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Abstract

This paper surveys the results of recent collaborations with Eric
Derbez and with Takashi Hara, which show that integrated super-
Brownian excursion (ISE) arises as the scaling limit of both lattice
trees and the incipient infinite percolation cluster, in high dimen-
sions. A potential extension to oriented percolation is also men-
tioned.

1 Introduction

This paper concerns lattice trees and percolation on Z
d. From the point

of view of statistical mechanics, one of the fundamental problems in the
study of these models is the construction and analysis of the scaling limit,
in which the lattice spacing goes to zero. Control of the scaling limit is
closely related to control of the model’s critical exponents. General features
of the scaling limit are beginning to emerge [1, 2], but much work remains
to be done. In particular, there is still no proof of the existence of a single
critical exponent for either model in low dimensions.

However, in high dimensions, there has been recent progress for both
models. This progress has relied on the fact that the scaling limits in
high dimensions turn out to involve integrated super-Brownian excursion
(ISE), a close relative of super-Brownian motion (SBM). SBM is a funda-
mental example of a measure-valued process, a class of objects that has
been intensively studied in the probability literature [9, 10, 23].
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2 SBM and ISE

We will not give a precise mathematical definition of super-Brownian mo-
tion here. Our goal in this section is to introduce the key functions asso-
ciated with ISE that will appear in the results for lattice trees and per-
colation. A more detailed description of SBM can be found in the article
by Cox, Durrett and Perkins in this volume [8], which describes how SBM
arises as the scaling limit also for the voter model and the contact process.

SBM can be constructed as an appropriate scaling limit of a critical
branching random walk on Z

d, originating from a single initial particle,
in the limit as the lattice spacing is shrunk to zero. Such a construction
is described in [8], and defines SBM as a remarkable Markov process in
which the state at any particular time is a random finite measure on R

d

representing the mass density of particles present at that time. The process
dies out in finite time. The entire family tree of SBM is a random finite
measure on R

d and is referred to as the historical process. For dimensions
d ≥ 4, it is almost surely supported on a subset of R

d having Hausdorff
dimension 4 [9, 25].

The mean measure of SBM at time t, which represents the mass density
at time t averaged over all family trees, is a deterministic measure that is
absolutely continuous with respect to Lebesgue measure in all dimensions
d ≥ 1. In fact, it is the probability measure on R

d with density

pt(x) =
1

(2πt)d/2
e−x2/2t. (2.1)

This density is the transition density for Brownian motion in R
d to travel

from 0 to x in time t.
ISE is the random measure on R

d obtained by conditioning the his-
torical process to be a probability measure on R

d. Alternately, it can be
constructed from critical branching random walk on n−1/4

Z
d, starting from

a single particle and conditional on a fixed size n for the total size of the
initial particle’s family tree up to extinction, in the limit n → ∞. The
law of ISE is a probability measure µISE on the space M1(R

d) consisting
of probability measures on R

d and equipped with the topology of weak
convergence. The mean of µISE is a deterministic probability measure on
R

d, which corresponds to averaging over all family trees resulting from the
initial particle, under the basic unit mass condition required by ISE. Define

a(2)(x, t) = te−t2/2pt(x). (2.2)

The mean ISE measure is absolutely continuous with respect to Lebesgue
measure in all dimensions d ≥ 1. Its density with respect to Lebesgue
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Figure 1: The shapes for m = 2, 3, 4, and examples of the 7!! = 7·5·3 = 105
shapes for m = 6. The shapes’ edge labellings are arbitrary but fixed.

measure is the function

A(2)(x) =
∫ ∞

0
a(2)(x, t)dt =

∫ ∞

0
te−t2/2pt(x)dt. (2.3)

The functions (2.2) and (2.3) are ISE two-point functions. A discussion
of higher point functions requires the notion of shape, which is defined as
follows. We start with an m-skeleton, which is a tree having m unlabelled
external vertices of degree 1 and m−2 unlabelled internal vertices of degree
3, and no other vertices. An m-shape is a tree having m labelled external
vertices of degree 1 and m− 2 unlabelled internal vertices of degree 3, and
no other vertices, i.e., an m-shape is a labelling of an m-skeleton’s external
vertices by the labels 0, 1, . . . , m−1. When m is clear from the context, we
will refer to an m-shape simply as a shape. For notational convenience, we
associate to each m-shape an arbitrary labelling of its 2m − 3 edges, with
labels 1, . . . , 2m − 3. This arbitrary choice of edge labelling is fixed once
and for all. Thus an m-shape σ is a labelling of an m-skeleton’s external
vertices together with a corresponding specification of edge labels. Let Σm

denote the set of m-shapes. There is a unique shape for m = 2 and m = 3,
and (2m − 5)!! distinct shapes for m ≥ 4 (see [14, (5.96)] for a proof). In
this notation, (−1)!! = 1 and (2j + 1)!! = (2j + 1)(2j − 1)!! for j ≥ 0.

