IIC are discussed in [1]. There is currently no existence theory for
the IIC that is applicable in general dimensions, neither in the oriented nor in the non-oriented
setting.

For bond percolation on Z2, Kesten [17] constructed the IIC as a measure on bond configura-
tions in which the origin is almost surely connected to infinity. He gave two different constructions,
both leading to the same measure. One construction involved conditioning on the event that the
origin is connected to infinity, with bond density p greater than the critical value pc, and taking the
limit p ↓ pc. Another construction involved conditioning on the event that the origin is connected
to the boundary of a box of radius n, with p = pc, and letting n →∞. More recently, Járai [15, 16]
has shown that several other definitions of the IIC on Z2 yield the same measure as Kesten’s. These
include the inhomogeneous model of [8], and definitions in terms of invasion percolation [7], the
largest cluster in a large box [5], and spanning clusters [1]. The incipient infinite cluster is thus a
natural and robust object that can be constructed in many different ways.

No construction of the IIC, as a measure on bond configurations, has been given for any finite-
dimensional lattice in dimensions greater than 2. In the present paper, we consider sufficiently
spread-out oriented percolation on Zd×Z+, with d+1 > 4+1, and propose two definitions of the
IIC.

Perhaps the most natural definition of the IIC for oriented percolation is the measure Q∞
obtained by conditioning the cluster of the origin to survive to time n, with p = pc, and then
letting n →∞. Of course, it is not obvious that the limit exists.

For another possible definition, we set p = pc and define Pn(E) by taking the probability of
the intersection of an event E with the event that the origin is connected to (x, n) ∈ Zd × Z+,
summing this probability over x ∈ Zd, and normalising the sum to get a probability measure. We
will let n →∞ and prove existence of a limiting measure P∞. It is clear from the definition that
P∞ will be supported on configurations in which the origin is connected to infinity.

In view of the apparent robustness of the IIC, it is natural to expect that P∞ = Q∞. In fact,
we will prove that Q∞ exists and equals P∞, subject to the assumption that the critical survival
probability behaves asymptotically as a multiple of n−1. We believe that the methods of [14] can
be adapted to prove this assumption, and we plan to return to this problem in a future publication
[12]. Our constructions are restricted to d+1 > 4+1 due to the appearance in proofs of Feynman
diagrams that require d > 4 for convergence, as in [14, 20, 21].

Finally, we will derive various properties of the IIC measure P∞. These include statements
that under P∞ the cluster of the origin is infinite, the number of particles in the cluster of the
origin at time m grows like m times a size-biased exponential random variable, and the cluster has
a 4-dimensional character.

An alternate approach to the IIC is via a scaling limit. For oriented percolation, the goal is
to understand the distribution of critical clusters that survive to time n, with the lattice spacing
shrinking as an appropriate power of n, in the limit n → ∞. Such a program was carried out
in [14], where it was shown that the scaling limit for sufficiently spread-out oriented percolation
above the upper critical dimension 4+1 is intimately related to super-Brownian motion. (Related
results for non-oriented percolation were obtained in [11].) This suggests that large critical clusters
are closely related to large critical branching random walk clusters, for d + 1 > 4 + 1. The results
and methods in the present paper are based on minor extensions of the results and lace expansion
techniques used in [14]. The lace expansion was first applied to oriented percolation by Nguyen
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and Yang [20, 21].

1.2 Existence of the IIC measure

The spread-out oriented percolation models are defined as follows. Consider the graph with vertices
Zd × Z+ and directed bonds ((x, n), (y, n + 1)), for n ≥ 0 and x, y ∈ Zd. Let D : Zd → [0, 1] be a
fixed function. Let p ∈ [0, ‖D‖−1

∞ ], where ‖ · ‖∞ denotes the supremum norm, so that pD(x) ≤ 1
for all x. We associate to each directed bond ((x, n), (y, n + 1)) an independent random variable
taking the value 1 with probability pD(y−x) and 0 with probability 1−pD(y−x). We say a bond
is occupied when the corresponding random variable is 1, and vacant when the random variable
is 0. Given a configuration of occupied bonds, we say that (x, n) is connected to (y, m), and write
(x, n) −→ (y, m), if there is an oriented path from (x, n) to (y, m) consisting of occupied bonds,
or if (x, n) = (y, m). The joint probability distribution of the bond variables will be denoted P,
with corresponding expectation denoted E. Note that p is not a probability. We will always work
at the critical percolation threshold, i.e., at p = pc, and omit subscripts pc from the notation.

A simple example is

D(x) =


(2L + 1)−d ‖x‖∞ ≤ L

0 otherwise,
(1.1)

for which bonds are of the form ((x, n), (y, n + 1)) with ‖x − y‖∞ ≤ L, and a bond is occupied
with probability p(2L + 1)−d. In this parametrisation, pc tends to 1 as L →∞.

Our results hold for any function D that obeys the assumptions listed in [14, Section 1.2].
These assumptions involve a positive parameter L which serves to spread out the connections, and
which we will take to be large. In particular, they require that

∑
x∈Zd D(x) = 1, that D(x) ≤ CL−d

for all x, and, with σ defined by
σ2 =

∑
x∈Zd

|x|2D(x) (1.2)

where | · | denotes the Euclidean norm on Rd, that C1L ≤ σ ≤ C2L. Full details regarding the
assumptions can be found in [14]. The function defined by (1.1) does obey the assumptions.

Let F denote the σ-algebra of events. A cylinder event is an event that is determined by the
occupation status of a finite set of bonds. We denote the algebra of cylinder events by F0. Then
F is the σ-algebra generated by F0. For our first definition of the IIC, we begin by defining Pn by

Pn(E) =
1

τn

∑
x∈Zd

P(E ∩ {(0, 0) −→ (x, n)}) (E ∈ F0), (1.3)

where τn =
∑

x∈Zd τn(x) with τn(x) = P((0, 0) −→ (x, n)). We then define P∞ by setting

P∞(E) = lim
n→∞Pn(E) (E ∈ F0), (1.4)

assuming the limit exists. The following theorem shows that this definition produces a probability
measure on F under which the origin is almost surely connected to infinity.

Theorem 1.1. Let d + 1 > 4 + 1 and p = pc. There is an L0 = L0(d) such that for L ≥ L0,
the limit in (1.4) exists for every cylinder event E ∈ F0. Moreover, P∞ extends to a probability
measure on the σ-algebra F , and the origin is almost surely connected to infinity under P∞.
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Let
Sn = {(0, 0) −→ n} = {(0, 0) −→ (x, n) for some x ∈ Zd} (1.5)

denote the event that the cluster of the origin survives to time n. For our second definition of the
IIC, we begin by defining Qn by

Qn(E) = P(E|Sn) (E ∈ F0). (1.6)

We then define Q∞ by setting

Q∞(E) = lim
n→∞Qn(E) (E ∈ F0), (1.7)

assuming the limit exists.
Not surprisingly, the existence of Q∞ turns out to be related to the asymptotic behaviour of

the critical survival probability
θn = P(Sn). (1.8)

We will assume that for critical spread-out oriented percolation with d+1 > 4+1 and L sufficiently
large, there is a finite positive constant B such that

lim
n→∞nθn = 1/B. (1.9)

Although there is currently no proof of (1.9), we intend to return to this question in a future
publication [12]. Assuming (1.9), the following theorem gives existence of the IIC measure Q∞,
with Q∞ = P∞.

Theorem 1.2. Let d+1 > 4+1 and p = pc, and assume (1.9). There is an L0 = L0(d) such that
for L ≥ L0, the limit in (1.7) exists for every cylinder event E ∈ F0. Moreover, Q∞ extends to a
probability measure on the σ-algebra F , and Q∞ = P∞.

We conjecture that the measure P(x)
n defined by

P(x)
n (E) =

1

τn(x)
P(E ∩ {(0, 0) −→ (x, n)}) (1.10)

converges to the IIC measure P∞ of Theorem 1.1, for each fixed x ∈ Zd. We are not able to prove
this, without some strengthening of the local central limit theorem of [13, 14]. Some intuition that
supports both this conjecture and the conjecture that P∞ = Q∞, in general dimensions, is given
near the beginning of Section 3.1.