Let m ≥ 2. Given a shape σ ∈ Σm, we associate to edge j (oriented
away from vertex 0) a nonnegative real number tj and a vector yj in R

d.
Writing ~y = (y1, . . . , y2m−3) and ~t = (t1, . . . , t2m−3), we define

a(m)(σ; ~y,~t) =

(
2m−3∑
i=1

ti

)
e−(
∑2m−3

i=1
ti)

2/2
2m−3∏
i=1

pti(yi) (2.4)

and
A(m)(σ; ~y) =

∫ ∞

0
dt1 · · ·

∫ ∞

0
dt2m−3 a(m)(σ; ~y,~t). (2.5)
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Then
∫

Rd(2m−3) A(m)(σ; ~y)d~y = 1/(2m− 5)!!, so the sum of this integral over

shapes σ ∈ Σm is equal to 1. Let ~k · ~y =
∑2m−3

j=1 kj · yj, with each kj ∈ R
d.

The Fourier integral transform Â(m)(σ;~k) =
∫

Rd(2m−3) A(m)(σ; ~y)ei~k·~yd~y is
given by

Â(m)(σ;~k) =
∫ ∞

0
dt1 · · ·

∫ ∞

0
dt2m−3 â(m)(σ;~k,~t), (2.6)

with

â(m)(σ;~k,~t) =

(
2m−3∑
i=1

ti

)
e−(
∑2m−3

i=1
ti)

2/2
2m−3∏
i=1

e−k2
i ti/2. (2.7)

The lth moment measure M (l) for ISE can be written in terms of A(l+1),
for l ≥ 1. This is a deterministic measure which is absolutely continu-
ous with respect to Lebesgue measure on R

dl. The first moment measure
M (1) has density A(2)(x). The second moment measure M (2) has density∫

A(3)(y, x1−y, x2 −y)ddy. In general, the density of M (l) at x1, . . . , xl, for
l ≥ 3, is given by integrating A(l+1)(σ; ~y) over R

d(l−1) and then summing
over the (2l − 3)!! shapes σ. Here ~y consists of integration variables yj

corresponding to the edges j on paths from vertex 0 to vertices of degree
3 in σ, and the other ya are fixed by the requirement that each external
vertex xi is given by the sum of the ye over the edges e connecting vertices
0 and i in σ. Thus, the integration corresponds to integrating over the l−1
internal vertices, with the l + 1 external vertices fixed at 0, x1, . . . , xl. For
example, the contribution to the density of M (3) due to σ1 of Figure 1 is∫

A(4)(σ1; y1, x1 − y1, y3, x2 − y1 − y3, x3 − y1 − y3)d
dy1d

dy3.

ISE and the functions (2.4) and (2.5) are further discussed in [5] (see
also [4, 11, 24]). A construction of ISE as the scaling limit of branching
random walk conditioned on the total size of the family tree, including a
derivation of these functions, is given in [6].

3 Generating functions

For our applications to lattice trees and percolation, it will be essential
to understand that the Fourier integral transforms of a(m) and A(m), m =
2, 3, 4, . . ., occur in the asymptotic behaviour of certain generating function
coefficients. This connection between ISE and generating functions was
pointed out in [11].

The relevant generating functions are defined as follows. For k ∈ R
d,
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define C
(2)
z,ζ (k) and c(2)

n,s(k) by

C
(2)
z,ζ (k) =

2

k2 + 23/2
√

1 − z + 2(1 − ζ)
=

∞∑
s,n=0

c(2)
n,s(k)znζs, |ζ |, |z| < 1,

(3.1)
where the square root has branch cut [1,∞) and is positive for real z < 1.
For m ≥ 2, given a shape σ ∈ Σm, to edge j we associate kj ∈ R

d and ζj ∈ C,

with |ζj| < 1. We write ~k = (k1, . . . , k2m−3) and ~ζ = (ζ1, . . . , ζ2m−3), and
define

C
(m)

z,~ζ
(σ;~k) =

2m−3∏
j=1

C
(2)
z,ζj

(kj) =
∞∑

s1,...,s2m−3=0

∞∑
n=0

c
(m)
n,~s (σ;~k)zn

2m−3∏
j=1

ζ
sj

j . (3.2)

We write b
(m)
~s (σ;~k) =

∑∞
n=0 c

(m)
n,~s (σ;~k) for the coefficient of

∏2m−3
j=1 ζ

sj

j in

C
(m)

1,~ζ
(σ;~k). Writing ~1 = (1, . . . , 1), we denote the coefficient of zn in

C
(m)

z,~1
(σ;~k) by c(m)

n (σ;~k) =
∑∞

s1,...,s2m−3=0 c
(m)
n,~s (σ;~k).

The coefficients b
(m)
~s (σ;~k) are easily identified from the fact that C

(2)
1,ζ (k)

is the sum of a geometric series in ζ , namely

C
(2)
1,ζ (k) =

2

k2 + 2(1 − ζ)
=

∞∑
s=0

1

(1 + k2/2)s+1
ζs. (3.3)

Therefore b
(m)
~s (σ;~k) =

∏2m−3
j=1 (1 + k2

j/2)−(sj+1). For tj ∈ [0,∞), the Fourier
transform of the Brownian transition density (2.1) then emerges as the
m = 2 case of the limit

lim
n→∞ b

(m)

b~tnc(σ;~kn−1/2) =
2m−3∏
j=1

e−k2
j tj/2. (3.4)

Here b~tnc denotes the vector with components btjnc.
For the ISE m-point function (2.5), we consider the generating function

C
(m)

z,~1
(σ;~k) =

∏2m−3
j=1 2(k2

j + 23/2
√

1 − z)−1. By Cauchy’s theorem,

c(m)
n (σ;~k) =

1

2πi

∮
Γ
C

(m)

z,~1
(σ;~k)

dz

zn+1
, (3.5)

where Γ is a circle centred at the origin with radius less than 1. By de-
forming the contour to the branch cut [1,∞) of the square root, it can be
shown that for any m ≥ 2, k ∈ R

d,

c(m)
n (σ;~kn−1/4) ∼ 1√

2π
nm−5/2Â(m)(σ;~k) (3.6)
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as n → ∞. Here f(n) ∼ g(n) denotes limn→∞ f(n)/g(n) = 1. A proof of
(3.6) is given in the proof of Theorem 1.1 of [12].

The functions â(m)(σ;~k,~t) arise from an appropriate joint limit of the

coefficients c
(m)
n,~s (σ;~k). Namely, for m ≥ 2,

c
(m)

n,b~tn1/2c(σ;~kn−1/4) ∼ 1√
2π

1

n
â(m)(σ;~k,~t) (3.7)

as n → ∞. A proof is given in the proof of Theorem 1.2 of [12].
One might wonder at this point what any of this has to do with lattice

trees or percolation. The connection is that some of these models’ key
thermodynamic functions have the form of the above generating functions
in high dimensions, and this links them to ISE.

4 Lattice trees

A lattice tree in Z
d is a finite connected set of lattice bonds containing no

cycles. For the nearest-neighbour model, the bonds are nearest-neighbour
bonds {x, y}, x, y ∈ Z

d, ‖x − y‖1 = 1. We will also consider “spread-out”
lattice trees constructed from bonds {x, y} with 0 < ‖x − y‖∞ ≤ L. The
parameter L will later be taken to be large but finite. We associate the
uniform probability measure to the set of all n-bond lattice trees which
contain the origin.

In this section, we will describe results showing that in high dimensions
the scaling limit of lattice trees of size n, with space scaled by a multiple of
n−1/4, is ISE. Thus lattice trees in high dimensions behave like branching
random walk.

We define the one-point function t(1)n to be the number of n-bond lattice

trees containing the origin, with t
(1)
0 = 1. By a subadditivity argument,

there is a positive constant zc (depending on d, and on L for the spread-out
model) such that limn→∞[t(1)n ]1/n = z−1

c .
Next, we would like to define the higher-point functions t(m)

n (σ; ~y,~s),
for m ≥ 2. These functions count lattice trees with a certain property.
To describe this, we need some definitions. Let σ ∈ Σm, and associated
to each edge j in σ, let yj ∈ Z

d and let sj be a nonnegative integer (j =
1, . . . , 2m−3). First, we introduce the notion of backbone. Given a lattice
tree T containing the sites 0, x1, . . . , xm−1, we define the backbone B of
(T ; 0, x1, . . . , xm−1) to be the subtree of T spanning 0, x1, . . . , xm−1. There
is an induced labelling of the external vertices of the backbone, in which
vertex xl is labelled l. Ignoring vertices of degree 2 in B, this backbone
is equivalent to a shape σB or to its modification by contraction of one



Lattice trees, percolation and super-Brownian motion 7
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Figure 2: A 2-dimensional lattice tree contributing to t
(4)
78 (σ1; ~y,~s), with

σ1 depicted in Figure 1, ~y = ((2,−1), (0,−2), (4,−1), (−1,−3), (2, 2)), ~s =
(3, 2, 5, 4, 4).

or more edges to a point. (In the latter case, as we will discuss further
in Appendix A, the choice of σB may not be unique.) Next, we need a
notion of compatibility. Restoring vertices of degree 2 in B, let bj denote
the length of the backbone path corresponding to edge j of σB, with bj = 0
for any contracted edge. We say that (T ; 0, x1, . . . , xm−1) is compatible
with (σ; ~y,~s) if σB can be chosen (when not uniquely determined) such
that σB = σ, if bj = sj for all edges j of σ, and if the backbone path
corresponding to j undergoes the displacement yj for all edges j of σ.

Then we define t(m)
n (σ; ~y,~s) to be the number of n-bond lattice trees

T , containing the origin, for which there are sites x1, . . . , xm−1 ∈ T such
that (T ; 0, x1, . . . , xm−1) is compatible with (σ; ~y,~s). See Figure 2. We also
define

t(m)
n (σ; ~y) =

∑
~s

t(m)
n (σ; ~y,~s), (4.1)

where the sum over ~s denotes a sum over the nonnegative integers sj. We
will make use of Fourier transforms with respect to the ~y variables, for
example,

t̂(m)
n (σ;~k) =

∑
~y

t(m)
n (σ; ~y)ei~k·~y, kj ∈ [−π, π]d. (4.2)

For m = 2, 3 there is only one shape and we will sometimes omit it from
the notation.