Of the possible definitions of the incipient infinite cluster for oriented percolation, we find
P∞ the easiest to work with and the most closely related to the work of [14] connecting critical
oriented percolation and super-Brownian motion. For example, if we let E be the event that
(0, 0) −→ (yi, mi) (i = 1, . . . , s), then the right side of (1.3) involves the probability that the
origin is connected to (x, n), as well as to (yi, mi) (i = 1, . . . , s). The scaling of such (s + 2)-point
functions was shown in [14] to be described by related quantities for the canonical measure of
super-Brownian motion, for d > 4, p = pc, and L sufficiently large. We will use this scaling in
establishing the properties of the IIC measure stated in the following section.

The asymptotic formula (1.9) is belived to fail in low dimensions, and our methods do not apply
at all for d ≤ 4. Nevertheless, we expect that P∞ and Q∞ exist and are equal in all dimensions.

4



1.3 Properties of the IIC measure

The Hausdorff dimension of the connected cluster of the origin under the IIC is believed to equal
4 almost surely, for d + 1 > 4 + 1. The following theorem provides a weaker statement, indicating
a 4-dimensional aspect to the IIC. In order to be able to state the result, we let

C(0, 0) = {(y, m) ∈ Zd × Z+ : (0, 0) −→ (y, m)} (1.11)

denote the connected cluster of the origin, and let

DR = E∞
[
#{(y, m) ∈ C(0, 0) : |y| ≤ R}

]
(1.12)

denote the expected number of sites in the cluster of the origin that are at most a distance R away
from the origin, under P∞.

Theorem 1.3. Let d + 1 > 4 + 1 and p = pc. There are L0 = L0(d) and Ci = Ci(L, d) > 0 such
that for L ≥ L0,

C1R
4 ≤ DR ≤ C2R

4. (1.13)

In Section 5.1, where Theorem 1.3 is proved, we will also define the r-point functions of P∞
and obtain results concerning their asymptotic behaviour.

For our next property of P∞, we let

Nm = #{y ∈ Zd : (0, 0) −→ (y, m)} (1.14)

denote the number of sites at time m to which the origin is connected. We recall that the size-biased
exponential random variable with parameter λ has density

f(x) = λ2xe−λx (x ≥ 0). (1.15)

The following theorems describe the distribution of Nm under P∞ and Qm. The constants A and
V appearing in their statements are finite positive constants arising in the scaling of the 2- and 3-
point functions [14] (see Theorem 4.1 below), while B is the constant in (1.9). The three constants
A, V, B depend on d and L.

Theorem 1.4. Let d + 1 > 4 + 1 and p = pc. There is an L0 = L0(d) such that for L ≥ L0,

lim
m→∞E∞

[(Nm

m

)l
]

=
(A2V

2

)l
(l + 1)! (l = 1, 2, . . .). (1.16)

Consequently, under P∞, m−1Nm converges weakly to a size-biased exponential random variable
with parameter λ = 2/(A2V ).

Theorem 1.5. Let d + 1 > 4 + 1 and p = pc. Assume that (1.9) holds. Then

B =
AV

2
. (1.17)

In addition, there is an L0 = L0(d) such that for L ≥ L0,

lim
m→∞EQm

[(Nm

m

)l
]

=
(A2V

2

)l
l! (l = 1, 2, . . .). (1.18)

Consequently, under Qm, m−1Nm converges weakly to an exponential random variable with param-
eter λ = 2/(A2V ).
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The identity (1.17), which holds under the assumption (1.9), expresses a relation between the
three constants B, A and V . It is shown in [14] that A and V both equal 1 +O(L−d), and hence
(1.17) implies that B = 1

2
+O(L−d).

Under the assumption that (1.9) holds, it follows from Theorems 1.4–1.5 that m−1Nm converges
to a size-biased exponential random variable under Q∞ = P∞, and to an exponential random
variable under Qm. A similar contrast can be proved for the behaviour of m−1Nm for critical
branching random walk (in general dimensions, with an offspring distribution with finite variance),
where again the size-biased exponential distribution occurs when the branching random walk is
conditioned to survive to infinite time, and the exponential distribution occurs when the branching
random walk is conditioned to survive until time m. This is consistent with the general philosophy
that oriented percolation behaves like branching random walk above the upper critical dimension
4 + 1, as already noted at the end of Section 1.1.

Finally, we remark that we will give a formula for P∞(E) in terms of the lace expansion in
(2.29) below, when E ∈ F0 is a cylinder event.

1.4 Organisation

The remainder of this paper is organised as follows. In Section 2 we prove Theorem 1.1, and in Sec-
tion 3 we prove Theorem 1.2. In Section 4, we recall the main result of [14] linking critical oriented
percolation and super-Brownian motion, and derive some elementary properties of the moment
measures of the canonical measure of super-Brownian motion. Using the results of Section 4, we
then prove Theorems 1.3–1.5 in Section 5.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 uses a modification of the Nguyen–Yang lace expansion for oriented
percolation [20, 21] (see also [14, Section 3]), to derive an expansion for Pn(E) of (1.3). We derive
the modified expansion in Section 2.1, and use it to prove Theorem 1.1 in Section 2.2.

2.1 The lace expansion for Pn

Throughout this section, we fix p ∈ [0, ‖D‖−1
∞ ] and m ≥ 1.

A cylinder event E is an event that depends on the occupation status of a finite set of bonds
B(E). Let Em denote the set of cylinder events E for which the maximum time appearing in B(E)
is m, and fix E ∈ Em. Given a bond configuration, we say that a bond b is pivotal for an increasing
event F if F occurs when b is made to be occupied and F does not occur when b is made to be
vacant. For E ∈ Em, n ≥ m and 0 ≤ t ≤ n, we define

τn,t(x; E) = P(E ∩ {(0, 0) −→ (x, n) with exactly t occupied pivotal bonds}), (2.1)

τn(x; E) = P(E ∩ {(0, 0) −→ (x, n)}) =
n∑

t=0

τn,t(x; E), (2.2)

where the pivotal bonds are pivotal for the event F = {(0, 0) −→ (x, n)}. Then (1.3) reads

Pn(E) =
1

τn

∑
x∈Zd

τn(x; E). (2.3)
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We write (x, n) =⇒ (y, m) to denote the event that (x, n) is doubly-connected to (y, m), i.e.,
the event that there exist at least two bond-disjoint occupied paths from (x, n) to (y, m), or
(x, n) = (y, m). Given a bond b = ((x, n), (y, n + 1)), let b̄ = (y, n + 1) be the “top” of b, and
b = (x, n) be the “bottom” of b. We will write b̄ < b̄′ to mean that the temporal component of b̄
is less than that of b̄′, and, in an abuse of notation, we write b̄ ≤ n when the temporal component
of b̄ is less than or equal to n. For t ≥ 1, let

Bt(n) = {~b = (b1, . . . , bt) : 0 < b̄1 < · · · < b̄t ≤ n} (2.4)

denote the ordered vectors of t bonds, between times 0 and n. Given x ∈ Zd and ~b ∈ Bt(n), we
define b̄0 = 0, bt+1 = (x, n), and

Tt(~b, (x, n)) =


{(0, 0) =⇒ (x, n)} (t = 0)⋂t

i=1{bi occupied}⋂t
j=0{b̄j =⇒ bj+1} (1 ≤ t ≤ n).

(2.5)

Note that if Tt(~b, (x, n)) occurs, then the only possible candidates for occupied pivotal bonds for

the event (0, 0) → (x, n) are the elements of ~b.
For 0 ≤ s < t, we define the random variables

K[s, t] =
∏

s≤i<j≤t

(1 + Uij), Uij = −I [̄bi =⇒ bj+1], (2.6)

and we set K[s, s] = K[s + 1, s] = 1. The product in (2.6) is 0 or 1. If K[0, t] = 1 and Tt(~b, (x, n))
occurs, then the occupied pivotal bonds for the event (0, 0) → (x, n) are precisely the elements of
~b. Therefore (2.1) becomes

τn,t(x; E) =


P(E ∩ {(0, 0) =⇒ (x, n)}) (t = 0)∑

~b∈Bt(n) E
[
I[E]I[Tt(~b, (x, n))]K[0, t]

]
(1 ≤ t ≤ n).

(2.7)

The identity (2.7) can be understood by regarding the cluster of the origin as a “string of sausages”

as depicted in Figure 1, where the “string” is specified by the bonds ~b. The event E occurs before
time m.

The lace expansion involves a decomposition of K[0, t]. To describe this, we need some standard
terminology [6, 19]. A graph on an interval [s, t] is a set Γ = {i1j1, . . . , iMjM} of edges, with
s ≤ il < jl ≤ t for each l. We say that a graph Γ is connected on [s, t] if

⋃
ij∈Γ[i, j] = [s, t]. We

denote the set of connected graphs on [s, t] by G[s, t], and let

J [s, t] =
∑

Γ∈G[s,t]

∏
ij∈Γ

Uij. (2.8)

We set J [0, 0] = 1. Expansion of the product in (2.6) gives a sum over all graphs, and a partition
of this sum according to the support of the connected component of m leads to the decomposition

K[0, t] =
t∑

s=0

M [0, s; m]K[s + 1, t] (m ∈ [0, n] fixed, t ≥ 0), (2.9)
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Figure 1: Schematic depiction of a configuration contributing to τn(x; E) as a “string of sausages.”
The event E ∈ Em is required to occur.

where

M [0, s; m] =
s∑

i=0

K[0, i− 1]J [i, s]I [̄bi ≤ m ≤ bs+1]. (2.10)

See [24, (2.10)] or [19, Lemma 5.2.5] for more details on (2.9)–(2.10) in the case of a slightly
different definition of graph connectivity. For l ≥ m, we define

ϕl,s(v; E) =


P(E ∩ {(0, 0) =⇒ (v, l)}) (s = 0)∑

~b∈Bs(l) E
[
I[E]I[Ts(~b, (v, l))]M [0, s; m]

]
(1 ≤ s ≤ l)

(2.11)

with bs+1 = (v, l), and

ϕl(E) =
∑
v∈Zd

l∑
s=0

ϕl,s(v; E). (2.12)

Although it is not explicit in the notation, ϕl,s(v; E) and ϕl(E) depend on m by definition. In
particular, we are restricting to E ∈ Em.

The following lemma relates τn,t(x; E) and ϕl,s(u; E).

Lemma 2.1. For E ∈ Em, n ≥ m, and 0 ≤ t ≤ n,

τn,t(x; E) =
∑
(u,v)

n−1∑
l=m

t−1∑
s=0

ϕl,s(u; E)pD(v − u)τn−l−1,t−s−1(x− v) + ϕn,t(x; E), (2.13)

where the first term on the right side is interpreted as zero when t = 0.

Proof. The proof is a standard lace expansion argument. For t = 0, (2.13) follows immediately
from (2.7) and (2.11). For t ≥ 1, we substitute (2.9) into (2.7). The s = t term of (2.9) gives rise
to the second term on the right side of (2.13). It therefore remains to show that

∑
~b∈Bt(n)

t−1∑
s=0

E
[
I[E]I[Tt(~b, (x, n))]M [0, s; m]K[s + 1, t]

]
(2.14)
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is equal to the first term on the right side of (2.13). For this, given ~b and s, we decompose the
random variables appearing in (2.14) into the three factors:

I[E]I[
⋂s

r=1{br occupied}⋂s
r=0{b̄r =⇒ br+1}]M [0, s; m], (2.15)

{bs+1 occupied}, (2.16)

I[
⋂t

r=s+2{br occupied}⋂t
r=s+1{b̄r =⇒ br+1}]K[s + 1, t]. (2.17)

These random variables depend on bonds below bs+1, between bs+1 and b̄s+1, and above b̄s+1,
respectively. Recalling (2.7) and (2.11), we see that the expectation factors to give the first term
on the right side of (2.13). In (2.13), l corresponds to the temporal component of bs+1, while u
and v are the lower and upper spatial components of bs+1.

Summation over t = 0, . . . , n and x ∈ Zd in (2.13) gives

∑
x∈Zd

τn(x; E) =
n−1∑
l=m

ϕl(E)pτn−l−1 + ϕn(E). (2.18)

With (2.3), this gives the expansion

Pn(E) =
1

τn

[
n−1∑
l=m

ϕl(E)pτn−l−1 + ϕn(E)

]
. (2.19)

Next, we rewrite ϕl(E) in terms of laces. A lace on [k, l] is an element of G[k, l] such that the
removal of any edge will result in a disconnected graph. Given a connected graph Γ ∈ G[k, l], we
define the lace LΓ ⊂ Γ to be the graph consisting of edges s1t1, s2t2, . . . given by

t1 = max{t : kt ∈ Γ}, s1 = k,

ti+1 = max{t : ∃s ≤ ti such that st ∈ Γ}, si+1 = min{s : sti+1 ∈ Γ}. (2.20)

It is not difficult to check that LΓ is indeed a lace. Given a lace L, let C(L) denote the set of
compatible edges, i.e., the set of edges ij such that LL∪{ij} = L. Define L(N)[k, l] to be the set of
laces on the interval [k, l] consisting of exactly N edges. It is then a standard fact [6, 19] that

J [i, j] =
∞∑

N=1

(−1)NJ (N)[i, j] (j > i ≥ 0), (2.21)

with
J (N)[i, j] =

∑
L∈L(N)[i,j]

∏
st∈L

(−Ust)
∏

s′t′∈C(L)

(1 + Us′t′). (2.22)

For l ≥ m, we define

ϕ(0)

l (E) =
∑
v∈Zd

P(E ∩ {(0, 0) =⇒ (v, l)})

+
m∑

s=1

∑
v∈Zd

∑
~b∈Bs(l)

E
(
I[E]I[Ts(~b, (v, l))]K[0, s− 1]I [̄bs ≤ m ≤ bs+1]

)
, (2.23)
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which combines the first line of (2.11) for s = 0 with the contribution to the second line of (2.11)
due to i = s in the definition of M [0, s; m] in (2.10). (The upper limit of the sum over s in (2.23)
can be taken to be m rather than l in (2.23) because the restriction b̄s ≤ m can occur only when
s ≤ m.) For N ≥ 1 and l ≥ m, we also define

ϕ(N)

l (E) =
l∑

s=1

∑
v∈Zd

∑
~b∈Bs(l)

E
(
I[E]I[Ts(~b, (v, l))]

s−1∑
i=0

K[0, i− 1]J (N)[i, s]I [̄bi ≤ m ≤ bs+1]
)
. (2.24)

It follows from (2.10)–(2.12) and (2.21) that

ϕl(E) =
∞∑

N=0

(−1)Nϕ(N)

l (E). (2.25)

Equations (2.19) and (2.23)–(2.25) constitute the lace expansion for Pn.

2.2 Estimates on the lace expansion for Pn

Throughout this section, we fix p = pc. It follows from [14, Theorem 1.1(a)] that, under the
hypotheses of Theorem 1.1, there is an A ∈ (0,∞) such that

lim
n→∞ τn = A. (2.26)

To prove Theorem 1.1, we will use (2.19), (2.26) and the following lemma. We write β = L−d, and
recall from [14] that pc = 1 +O(β) for d + 1 > 4 + 1.