Define

G
(m)

z,~ζ
(σ; ~y) =

∞∑
n=0

∑
~s

t(m)
n (σ; ~y,~s)zn

2m−3∏
j=1

ζ
sj

j . (4.3)

The sum over ~y ∈ R
d(2m−3) of (4.3) is finite for |z| < zc and |ζj| ≤ 1, for all

m.
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In terms of critical exponents, the Fourier transform of the two-point
function G

(2)
z,1(y) is believed to behave asymptotically as

Ĝ
(2)
zc,1(k) ∼ c1

k2−η
as k → 0, Ĝ

(2)
z,1(0) ∼ c2

(1 − z/zc)γ
as z → zc, (4.4)

with the mean-field values η = 0 and γ = 1
2

for d > 8. For d > 8, the
simplest combination of the two asymptotic relations in (4.4) that could
be hoped for is

Ĝ
(2)
z,1(k) =

C1

D2
1k

2 + 23/2(1 − z/zc)1/2
+ error, (4.5)

where C1 and D1 are positive constants depending on d and L. The error
term is meant to be of lower order than the main term, in some suitable
sense, as k → 0 and z → zc.

An optimist expecting to find ISE and familiar with (3.1) and (3.7)
could also hope that, for d > 8,

Ĝ
(2)
z,ζ(k) =

C1

D2
1k

2 + 23/2(1 − z/zc)1/2 + 2T1(1 − ζ)
+ error, (4.6)

and that there is an approximate independence of the form

Ĝ
(m)

z,~ζ
(σ;~k) = vm−2

1

2m−3∏
j=1

Ĝ
(2)
z,ζj

(kj) + error. (4.7)

Here v1 is a finite positive constant which translates the self-avoidance in-
teractions of lattice trees into a renormalized vertex factor. For the nearest-
neighbour model with d sufficiently large, and for spread-out models for
d > 8 with L sufficiently large, relations of the form (4.6) and (4.7) are

proved in [12], for all m ≥ 2 if ~ζ = ~1 and for m = 2, 3 for general ~ζ . The
results given below arise as a consequence.

We define

p(m)
n (σ; ~y) =

t(m)
n (σ; ~y)∑

σ∈Σm
t̂
(m)
n (σ;~0)

, (4.8)

which is a probability measure on Σm × Z
d(2m−3). The following theorem,

whose proof extends the methods of [17, 18], shows that (4.8) has the
corresponding ISE density as its scaling limit in high dimensions. In its
statement, the scaling of ~k by D−1

1 n−1/4 corresponds to scaling down the
lattice spacing by D−1

1 n−1/4.
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Theorem 1 [11, 12] Let m ≥ 2 and kj ∈ R
d (j = 1, . . . , 2m − 3). For

nearest-neighbour lattice trees in sufficiently high dimensions d ≥ d0, and
for spread-out lattice trees with d > 8 and L sufficiently large depending on
d, there are constants c1, D1 depending on d and L, such that

t̂(m)
n (σ;~kD−1

1 n−1/4) ∼ c1n
m−5/2z−n

c Â(m)(σ;~k) (n → ∞). (4.9)

In particular,

lim
n→∞ p̂(m)

n (σ;~kD−1
1 n−1/4) = Â(m)(σ;~k).

It is a corollary of Theorem 1 that high-dimensional lattice trees con-
verge weakly to ISE, as we now explain. Given an n-bond lattice tree T
containing the origin, we define µT

n to be the probability measure on R
d

which assigns mass (n + 1)−1 to the each of the n + 1 points xD−1
1 n−1/4,

for x ∈ T . Let M1(R
d) be the space of probability measures on R

d. We
then define a probability measure µn on M1(R

d), supported on the µT
n , by

µn(µT
n ) = (t(1)n )−1 for each n-bond T containing 0. In this way, n-bond

lattice trees induce a random probability measure on R
d. Let Ṙ

d denote
the one-point compactification of R

d, and let M1(Ṙ
d) denote the compact

set of probability measures on Ṙ
d, under the topology of weak convergence.

We regard M1(R
d) as embedded in M1(Ṙ

d).

Corollary 2 For nearest-neighbour lattice trees in sufficiently high dimen-
sions d ≥ d0, and for spread-out lattice trees with d > 8 and L sufficiently
large, µn converges weakly to µISE, as measures on M1(Ṙ

d).

The weak convergence in Corollary 2 is the assertion that for any con-
tinuous function F on M1(Ṙ

d),

lim
n→∞

∫
M1(Ṙd)

F (ν)dµn(ν) =
∫

M1(Ṙd)
F (ν)dµISE(ν). (4.10)

The argument leading from Theorem 1 to Corollary 2 is presented in Ap-
pendix A.

For a more refined statement than Theorem 1, we define

p(m)
n (σ; ~y,~s) =

t(m)
n (σ; ~y,~s)∑

σ∈Σm
t̂
(m)
n (σ;~0)

, (4.11)

which is a probability measure on Σm × Z
d(2m−3) × Z

2m−3
+ .
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Theorem 3 [11, 12] Let m = 2 or m = 3, kj ∈ R
d, and tj ∈ (0,∞)

(j = 1, . . . , 2m− 3). For nearest-neighbour lattice trees in sufficiently high
dimensions d ≥ d0, and for spread-out lattice trees with d > 8 and L
sufficiently large depending on d, there is a constant T1 depending on d
and L, such that

t̂(m)
n (σ;~kD−1

1 n−1/4, b~t T1n
1/2c) ∼ c1T

−(2m−3)
1 n−1z−n

c â(m)(σ;~k,~t) (n → ∞).