Lemma 2.2. Let d + 1 > 4 + 1, p = pc and E ∈ Em. There are K = K(d) and L0 = L0(d) such
that for L ≥ L0,

|ϕl(E)| ≤ Kmβ(l −m + 1)−d/2 (l ≥ m + 1). (2.27)

Proof of Theorem 1.1 subject to Lemma 2.2. Let E ∈ Em. By (2.19),

P∞(E) = lim
n→∞Pn(E) = lim

n→∞
1

τn

[
n−1∑
l=m

ϕl(E)pcτn−l−1 + ϕn(E)

]
. (2.28)

It therefore follows from (2.26), Lemma 2.2 and the dominated convergence theorem that

P∞(E) = pc

∞∑
l=m

ϕl(E) (E ∈ Em). (2.29)

This proves existence of and gives a formula for the limit (1.4), for every cylinder event E ∈ F0.
To complete the proof of Theorem 1.1, it remains to show that P∞ can be extended to a

probability measure on the σ-algebra F , and that the origin is almost surely connected to infinity
under this extension. The extension of P∞ to F follows from Kolmogorov’s extension theorem
(see e.g. [23]), since the consistency hypothesis of Kolmogorov’s extension theorem is satisfied by
definition of Pn(E) and P∞(E) in (1.3)–(1.4). In addition, Pn((0, 0) −→ N) = 1 for every n ≥ N ,
so P∞((0, 0) −→ N) = 1 for every N ≥ 1, and hence P∞((0, 0) −→ ∞) = limN→∞ P∞((0, 0) −→
N) = 1.
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•

(x,n)

Π(0)
n (x) =

(x,n)

Π(1)
n (x) =

Π(2)
n (x) = + +

(0,0)(0,0)(0,0)

(0,0) (0,0)

(x,n) (x,n) (x,n)

+

(0,0)

(x,n)

Figure 2: Schematic depiction of disjoint connections required by Π(N)
n (x) (N = 0, 1, 2).

Proof of Lemma 2.2. Fix m, E ∈ Em, and l ≥ m + 1. The proof involves a comparison of ϕ(N)

l (E)
with quantities arising in the Nguyen–Yang lace expansion for the two-point function [20]. We use
the notation and results of [14, Sections 3.2 and 4.4]; this notation is not identical to that of [20].
Quantities Π(N)

n (x) are defined in [14, Sections 3.2] by

Π(N)

n (x) =




P((0, 0) =⇒ (x, n))− δx,0δn,0 (N = 0)∑n
s=1

∑
~b∈Bs(n) E

[
I[Ts(~b, (x, n))]J (N)[0, s]

]
(N ≥ 1).

(2.30)

Disjoint connections implied by the right side of (2.30) are depicted in Figure 2. We will use the
fact, proved in [14, (4.57)], that∑

x∈Zd

Π(N)

n (x) ≤ CNβN∨1(n + 1)−d/2 (N ≥ 0) (2.31)

assuming the hypotheses of Theorem 1.1. Our assumption that d > 4 is used only in invoking
(2.31).

We consider first the case N = 0. Recall the definition of ϕ(0)

l (E) in (2.23). Because I[E] ≤
1, the first term on the right side of (2.23) is bounded above by

∑
v Π(0)

l (v), which is at most
Cβ(l + 1)−d/2 by (2.31). The second term on the right side of (2.23) is bounded above by

m∑
s=1

∑
v∈Zd

∑
~b∈Bs(l)

E
(
I[Ts(~b, (v, l))]K[0, s− 1]I [̄bs ≤ m ≤ bs+1]

)

=
∑

w,y,v∈Zd

m−1∑
a=0

τa(y)pcD(w − y)Π(0)

l−a−1(v − w) =
m−1∑
a=0

τapc

∑
v∈Zd

Π(0)

l−a−1(v), (2.32)

where we have factored the expectation as in the proof of Lemma 2.1, and where bs in the first
line corresponds to (y, a) in the second line. Therefore, letting C denote a generic constant and
using (2.26) and (2.31), we get

ϕ(0)

l (E) ≤ Cβ(l + 1)−d/2 + Cβ
m−1∑
a=0

(l − a)−d/2 ≤ Cβm(l −m + 1)−d/2. (2.33)

11



We next consider the case N ≥ 1. Applying the inequality I[E] ≤ 1 in (2.24), we get

ϕ(N)

l (E) ≤
l∑

s=1

∑
v∈Zd

∑
~b∈Bs(l)

E
(
I[Ts(~b, (v, l))]

s−1∑
i=0

K[0, i− 1]J (N)[i, s]I [̄bi ≤ m ≤ bs+1]
)
. (2.34)

We may then factor the random variables on the right side into factors depending on bonds below
bi, between bi and b̄i, and above b̄i, respectively, as in the proof of Lemma 2.1. This leads to

ϕ(N)

l (E) ≤ ∑
v∈Zd

Π(N)

l (v) +
m−1∑
a=0

τapc

∑
v∈Zd

Π(N)

l−a−1(v) (N ≥ 1), (2.35)

where the terms on the right side correspond to the contributions to (2.34) due to i = 0 and i > 0,
respectively. Applying (2.31) and (2.26), we get

ϕ(N)

l (E) ≤ CNβN(l + 1)−d/2 + C1C
NβN

m−1∑
a=0

(l − a)−d/2

≤ CN
1 βNm(l −m + 1)−d/2 (N ≥ 1). (2.36)

Combination of (2.25), (2.33) and (2.36) completes the proof. The factor βN permits the sum over
N to be performed, for β sufficiently small.

3 Proof of Theorem 1.2

The proof of Theorem 1.2 uses a lace expansion for Qn(E) defined in (1.6). This expansion is
again a modification of the Nguyen–Yang lace expansion for oriented percolation, but is different
from the expansion of Section 2.1. We derive the modified expansion in Section 3.1, and use it to
prove existence of the measure Q∞ in Section 3.2. We will derive the same formula for Q∞(E) as
was obtained in (2.29) for P∞(E), thereby proving Q∞ = P∞.

3.1 The lace expansion for Qn

Throughout this section, we fix p ∈ [0, ‖D‖−1
∞ ] and m ≥ 0. Recall from (1.5), (1.6) and (1.8) that

Sn = {(0, 0) −→ n}, θn = P(Sn), and Qn(E) = θ−1
n P(E ∩Sn). For E ∈ Em, n ≥ m, and 0 ≤ t ≤ n,

we define

θn,t(E) = P(E ∩ {(0, 0) −→ n with exactly t occupied pivotal bonds}), (3.1)

θn(E) = P(E ∩ {(0, 0) −→ n}) =
n∑

t=0

θn,t(E), (3.2)

where the pivotal bonds are pivotal for the event Sn. Then (1.6) reads

Qn(E) =
θn(E)

θn
. (3.3)

We will obtain formulas for θn,t(E) and Qn(E) analogous to (2.7) and (2.19). We again regard the
cluster of the origin in a configuration contributing to θn(E) as a string of sausages, but now the
top sausage may be open at the top, as depicted in Figure 3.

12



n

E




0

m

0

Figure 3: Schematic depiction of a configuration contributing to θn(E) as a string of sausages,
with the top sausage open at the top. The event E ∈ Em is required to occur.

Before beginning the expansion, with the help of Figures 1 and 3 we provide some intuition
supporting the conjecture that Qn, Pn and P(x)

n of (1.10) all converge to the same limiting measure,
in arbitrary dimensions. The basic idea is that the number of pivotal bonds for the event {(0, 0) −→
(x, n)} should diverge with n, so that the top sausage in Figure 1 begins near n, far beyond m.
In the limit n →∞, the x-dependence inherent in locating the top of the top sausage in Figure 1
at (x, n) should be of no importance for an event E ∈ Em with m fixed. Thus we expect the same
limit whether x is fixed as in P(x)

n or summed over as in Pn. Similarly, the number of pivotal bonds
for the event Sn should diverge with n, so that the top sausage in Figure 3 begins far above m. In
the limit n →∞, the fact that the top sausage is open, rather than closed at some (x, n), should
be irrelevant for an event E ∈ Em. This supports the statement that Q∞ = P∞.

To begin to set up the expansion, we let (w, k) =⇒ n denote the event that there exist x, y ∈ Zd

with bond-disjoint paths from (w, k) to (x, n) and from (w, k) to (y, n). Given t > 0 and ~b ∈ Bt(n),
we again set b̄0 = (0, 0) and bt+1 = n. We define

U ′
ij(t) = Uij (0 ≤ i < j ≤ t− 1), U ′

it(t) = −I [̄bi =⇒ n] (0 ≤ i ≤ t− 1). (3.4)

As in (2.6), (2.8) and (2.10), for 0 ≤ i ≤ j ≤ t we define

K ′
t[i, j] =

∏
i≤i′<j′≤j

(1 + U ′
i′j′(t)), J ′

t[i, j] =
∑

Γ∈G[i,j]

∏
i′j′∈Γ

U ′
i′j′(t), (3.5)

and

M ′
t [0, s; m] =

s∑
i=0

K ′
t[0, i− 1]J ′

t[i, s]I [̄bi ≤ m ≤ bs+1]. (3.6)

For ~b ∈ Bt(n), we define

Tt(~b, n) =


{(0, 0) =⇒ n} (t = 0)⋂t

i=1{bi occupied}⋂t−1
j=0{b̄j =⇒ bj+1}

⋂{b̄t =⇒ n} (1 ≤ t ≤ n).
(3.7)
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As in (2.7), (3.1) then becomes

θn,t(E) =


P(E ∩ {(0, 0) =⇒ n}) (t = 0)∑

~b∈Bt(n) E
[
I[E]I[Tt(~b, n)]K ′

t[0, t]
]

(1 ≤ t ≤ n).
(3.8)

For 0 ≤ s ≤ t, we define

φl,s(E) =


P(E ∩ {(0, 0) =⇒ n}) (s = 0)∑

~b∈Bs(l)
E
[
I[E]I[Ts(~b, l)]M

′
t [0, s; m]

]
(1 ≤ s ≤ l).

(3.9)

It then follows exactly as in the proof of Lemma 2.1 that

θn,t(E) =
n−1∑
l=m

t−1∑
s=0

φl,s(E)pθn−l−1,t−s−1 + φn,t(E) (0 ≤ t ≤ n), (3.10)

where the first term on the right side is interpreted as zero when t = 0. Since U ′
ij(t) = Uij when

0 ≤ i < j < t by (3.4), it follows from (2.6), (2.8), (2.10)–(2.11), (3.5)–(3.6) and (3.9) that

φl,s(E) = ϕl,s(E) (0 ≤ s ≤ t− 1). (3.11)

Therefore, φl,s in (3.10) can be replaced with ϕl,s, except φn,t(E). Summation of (3.10) over
t = 0, . . . , n, after this replacement, then gives

θn(E) =
n−1∑
l=m

ϕl(E)pθn−l−1 + φn(E), (3.12)

with

φn(E) =
n∑

t=0

φn,t(E). (3.13)

Combining (3.3) with (3.12), we get

Qn(E) =
1

θn

[
n−1∑
l=m

ϕl(E)pθn−l−1 + φn(E)

]
, (3.14)

which is analogous to (2.19).
Finally, we rewrite the expansion for φn(E) in terms of laces, as in (2.23)–(2.25). This yields

φn(E) =
∞∑

N=0

(−1)Nφ(N)

n (E) (3.15)

with

φ(0)

n (E) = Pp(E ∩ {(0, 0) =⇒ n})
+

n∑
t=1

∑
~b∈Bt(n)

E
(
I[E]I[Tt(~b, n)]Kt[0, t− 1]I [̄bt ≤ m]

)
, (3.16)

φ(N)

n (E) =
n∑

t=1

∑
~b∈Bt(n)

E
(
I[E]I[Tt(~b, n)]

t−1∑
i=0

Kt[0, i− 1]J (N)

t [i, t]I [̄bi ≤ m]
)

(N ≥ 1). (3.17)

Here, J (N)

t [i, t] is obtained after replacing Uij by U ′
ij(t) in (2.22). Equations (3.14)–(3.17), in

combination with (2.23)–(2.25), constitute the lace expansion for Qn.
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3.2 Estimates on the lace expansion for Qn

Throughout this section, we fix p = pc. To prove Theorem 1.2, we will use (1.9), (3.14) and the
following lemma.

Lemma 3.1. Let d + 1 > 4 + 1, p = pc and E ∈ Em. Assume (1.9). There is an L0 = L0(d) such
that for L ≥ L0,

lim
n→∞

φn(E)

θn
= 0. (3.18)

Proof of Theorem 1.2 subject to Lemma 3.1. Let E ∈ Em. By (3.14),

Q∞(E) = lim
n→∞Qn(E) = lim

n→∞
1

θn

[ n−1∑
l=m

ϕl(E)pcθn−l−1 + φn(E)
]
. (3.19)

The second term vanishes in the limit, by Lemma 3.1. Given a small a > 0, we decompose the
first term as

bn1−ac∑
l=m

ϕl(E)pc
θn−l−1

θn

+
n−1∑

l=bn1−ac+1

ϕl(E)pc
θn−l−1

θn

. (3.20)

Using Lemma 2.2 to bound ϕl(E) and (1.9) to bound the ratio of survival probabilities, we find
that the second term in (3.20) is bounded above by

Kmβ
n−1∑

l=bn1−ac+1

(l −m + 1)−d/2O(n), (3.21)

which vanishes in the limit n →∞ when d > 4 and a is sufficiently small. Similarly, the first term
in (3.20) can be analysed using Lemma 2.2, (1.9) and the dominated convergence theorem. This
leads to the conclusion that

Q∞(E) = pc

∞∑
l=m

ϕl(E). (3.22)

Comparing with the formula (2.29) for P∞(E), we see that the limit defining Q∞(E) exists for
every cylinder event E, and that it is equal to P∞(E). In view of Theorem 1.1, this proves
Theorem 1.2.

Proof of Lemma 3.1. The proof is somewhat technical. We start by bounding φ(0)
n (E), defined

in (3.16). In all our estimates, we will use I[E] ≤ 1. The first term on the right side of (3.16)
is bounded above by θ2

n, via the BK inequality. The second term on the right side of (3.16) is
bounded above by

m−1∑
a=0

∑
u,v∈Zd

P
(
(0, 0) −→ (u, a) −→ (v, a + 1) =⇒ n

)
, (3.23)

where ((u, a), (u, a + 1)) represents the bond bt. By the BK inequality, this is bounded above by∑m−1
a=0 τapcθ

2
n−a−1, and therefore, using (2.26) and the monotonicity of θn, we get

φ(0)
n (E)

θn
≤ θn + Cm

θ2
n−m

θn
. (3.24)
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By (1.9), this goes to zero as n →∞.
Next we bound φ(N)

n (E) for N ≥ 1, defined in (3.17). For N ≥ 1, let

Ψ(N)

n =
n∑

t=1

∑
~b∈Bt(m)

E
[
I[Tt(~b, n)]J (N)

t [0, t]
]
, (3.25)

where, as explained under (3.17),

J (N)

t [0, t] =
∑

L∈L(N)[0,t]

∏
ij∈L

(−U ′
ij(t))

∏
i′j′∈C(L)

(1 + U ′
i′j′(t)). (3.26)

Using I[E] ≤ 1 in (3.17), and then factoring as in the proof of Lemma 2.1, we obtain the estimate

φ(N)

n (E) ≤ Ψ(N)

n +
m−1∑
a=0

τapcΨ
(N)

n−a−1 ≤ Ψ(N)

n + C
m−1∑
a=0

Ψ(N)

n−a−1 ≤ C
m∑

a=0

Ψ(N)

n−a. (3.27)

Consider first the case N = 1. The unique lace in L(1)[0, t] is 0t, and hence J (1)

t [0, t] contains

a factor −U0t(t), which implies that 0 =⇒ n. The event Tt(~b, n) implies connections (0, 0) =⇒
b1 −→ b̄1 −→ n. Moreover, the factor 1 + U ′

1t(t) in the product over C(L) in J (1)

t [0, t] implies that
b̄1 is not doubly-connected to n. Thus Ψ(1)

n is bounded above by the probability of the disjoint
connections depicted in Figure 4. Using the BK inequality, we therefore get