In particular,

lim
n→∞(T1n

1/2)2m−3 p̂(m)
n (σ;~kD−1

1 n−1/4, b~t T1n
1/2c) = â(m)(σ;~k,~t). (4.12)

We believe that Theorem 3 holds for all m ≥ 2, but technical difficulties
arise for m ≥ 4 and the theorem has been proved only for m = 2 and
m = 3. Theorem 3 indicates that, at least for m = 2 and m = 3, skeleton
paths with length of order n1/2 are typical. This is Brownian scaling, since
distance is scaled as n1/4. The statement of Theorem 3 for m = 3 in [11,
12] incorrectly included the case where tj = 0 for one or two values of j,
for which different constants occur, in fact, in the asymptotic formula for
t̂(3)n (σ;~kD−1

1 n−1/4, b~t T1n
1/2c).

We expect that the above results for lattice trees should apply also to
lattice animals for d > 8, yielding ISE for their scaling limit for d > 8.
This would be consistent with the general belief that lattice trees and
lattice animals have the same scaling properties in all dimensions.

5 Percolation

Consider independent Bernoulli bond percolation on Z
d, either nearest-

neighbour or spread-out, with p fixed and equal to its critical value pc [14].
Bonds are pairs {x, y} of sites in Z

d, with ‖x − y‖1 = 1 for the nearest-
neighbour model and 0 < ‖x − y‖∞ ≤ L for the spread-out model. Let
C(0) denote the random set of sites connected to 0, let |C(0)| denote the
cardinality of C(0), and let

τ (2)(x; n) = Ppc(C(0) 3 x, |C(0)| = n) (5.1)

denote the probability at the critical point that the origin is connected to
x via a cluster containing n sites. We define a generating function

τ (2)
z (x) =

∞∑
n=1

τ (2)(x; n)zn, (5.2)
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which converges absolutely if |z| ≤ 1. Assuming no infinite cluster at pc,

τ
(2)
1 (x) is the probability that 0 is connected to x.

The conventional definitions [14, Section 7.1] of the critical exponents
η and δ suggest that

τ̂
(2)
1 (k) ∼ c1

k2−η
as k → 0, τ̂ (2)

z (0) ∼ c2

(1 − z)1−1/δ
as z → 1, (5.3)

but there is still no proof of existence of these exponents except in high
dimensions. Assuming the mean-field values η = 0 and δ = 2 above six
dimensions, the simplest combination of the above asymptotic relations for
d > 6 would be

τ̂ (2)
z (k) =

C2

D2
2k

2 + 23/2(1 − z)1/2
+ error, (5.4)

for some constants C2, D2. This is analogous to (4.5). The following theo-
rem shows that this behaviour is what does occur for sufficiently spread-out
percolation above six dimensions.

Theorem 4 [15, 20] Let k ∈ [−π, π]d, z ∈ [0, 1). For spread-out percola-
tion with d > 6 and L sufficiently large, there are functions ε1(z) and ε2(k)
with limz→1 ε1(z) = limk→0 ε2(k) = 0, and constants C2 and D2 depending
on d and L, such that

τ̂ (2)
z (k) =

C2

D2
2k

2 + 23/2(1 − z)1/2
[1 + ε(z, k)] (5.5)

with |ε(z, k)| ≤ ε1(z) + ε2(k).

In view of (3.6), Theorem 4 is highly suggestive that ISE occurs as a
scaling limit for percolation, but the control of the error term in (5.5) is
too weak to obtain bounds on τ̂ (2)(kD−1

2 n−1/4; n) via contour integration.
However, for the nearest-neighbour model in sufficiently high dimensions,
better control of the error terms has been obtained, for complex z with
|z| < 1, leading to the following theorem. The theorem also gives a result
for the three-point function

τ (3)(x, y; n) = Ppc(x, y ∈ C(0), |C(0)| = n), (5.6)

in terms of its Fourier transform

τ̂ (3)(k, l; n) =
∑

x,y∈Zd

τ (3)(x, y; n)eik·x+il·y. (5.7)
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Theorem 5 [16, 20] Fix k, l ∈ R
d and any ε ∈ (0, 1

2
). There is a d0 such

that for nearest-neighbour percolation with d ≥ d0, there are constants
C2, D2 (depending on d) such that as n → ∞

τ̂ (2)(kD−1
2 n−1/4; n) =

C2√
8πn

Â(2)(k)[1 + O(n−ε)], (5.8)

τ̂ (3)(kD−1
2 n−1/4, lD−1

2 n−1/4; n) =
C2√
8π

n1/2Â(3)(k + l, k, l)[1 + O(n−ε)].

(5.9)

It follows from (5.8) that

Ppc(|C(0)| = n) = n−1τ̂ (2)(0; n) = C2(8π)−1/2n−3/2[1 + O(n−ε)]. (5.10)

This shows that the critical exponent δ, defined by Ppc(|C(0)| = n) ≈
n−1−1/δ, is given by δ = 2 in high dimensions.