Ψ(1)

n ≤
n∑

j=0

j∑
i=0

∑
x,y∈Zd

τj(x)τi(y)τj−i(x− y)θn−jθn−i ≤
n∑

j=0

θ2
n−j

j∑
i=0

∑
x,y∈Zd

τj(x)τi(y)τj−i(x− y), (3.28)

where we used the monotonicity of θn in the second inequality. The right side of (3.28) can be easily
bounded from above by using the methods and results of [14]. In fact, since ‖τn‖∞ ≤ K(n+1)−d/2

by [14, Theorem 1.1(c)], it follows from (2.26) that

Ψ(1)

n ≤
n∑

j=0

θ2
n−j

j∑
i=0

‖τj‖∞τiτj−i ≤ C
n∑

j=0

θ2
n−j(j + 1)−(d−2)/2. (3.29)

Using (1.9), we find that

Ψ(1)

n ≤ C
n∑

j=0

(n− j + 1)−2(j + 1)−(d−2)/2 ≤ C(n + 1)−(2∧(d−2)/2). (3.30)

Therefore, (1.9) and (3.27) yield

φ(1)
n (E)

θn
≤ Cn

m∑
a=0

(n− a + 1)−(2∧(d−2)/2) ≤ Cm2(n−m + 1)−(1∧(d−4)/2). (3.31)

The right side goes to zero as n →∞, when d > 4.
Before proceeding with N ≥ 2, it is worth noting that the sum

∑j
i=0

∑
x,y∈Zd τj(x)τi(y)τj−i(x−y)

in (3.28) can be bounded using another method from [14]. The above sum can be obtained from
the simpler sum

∑
x∈Zd τj(x)2 by replacing one factor τj(x) by τi(y)τj−i(x− y) and then summing
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0

n

0

Figure 4: Schematic depiction of disjoint connections required by Ψ(1)
n .

over y and i. The first part of this procedure is referred to in [14, Definition 4.1] as Construc-
tion 1λ(y, i), where λ labels the diagram line that is modified. According to [14, Lemma 4.6(a)], the
diagram obtained after Construction 1λ(y, i) followed by summation over y obeys the same bound
as the original diagram, up to a multiplicative constant. Thus, Construction 1λ(y, i) followed by
summation over y produces a diagram that is bounded by a constant multiple of the bound on∑

x∈Zd Π(0)

j (x), namely the bound C(j + 1)−d/2 of (2.31) (we have omitted the factor β from (2.31)
to allow for the possibility that j = 0). The bound (3.29) could thus be replaced by

Ψ(1)

n ≤
n∑

j=0

θ2
n−j

j∑
i=0

C(j + 1)−d/2 ≤ C
n∑

j=0

θ2
n−j(j + 1)−(d−2)/2, (3.32)

which yields the same conclusion as (3.29). In dealing with N ≥ 2, we will prefer the above method
using Construction 1λ(y, i), rather than the method of the previous paragraph. In (3.32), we have
bounded Ψ(1)

n using Π(0)

j . Similarly, for N ≥ 2, we will bound Ψ(N)
n using Π(N−1)

j with 0 ≤ j ≤ n.
Fix N ≥ 2. We begin with a decomposition of J (N)

t [0, t]. We write a lace L ∈ L(N)[0, t] in the
form L = {i1j1, . . . , iNjN}, with 0 = i1 < i2 < · · · < iN < t. We write L as L− ∪ {iN t}, where
L− ∈ L(N−1)[0, jN−1]. Let `(L−) = 1 if N = 2, and `(L−) = jN−2 if N ≥ 3. Then we may write

∑
L∈L(N)[0,t]

=
t−1∑

jN−1=1

∑
L−∈L(N−1)[0,jN−1]

jN−1−1∑
iN=`(L−)

. (3.33)

We make the decomposition

∏
ij∈L

(−U ′
ij(t)) = (−U ′

iN t(t))
∏

ij∈L−
(−Uij), (3.34)

and note that
C(L−) ∪ {iNr : iN < r < t} ⊂ C(L). (3.35)

Therefore

J (N)

t [0, t] ≤
t−1∑

jN−1=1

∑
L−∈L(N−1)[0,jN−1]

∏
ij∈L−

(−Uij)
∏

i′j′∈C(L−)

(1 + Ui′j′)

×
jN−1−1∑

iN=`(L−)

(−U ′
iN t(t))

∏
iN <r<t

(1 + UiN r). (3.36)
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n

0
0

Figure 5: Example of disjoint connections required by a configuration contributing to Ψ(3)
n .

Were it not for the dependence of the second line of (3.36) on L− through the lower limit
of summation over iN , we would be able to rewrite the sum over L− in the first line simply as
J (N−1)[0, jN−1]. The effect of the second line is twofold. First, the factor (−U ′

iN t(t)) ensures that

b̄iN =⇒ n. Second, together with the indicator I[Tt(~b, n)], the factor
∏

iN <r<t(1+UiNr) ensures that,
in addition to the disjoint connections implied by J (N−1)[0, jN−1] (leading to an upper bound by a
diagram Π(N−1)), there are additional disjoint connections bt −→ n and b̄iN −→ n that accomplish
the requirement that b̄iN =⇒ n. The required disjoint connections are depicted schematically in
Figure 5. These connections are the connections relevant for Π(N−1), together with a line from the
top of the diagram representing Π(N−1) to n and a line from a new vertex on Π(N−1) to n. Explicitly,
we have the upper bound

Ψ(N)

n ≤
n∑

j=0

j∑
i=0

∑
x,y∈Zd

Π̄(N−1)

j (x; (y, i))θn−iθn−j , (3.37)

where Π̄(N−1)

j (x; (y, i)) denotes the result of applying Construction 1λ(y, i) to a diagram bounding
Π(N−1)

j (x), followed by an appropriate sum over λ. By [14, Lemma 4.6(a)],
∑

x,y∈Zd Π̄(N−1)

j (x; (y, i))
obeys the bound on

∑
x∈Zd Π(N−1)

j (x) of (2.31), with a different constant. Since θn−i ≤ θn−j, it
follows that

Ψ(N)

n ≤
n∑

j=0

j∑
i=0

(Cβ)N−1(j + 1)−d/2θ2
n−j. (3.38)

Via (1.9), this gives

Ψ(N)

n ≤ (C ′β)N−1
n∑

j=0

(j + 1)−(d−2)/2(n− j + 1)−2 ≤ (C ′β)N−1(j + 1)−(2∧(d−2)/2), (3.39)

and the desired result follows from (3.27) as in (3.31), again using (1.9). The factor βN−1 permits
the summation over N to be performed, for β sufficiently small.
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4 Oriented percolation and super-Brownian motion

4.1 Convergence of moment measures

The oriented percolation r-point functions are defined, for ni ≥ 0 and xi ∈ Zd, by

τ (r)

n1,...,nr−1
(x1, . . . , xr−1) = Pp((0, 0) −→ (xi, ni) for each i = 1, . . . , r − 1). (4.1)

In particular, τ (2)
n (x) is the two-point function τn(x). Given m ∈ N, an absolutely summable

function f : Zmd → C, and ~k = (k1, . . . , km) with each kj ∈ (−π, π]d, we define the Fourier
transform

f̂(~k) =
∑

y1,...,ym∈Zd

f(~y)ei~k·~y, (4.2)

where ~k · ~y =
∑m

j=1 kj · yj. When m = 1, we write simply k in place of ~k.
In [14], the Fourier transforms of (4.1) are related, in an appropriate scaling limit, to the

Fourier transforms of the moment measures of the canonical measure of super-Brownian motion
[18, 22]. The canonical measure of super-Brownian motion is a certain scaling limit of critical
branching random walk, started from a single particle located at the origin. It is a Markov process
whose state Xt at time t > 0 is a finite non-negative measure on Rd. By definition, its lth moment
measure has Fourier transform

M̂ (l)

~t
(~k) = E

( ∫
Rdl

Xt1(dx1) · · ·Xtl(dxl)
l∏

j=1

eikjxj

)
, (4.3)

where ~t = (t1, . . . , tl) with each ti ∈ (0,∞), and ~k = (k1, . . . , kl) with each ki ∈ Rd.
The following result is a combination of [14, Theorems 1.1(a) and 1.2] with [14, (1.25)]. In its

statement, the parameter ε is fixed such that
∑

x∈Zd |x|2+2εD(x) ≤ CL2+2ε. The existence of such
an ε > 0 is part of the assumptions on D from [14] discussed in Section 1.2 and assumed in this
paper.