The variables in (5.9) are arranged schematically as:

0 x .

y

k+l

l

k

To obtain (5.9), we work with the generating function

τ̂ (3)
z (k, l) =

∞∑
n=1

τ (3)(k, l; n)zn, (5.11)

and prove that there is a positive constant v2 such that

τ̂ (3)
z (k, l) = v2τ̂

(2)
z (k + l)τ̂ (2)

z (k)τ̂ (2)
z (l) + error. (5.12)

An asymptotic relation in the spirit of (5.12), with k = l = 0, was conjec-
tured for d > 6 already in [3].

We expect that Theorem 5 should extend to general m-point functions,
for all m ≥ 2, but this has not been proven. This is essentially the conjec-
ture of [20] that the scaling limit of the incipient infinite cluster is ISE for
d > 6. We now discuss this conjecture in more detail.

Given a site lattice animal S containing n sites, one of which is the
origin, define the probability measure νS

n ∈ M1(R
d) to assign mass n−1 to

xD−1
2 n−1/4, for each x ∈ S. We define νn to be the probability measure

on M1(R
d) which assigns probability Ppc(C(0) = S | |C(0)| = n) to νS

n , for
each S as above. We regard the limit of νn, as n → ∞, as the scaling
limit of the incipient infinite cluster. This is related to one of Kesten’s
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definitions of the incipient infinite cluster [22], but here we are taking the
lattice spacing to zero as n → ∞. The conjecture of [20] is that, as in
Corollary 2 above, νn converges weakly to µISE for d > 6.

The conjecture is supported by Theorem 5. In fact, the characteristic
functions N̂ (1)

n (k) and N̂ (2)
n (k, l) of the first and second moment measures

N (1)
n and N (2)

n of νn are given by

N̂ (1)
n (k) =

τ̂ (2)(kD−1
2 n−1/4; n)

τ̂ (2)(0; n)
, (5.13)

N̂ (2)
n (k, l) =

τ̂ (3)(kD−1
2 n−1/4, lD−1

2 n−1/4; n)

τ̂ (3)(0, 0; n)
, (5.14)

and in high dimensions these converge respectively to the characteristic
functions Â(2)(k) and Â(3)(k + l, k, l) of the corresponding ISE moments,
by Theorem 5.

6 Oriented percolation

Consider independent oriented percolation on Z
d ×Z+. Bonds are directed

and are of the form ((x, n), (y, n + 1)), with x, y ∈ Z
d obeying ‖x − y‖1 =

1 for the nearest-neighbour model and obeying 0 < ‖x − y‖∞ ≤ L for
the spread-out model. Bonds are occupied with probability p. We write
(x, m) → (y, n) if there is an oriented path from (x, m) to (y, n) consisting
of occupied bonds, and define C(x, m) = {(y, n) : (x, m) → (y, n)}. Let

σ(2)((x, n); N) = Ppc(C(0, 0) 3 (x, n), |C(0, 0)| = N) (6.1)

denote the probability at the oriented percolation critical point that (0, 0)
is connected to (x, n) via a cluster containing N sites. We denote the
Fourier transform with respect to x by

σ̂(2)((k, n); N) =
∑
x∈Zd

σ(2)((x, n); N)eik·x, k ∈ [−π, π]d, (6.2)

and define

σ̂
(2)
z,ζ (k) =

∞∑
N=1

∞∑
n=0

σ̂(2)((k, n); N)zNζn, |z|, |ζ | < 1. (6.3)

The symmetry under x → −x is responsible for the absence of a term
linear in k in the denominators of (4.5) and (5.5). This symmetry applies
also for oriented percolation, but there is no such symmetry for the time
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variable n and a term linear in (1−ζ) should appear. Thus we expect that
above the upper critical dimension, i.e., for d + 1 > 5,

σ̂
(2)
z,ζ(k) =

C3

D2
3k

2 + 23/2
√

1 − z + 2T3(1 − ζ)
+ error (6.4)

as (k, z, ζ) → (0, 1, 1). An upper bound for (6.3) of the form (k2 + |1 −
ζ |)−1 was obtained for z = 1 in [27], for the nearest-neighbour model in
sufficiently high dimensions and for sufficiently spread-out models when
d + 1 > 5. This is consistent with (6.4).

Apart from constants, the form of (6.4) is identical to the generating

function C
(2)
z,ζ (k) defined in (3.1). As in (3.7), if (6.4) accurately captures

the behaviour of the two-point function, as N → ∞ we would have

σ̂(2)((kD−1
3 N−1/4, btT3N

1/2c); N) ∼ C3T
−1
3

1√
8πN

â(2)(k, t). (6.5)

This suggests ISE as the scaling limit, when time and space are scaled re-
spectively by N−1/2 and N−1/4. The ISE time variable corresponds simply
to the direction of orientation.

Consider now the limit in which the cluster size N is summed over
rather than fixed, with n → ∞ and space scaled by n−1/2. Summing over
N removes any conditioning on the cluster size, so SBM becomes relevant
as the scaling limit, rather than ISE. According to the above picture, we
can expect that

σ̂
(2)
1,ζ (k) =

C3

D2
3k

2 + 2T3(1 − ζ)
+ error. (6.6)

As in (3.4), with sufficient control on the error (6.6) implies

2C−1
3 T3 lim

n→∞

∞∑
N=1

σ̂(2)((kT
1/2
3 D−1

3 n−1/2, btnc); N) = e−k2t/2. (6.7)

In fact, (6.6)–(6.7) were proven in [28] for the nearest-neighbour model in
sufficiently high dimensions and for sufficiently spread-out models when
d + 1 > 5. Work is in progress with Derbez and van der Hofstad to prove
a corresponding result for higher-order connectivity functions, to obtain a
stronger statement of convergence to SBM. This work in progress is based
on the inductive method of [21], which bypasses the use of generating
functions and the difficulties associated with their inversion.