Theorem 4.1. Let d > 4, p = pc, δ ∈ (0, 1 ∧ ε ∧ d−4
2

), r ≥ 2, ~t = (t1, . . . , tr−1) ∈ (0,∞)r−1, and
~k = (k1, . . . , kr−1) ∈ R(r−1)d. There exist L0 = L0(d) and finite positive constants A = A(d, L),
v = v(d, L), V = V (d, L) (with L0, A, v, V independent of r) such that for L ≥ L0,

τ̂ (r)

bn~tc(
~k/
√

vσ2n) = A2r−3V r−2nr−2[M̂ (r−1)

~t
(~k) +O(n−δ)]. (4.4)

Rather than applying Theorem 4.1 directly, we use an auxiliary result that was derived in
[14] in the course of proving Theorem 4.1. Let n̄ denote the second largest component of ~n =
(n1, . . . , nr−1). In Section 5, we will use [14, (2.52)], which states that

τ̂ (r)

~n (~k/
√

vσ2n) = A(A2V )r−2nr−2
[
M̂ (r−1)

~n/n (~k) +O((n̄ + 1)−δ)
]

(r ≥ 3) (4.5)

holds uniformly in n ≥ n̄.
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4.2 The moment measures of super-Brownian motion

In Section 5, we will make use of elementary properties of the M̂ (l)

~t
(~k), which we now summarise.

For l = 1,
M̂ (1)

t (~k) = e−|k|
2t/2d. (4.6)

For l > 1, the M̂ (l)

~t
(~k) are given recursively by

M̂ (l)

~t
(~k) =

∫ t

0
dt M̂ (1)

t (k1 + · · ·+ kl)
∑

I⊂J1:|I|≥1

M̂ (i)

~tI−t
(~kI)M̂

(l−i)

~tJ\I−t
(~kJ\I), (4.7)

where i = |I|, J = {1, . . . , l}, J1 = J\{1}, t = mini ti, ~tI denotes the vector consisting of the
components ti of ~t with i ∈ I, and ~tI − t denotes subtraction of t from each component of ~tI [9].
The explicit solution to the recursive formula (4.7) can be found in [14, (1.25)]. For example,

M̂ (2)

t1,t2(k1, k2) =
∫ t1∧t2

0
dt e−|k1+k2|2t/2de−|k1|2(t1−t)/2de−|k2|2(t2−t)/2d. (4.8)

Equation (4.8) is a statement, in Fourier language, that mass arrives at given points (x1, t1), (x2, t2)
via a Brownian path from the origin that splits into two Brownian paths at a time chosen uniformly
from the interval [0, t1 ∧ t2]. The recursive formula (4.7) has a related interpretation for all l ≥ 2,
in which t is the time of the first branching. The sets I and J\I label the offspring of each of the
two particles after the first branching.

Lemma 4.2. (a) For k ∈ Rd,

M̂ (2)

1,1(0, k) = e−
|k|2
2d . (4.9)

(b) For l ≥ 0, t ≥ s and kj ∈ Rd,

M̂ (l+1)

t,s,...,s(0, k2, . . . , kl) = M̂ (l+1)

s,s,...,s(0, k2, . . . , kl). (4.10)

(c) For l ≥ 0,
M̂ (l+1)

t,...,t(~0) = tl2−l(l + 1)!. (4.11)

Proof. (a) This follows immediately from (4.8).

(b) The proof is by induction on l. For l = 0, both sides of (4.10) equal 1, by (4.6). For l ≥ 1, we
use (4.7) with ~t = (t, s, . . . , s) to obtain

M̂ (l+1)

t,s,...,s(0, k2, . . . , kl) =
∫ s

0
du M̂ (1)

u (k2 + · · ·+ kl)
∑

I⊂J1:|I|≥1

M̂ (i)

~tI−u
(~kI)M̂

(l−i)

~tJ\I−u
(~kJ\I). (4.12)

On the right side, all the arguments in ~tI −u and ~tJ\I −u are equal to s−u, except for one, which
is t− u. The distinguished time variable also has k1 = 0. Applying the induction hypothesis, we
get

M̂ (l+1)

t,s,...,s(0, k2, . . . , kl) =
∫ s

0
du M̂ (1)

u (k2 + · · ·+ kl)
∑

I⊂J1:|I|≥1

M̂ (i)

s−u,...,s−u(~kI)M̂
(l−i+1)

s−u,...,s−u(~kJ\I)

= M̂ (l+1)

s,s,...,s(0, k2, . . . , kl), (4.13)
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which advances the induction and proves (4.10).

(c) The proof is again by induction on l. For l = 0, (4.11) follows from (4.6). For l ≥ 1 we use
(4.7) and the induction hypothesis to obtain

M̂ (l+1)

~t
(~0) =

∫ t

0
ds

l∑
i=1

(
l

i

)
(t− s)i−12−(i−1)i!(t− s)l−i2−(l−i)(l − i + 1)!

= 2−(l−1)
l∑

i=1

(
l

i

)
i!(l − i + 1)!

∫ t

0
(t− s)l−1ds

= tl2−(l−1)(l − 1)!
l∑

i=1

(l − i + 1) = tl2−l(l + 1)!, (4.14)

which advances the induction and proves (4.11).

5 Proof of Theorems 1.3–1.5

5.1 Proof of Theorem 1.3

Before proving Theorem 1.3, we first derive upper and lower bounds on the IIC two-point function,
defined by

ρm(y) = P∞((0, 0) −→ (y, m)) = lim
n→∞

1

τn

∑
x∈Zd

τ (3)

n,m(x, y). (5.1)

In addition to the fact that τn → A by (2.26), we will use the fact that

sup
x∈Zd

τn(x) ≤ C(n + 1)−d/2 (5.2)

by [14, Theorem 1.1(c)].
Beginning with the upper bounds, we show that∑

y∈Zd

ρm(y) ≤ Cm, sup
y∈Zd

ρm(y) ≤ C(m + 1)−(d−2)/2. (5.3)

For the first bound in (5.3), we use the tree-graph bound [2] to obtain the estimate

τ (3)

n,m(x, y) ≤ ∑
z∈Zd

m∑
l=0

τl(z)τm−l(y − z)τn−l(x− z). (5.4)

Therefore, by (5.1) and (2.26),

ρm(y) ≤ C
∑
z∈Zd

m∑
l=0

τl(z)τm−l(y − z). (5.5)

Summing over y and again using (2.26), we get the first bound of (5.3). For the second bound in
(5.3), we apply (5.2) to either the first or the second factor on the right side of (5.5), according to
whether l ≥ m/2 or l ≤ m/2. This gives, as required,

sup
y∈Zd

ρm(y) ≤ C
m∑

l=0

(l ∨ (m− l))−d/2 ≤ C(m + 1)−(d−2)/2. (5.6)
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Continuing with the lower bounds, we show that there is a constant c > 0 such that∑
|y|≤√m

ρm(y) ≥ cm. (5.7)

To prove this, we note that, by (5.1),

ρ̂m(k) = lim
n→∞

1

τn

τ̂ (3)

n,m(0, k). (5.8)

We use (4.5) with (n1, n2) = (n, m), n̄ = m, and with n of (4.5) equal to m. Combining this with
Lemma 4.2(a,b), we get

lim
n→∞ τ̂ (3)

n,m(0,
k√

vσ2m
) = A(A2V )mM̂ (2)

n
m

,1(0, k)[1 +O(m−δ)] = A(A2V )me−
|k|2
2d [1 +O(m−δ)]. (5.9)

Therefore, using (5.8) and (2.26), we obtain

lim
m→∞

1

mA2V
ρ̂m(k/

√
vσ2m) = e−

|k|2
2d , (5.10)

and hence the discrete measure on Rd that assigns mass (mA2V )−1ρm(x) to x/
√

vσ2m (x ∈ Zd)
converges weakly to a Gaussian. This implies (5.7).

Proof of Theorem 1.3. For the upper bound on DR, we use the decomposition

DR =
∑
m

∑
|y|≤R

ρm(y) =
∑

m≤R2

∑
|y|≤R

ρm(y) +
∑

m>R2

∑
|y|≤R

ρm(y). (5.11)

By the first bound of (5.3), the first term is bounded above by C
∑

m≤R2 m = O(R4). By the
second bound of (5.3), the second term is bounded above by∑

m>R2

CRd sup
y∈Zd

ρm(y) ≤ CRd
∑

m>R2

(m + 1)−(d−2)/2 = O(R4). (5.12)

This proves the upper bound on DR.
For the lower bound on DR, we use that (5.7) implies

DR ≥ ∑
m≤R2

∑
|y|≤R

ρm(y) ≥ ∑
m≤R2

∑
|y|≤√m

ρm(y) ≥ ∑
m≤R2

cm ≥ 1

2
cR4. (5.13)

Finally, we make an observation about the scaling of the IIC r-point functions for general r,
although we will not need this. Let ~y = (y1, . . . , yr−1) and ~m = (m1, . . . , mr−1) with yi ∈ Zd,
mi ∈ Z+, and define the IIC r-point function by

ρ(r)

~m (~y) = P∞((0, 0) −→ (yi, mi) for all i = 1, . . . , r − 1). (5.14)

In particular, ρ(2)
m (y) is the same as ρm(y) of (5.1). The methods employed to prove (5.10) can also

be used to show that

lim
m→∞

1

(mA2V )r−1
ρ̂(r)

m~t
(~k/

√
vσ2m) = M̂ (r)

1,~t
(0, ~k), (5.15)

for all r ≥ 2, ~t = (t1, . . . , tr−1) ∈ (0, 1]r−1 and ~k ∈ Rd(r−1).
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5.2 Proof of Theorem 1.4

We first prove (1.16). Let l ≥ 1. By (1.3), (1.14) and (4.1), we have

EPn[N l
m] =

1

τn

∑
x∈Zd

∑
y1,...,yl∈Zd

P((0, 0) −→ (x, n), (0, 0) −→ (yi, m) for each i = 1, . . . , l)

=
1

τn
τ̂ (l+2)

n,m,...,m(~0). (5.16)

We take n ≥ m, and use (4.5) with r = l + 2, ~k = ~0, ~n = (n, m, . . . , m), and with n of (4.5) equal
to n̄ = m. This gives

τ̂ (l+2)

n,m,...,m(~0) = A(A2V )lml[M̂ (l+1)
n
m

,1,...,1(~0) +O(m−δ)]. (5.17)

Applying Lemma 4.2(b,c), we get

τ̂ (l+2)

n,m,...,m(~0) = A(A2V )lml[2−l(l + 1)! +O(m−δ)]. (5.18)

Combining (5.16) and (5.18), we find

EPn

[(Nm

m

)l]
=

A

τn

(A2V )l[2−l(l + 1)! +O(m−δ)]. (5.19)

Taking the limit n →∞, and using (2.26), we arrive at

E∞
[(Nm

m

)l]
= (A2V )l2−l(l + 1)! +O(m−δ), (5.20)

and hence at (1.16) after letting m →∞.
The distribution of the size-biased exponential random variable is determined by its moments,

since its moment generating function has a positive radius of convergence. It therefore follows from
the convergence of moments expressed by (1.16) that m−1Nm converges weakly to a size-biased
exponential random variable with parameter λ = 2/(A2V ) (see [4, Theorem 30.2]). This completes
the proof of Theorem 1.4.

5.3 Proof of Theorem 1.5

It follows from (1.6), (1.8), (1.14) and (4.1) that

EQm [N l
m] =

1

θm
τ̂ (l+1)

~m (~0), (5.21)

with ~m = (m, . . . , m). As in the proof of Theorem 1.4 we find, now also with the help of (1.9),
that

lim
m→∞EQm

[(Nm

m

)l
]

=
2B

AV
(A2V )l2−ll! (l = 1, 2, . . .). (5.22)

Let α = 2B/(AV ) and suppose for the moment that α = 1. Then (1.18) holds, and the right side
of (5.22) gives the moments of an exponential random variable with parameter λ = 2/(A2V ). It
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then follows as in the proof of Theorem 1.4 that m−1Nm converges to this exponential random
variable in distribution. To complete the proof, it suffices to show that α = 1. We first prove that
α ≤ 1 and then prove that α ≥ 1.

Proof that α ≤ 1. Since τ−1
m Nm has expectation 1 under P, we can define a new expectation by

E′
m[X] = E[τ−1

m NmX]. (5.23)

By definition of E′
m, (1.3) and (5.16),

E′
m

[(Nm

m

)l]
= EPm

[(Nm

m

)l]
=

1

mlτm
τ̂ (l+2)

m,m,...,m(~0). (5.24)

As in (5.20), it follows that the moments of m−1Nm under E′
m converge to those of a size-biased

exponential random variable with parameter λ = 2/(A2V ). Therefore, under this measure, m−1Nm

converges weakly to a size-biased exponential random variable. In particular, for real t, the moment
generating function E′

m

[
e−tNm

m

]
converges to that of a size-biased exponential distribution with

parameter λ, which is λ2

(λ+t)2
.

Let t ≥ 0. In terms of E′
m, we can rewrite the moment generating function of m−1Nm, under

Qm, as (recall (1.5)–(1.6) and (1.8))

EQm [e−tNm
m ] = 1− 1

m
EQm

[ ∫ t

0
Nme−s Nm

m ds
]

= 1− τm

mθm

∫ t

0
E′

m[e−s Nm
m

]
ds. (5.25)

By the dominated convergence theorem, together with (1.9) and (2.26), it follows from the identity
α = ABλ that

0 ≤ lim
m→∞EQm [e−tNm

m ] = 1−AB
∫ t

0

λ2

(λ + s)2
ds = 1− α + α

λ

λ + t
. (5.26)

By letting t →∞, we conclude from (5.26) that α ≤ 1.

Proof that α ≥ 1. Fix s > 0. By definition (recall (1.5)–(1.6)),

θbm(1+s)c = θmP(Sbm(1+s)c|Sm). (5.27)

Let n be any positive integer and let A ⊂ Zd be any finite set, and define

θn(A) = P(∃a ∈ A : (a, 0) −→ n) = 1− P(∀a ∈ A : (a, 0) −→/ n). (5.28)

Since, for any a ∈ Zd, {(a, 0) −→/ n} is a decreasing event, it follows from the FKG inequality that

θn(A) ≤ 1− (1− θn)|A|. (5.29)

Therefore, using n = bmsc and A = {a ∈ Zd : (0, 0) −→ (a, m)}, we have

θbm(1+s)c ≤ θmE
(
1− (1− θbmsc)Nm

∣∣∣Sm

)
= θm

{
1− EQm

(
(1− θbmsc)Nm

)}
, (5.30)
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and hence, by (1.9), for any η > 0 we have

1

B(1 + s)
= lim

m→∞mθbm(1+s)c ≤ 1

B

{
1− lim

m→∞EQm

(
(1− θbmsc)mNm

m

)}

≤ 1

B

{
1− lim

m→∞EQm

(
e−( 1

Bs
+η)Nm

m

)}
. (5.31)

With minor changes, the calculations leading to (5.26) can also be carried out for t = −iu with
u ∈ R. This yields

lim
m→∞EQm [eiu Nm

m ] = 1− α + α
λ

λ− iu
. (5.32)

It follows from (5.32) that m−1Nm under Qm converges in distribution to a random variable Y
having the property that P(Y = 0) = 1− α and that the distribution of Y conditional on Y > 0
is that of an exponential random variable with parameter λ. By (5.31), it follows that

1

B(1 + s)
≤ 1

B

{
1− E[e−( 1

Bs
+η)Y ]

}
=

α

B

{
1− E[e−( 1

Bs
+η)Y |Y > 0]

}
=

α

B

{
1− λ

λ + 1
Bs

+ η

}
. (5.33)

Now we let η ↓ 0 and s ↓ 0 to conclude that α ≥ 1. This completes the proof.
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tions. Birkhäuser, Basel, (1999).

[19] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, (1993).
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