The above picture relating SBM and oriented percolation can be con-
trasted with the results of [13] (see also [8]). In [13], it is shown that SBM
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arises as the scaling limit of a critical contact process for d ≥ 2. The
scaling limit of [13] is for the infinitely spread-out contact process, in the
limit L → ∞ (sometimes called the Kac limit). This is a mean-field limit,
for which the non-gaussian behaviour expected below d + 1 = 5 when L is
finite is no longer relevant.

7 The lace expansion

The method of proof of the above results is based on the lace expansion,
which was first introduced in [7] in the context of self-avoiding walks. Re-
views of work on the lace expansion prior to the work described in this
paper can be found in [19, 26]. The extensions required to prove the re-
sults of Sections 4 and 5 make use of a double lace expansion and it is
beyond the scope of this paper to indicate any details. Details can be
found in [12, 15, 16].

A Proof of Corollary 2

In this appendix, we show how Corollary 2 follows from Theorem 1. The
corollary follows in a straightforward way via [10, Lemma 2.4.1(b)], which
asserts that weak convergence of moment measures implies weak conver-
gence of random probability measures (on a compact set). However, there
is one subtlety. This point was overlooked in [11, 12], and we take this
opportunity to clarify it.

For l ≥ 1, let s(l+1)
n (x1, . . . , xl) denote the number of n-bond lattice

trees containing the lattice sites 0, x1, . . . , xl. To abbreviate the notation,
we will write x̃ = (x1, . . . , xl). The lth moment measure M (l)

n of µn is the
deterministic probability measure on R

dl which places mass

r(l+1)
n (x̃) =

1

(n + 1)l

1

t
(1)
n

s(l+1)
n (x̃) (A.1)

at x̃D−1
2 n−1/4, for x̃ ∈ Z

dl. The characteristic function M̂ (l)
n (k) of M (l)

n is
given by

M̂ (l)
n (k̃) = r̂(l+1)

n (k̃D−1
2 n−1/4), (A.2)

where, writing k̃ = (k1, . . . , kl) and k̃ · x̃ = k1 · x1 + · · ·+ kl · xl,

r̂(l+1)
n (k̃) =

∑
x̃

r(l+1)
n (x̃)eik̃·x̃. (A.3)
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Since ŝ(l+1)
n (0̃) = (n + 1)lt(1)n , we have

M̂ (l)
n (k̃) =

ŝ(l+1)
n (k̃D−1

1 n−1/4)

ŝ
(l+1)
n (0̃)

. (A.4)

To prove convergence of the moment measures of µn to those of ISE,
it suffices to show that, for each l ≥ 1, M̂ (l)

n (k) converges to the char-
acteristic function M̂ (l)(k) of the corresponding ISE moment measure de-
scribed under (2.7). For l = 1, this is an immediate consequence of (A.4)
and Theorem 1, since ŝ(2)

n (k) = t̂(2)n (k) and M̂ (1)(k) = Â(2)(k). Similarly,
for l = 2, there is a unique shape and ŝ(3)

n (k1, k2) = t̂(3)n (k1 + k2, k1, k2).
Since M̂ (2)(k1, k2) =

∫
A(3)(y, x1 − y, x2 − y)eik1·x1eik2·x2ddyddx1d

dx2 =
Â(3)(k1 + k2, k1, k2), convergence of the second moments follows directly
from Theorem 1.

The convergence of the third and higher moments follows similarly,
apart from one detail. For l ≥ 3, there is more than one shape, and

M̂ (l)(k̃) =
∑

σ∈Σl+1

Â(l+1)(σ;~k) (A.5)

with each of the 2l−1 components of ~k given by a specific linear combina-
tion (depending on σ) of the l components of k̃. For example, for l = 3 and

the shape σ1 of Figure 1, (σ1;~k) = (σ1; k1 + k2 + k3, k1, k2 + k3, k2, k3). If it

were the case that ŝ(l+1)
n (k̃) were equal to

∑
σ∈Σl+1

t̂(l+1)
n (σ;~k), convergence

of all moments would be immediate since Theorem 1 implies that

lim
n→∞

∑
σ∈Σl+1

t̂(l+1)
n (σ;~kD−1

1 n−1/4)∑
σ∈Σl+1

t̂
(l+1)
n (σ;~0)

=
∑

σ∈Σl+1

Â(l+1)(σ;~k). (A.6)

But ŝ(l+1)
n (k̃) is not equal to

∑
σ∈Σl+1

t̂(l+1)
n (σ;~k), because it is not the case

that s(l+1)
n (x̃) is equal to the sum of t(l+1)

n (σ; ~y) over all (σ; ~y) that are
consistent with x̃ in the sense that the xi are given by the sum of the yj as
prescribed by the shape σ. The discrepancy arises from degenerate lattice
tree configurations, containing sites x1, . . . , xl, which can correspond to
more than one choice of (σ; ~y). These configurations can only occur when
l ≥ 3 and at least one yj is zero.

For example, there is a unique 1-bond lattice tree containing 0 and the
site e1 = (1, 0, . . . , 0), and hence s

(4)
1 (0, 0, e1) = 1. However, this lattice

tree containing the sites x1 = x2 = 0, x3 = e1 contributes to each of
t
(4)
1 (σ1; 0, 0, 0, 0, e1), t

(4)
1 (σ2; 0, 0, 0, 0, e1) and t

(4)
1 (σ3; 0, e1, 0, 0, 0). See Fig-

ure 1. Thus it is not the case, in general, that s(l+1)
n (x̃) is given by the sum
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of t(l+1)
n (σ; ~y) over all corresponding (σ; ~y). The assertion of [11, (3.4)] and

[12, (1.11)] that
∑

σ∈Σl+1
t̂(l+1)
n (σ;~0) equals (n + 1)lt(1)n implicitly assumed

uniqueness of (σ; ~y) and is incorrect for l ≥ 3. This false assertion was not

needed in [11, 12], as it can be replaced by [12, (2.14)-(2.15)] with ~k = ~0
(i.e., (4.9) above) and [12, (1.12)] to conclude that

∑
σ∈Σl+1

t̂(l+1)
n (σ;~0) ∼ c1n

l−3/2z−n
c ∼ (n + 1)lt(1)n , (A.7)

which is sufficient for [11, 12]. The degenerate cases appear in error terms
to (A.7) and do not affect the leading behaviour.

In view of (A.4)–(A.6), to prove convergence of the lth moments, for
l ≥ 3, it suffices to show that

∣∣∣∣∣∣ŝ(l+1)
n (k̃) − ∑

σ∈Σl+1

t̂(l+1)
n (σ;~k)

∣∣∣∣∣∣ ≤ O(nl−2z−n
c ). (A.8)

This difference then constitutes an error term, down by n−1/2 compared to
ŝ(l+1)

n (k̃), by Theorem 1. The remainder of the proof is devoted to obtaining
(A.8).

Let l ≥ 3, and recall the definition of compatibility above (4.1). If the
backbone of (T ; 0, x1, . . . , xl) comprises 2l−1 nontrivial paths (each having
length greater than zero), then x̃ induces a labelling of the external vertices
of an (l + 1)-skeleton and there is therefore a unique compatible (σ; ~y,~s).
Whether or not the backbone comprises 2l − 1 nontrivial paths, given
(σ; ~y,~s) compatible with the backbone, the 2l − 1 backbone displacements
~y and their lengths ~s (possibly zero) are uniquely determined by σ and
(T ; 0, x1, . . . , xl). Nonuniqueness of (σ; ~y,~s) thus requires at least one of the
backbone paths to be trivial, and, in such a degenerate case, the maximum
possible number of compatible choices for (σ; ~y,~s) is the number of shapes,
which is (2l− 3)!!. Let u(l+1)

n (x̃) denote the number of n-bond lattice trees
for which each of the 2l − 1 backbone paths is nontrivial, and let e(l+1)

n (x̃)
denote the number of n-bond lattice trees for which at least one backbone
path has a zero displacement. Then s(l+1)

n (x̃) = u(l+1)
n (x̃) + e(l+1)

n (x̃), and,
for l ≥ 3,

∣∣∣∣∣∣ŝ(l+1)
n (k̃) − ∑

σ∈Σl+1

t̂(l+1)
n (σ;~k)

∣∣∣∣∣∣ ≤ [(2l − 3)!! − 1]ê(l+1)
n (0̃). (A.9)

It suffices to argue that the right side of (A.9) is at most O(nl−2z−n
c ).

For this, we introduce the generating function E(l+1)(z) =
∑

n ê(l+1)
n (0̃)zn.
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Let χ(z) =
∑

x G(2)
z (x). It can be shown using standard bounds that

|E(l+1)(z)| ≤ O(χ(|z|)2l−2), where the power 2l − 2 arises because at least
one of the 2l − 1 backbone paths is trivial. Using the methods of [12], this
can be refined to |E(l+1)(z)| ≤ O(|χ(z)|3χ(|z|)2l−5), uniform in |z| < zc. It
follows from [18, (1.12)] that |E(l+1)(z)| ≤ O(|1−z/zc|−3/2(1−|z|/zc)

−l+5/2).
Then [12, Lemma 3.2(i)] implies the desired bound ê(l+1)

n (0̃) ≤ O(nl−2z−n
c ).
2

Acknowledgements

This work was supported in part by NSERC. It is a pleasure to thank
Eric Derbez and Takashi Hara for the enjoyable collaborations that led to
the results described in this paper, and Christian Borgs, Jennifer Chayes,
Remco van der Hofstad and Ed Perkins for valuable conversations. This
paper was written primarily during a visit to Microsoft Research.

References

[1] M. Aizenman. Scaling limit for the incipient spanning clusters. In
K.M. Golden, G.R. Grimmett, R.D. James, G.W. Milton, and P.N.
Sen, editors, Mathematics of Materials: Percolation and Composites.
Springer, New York, (1997).

[2] M. Aizenman and A. Burchard. Hölder regularity and dimension
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