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Abstract. In this paper, we prove two results: first, we use classifying stacks to
reconstruct the classical Dieudonné module without relying on the work of Fontaine
and Berthelot–Breen–Messing. As a corollary, we reprove the isomorphism σ∗M(G) ≃
Ext1(G,Ocrys) due to Berthelot–Breen–Messing using stacky methods combined with the
theory of de Rham–Witt complexes. Additionally, we show that finite locally free group
schemes of p-power rank over a fairly general base embed fully faithfully into the category
of prismatic F -gauges, which extends the work of Anschütz and Le Bras on prismatic
Dieudonné theory for p-divisible groups.

1. INTRODUCTION

Let k be a perfect field of characteristic p > 0. Let G be a finite group scheme over
k of p-power rank. Then G admits a canonical decomposition G = Guni

⊕
Gmul, where

Gmul is a local group scheme whose Cartier dual is étale. Classically, one defines the
(contravariant) Dieudonné module of G in the following manner. Let us first define
M(Guni) := Hom(G, lim−→n,V

Wn). One can now define M(G) :=M(Guni)
⊕
M((Gmul)∗)∗.

A uniform construction without appealing to duality was first given by Fontaine [Fon77]
using a more complicated formal group CW , which maybe realized as a completion of
lim−→n,V

Wn in a certain sense. Another uniform construction is due to the work of Berthelot–

Breen–Messing [BBM82] in terms of crystalline Dieudonné theory; they proved that
σ∗M(G) ≃ Ext1(G,Ocrys), where the last Ext group is computed in the large crystalline
site. Their proof crucially relies on Fontaine’s work and in particular certain explicit
computations done in the crystalline site to understand the somewhat complicated object
CW . In [Mon21], it was shown that σ∗M(G) ≃ H2

crys(BG), where the proof relied on the
work of Berthelot–Breen–Messing.

In this paper, we directly prove that σ∗M(G) ≃ H2
crys(BG) without using the work of

Fontaine or Berthelot–Breen–Messing. Instead, our techniques use cohomology of algebraic
stacks and the de Rham–Witt complex. Broadly speaking, the main new ingredient is the
usage of geometric techniques such as differential forms, deformation theory in the study
of Dieudonné modules by means of the classifying stack BG.

Theorem 1.1. Let G be a finite commutative p-power rank group scheme over a perfect
field k of characteristic p > 0. We have a canonical isomorphism σ∗M(G) ≃ H2

crys(BG).

As a corollary, we obtain a new proof of

Corollary 1.2 ([BBM82, Thm. 4.2.14]). Let G be a finite group scheme over k of p-power
rank. Then σ∗M(G) ≃ Ext1CRYS(G,Ocrys).
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Motivated by the above two results, in this paper, we treat H2
crys(BG) as the main

invariant of interest, and regard the classical Dieudonné module as its de Rham–Witt
realization and the formula Ext1CRYS(G,Ocrys) as its sheaf theoretic incarnation.

Pursing the above perspective further, we show that in the mixed characteristic context,
for a quasisyntomic algebra S, the functorM∨ (see Definition 3.8 for the precise definition)
induced by sending a p-divisible group G to H2

∆(BG
∨) gives a fully faithful embedding of

the category BT(S) of p-divisible groups over S into the category of prismatic F -gauges
over S; the latter is defined as the category of quasicoherent sheaves on the stack Spf(S)syn.

Theorem 1.3 (Proposition 3.32). There exists a functor M∨ : BT(S) → Vect(Ssyn)
induced by G 7→ “H2

∆(BG
∨)” which is fully faithful. Here BT(S) is the category of

p-divisible groups over the quasisyntomic algebra S.

The above result gives a different proof of fully faithfulness result of [ALB23], where
the authors work with “admissible prismatic Dieudonné modules”, which can be shown
to embed fully faithfully into the category of prismatic F -gauges. Our approach uses
the formalism of quasi-coherent sheaves on Ssyn, and crucially uses the dualizability of
M∨(G) =M(G∨) along with the compatibility with Cartier duality (Proposition 3.31).
We take a different approach to establishing the dualizability based on a direct computation
of the cotangent complex LBG (Proposition 3.22).

The main advantage for working with the category of prismatic F -gauges, and a
description of the Dieudonné module in terms of classifying stacks, is that it can be used
to classify finite locally free commutative group schemes of p-power rank as well, which
was not addressed by the approach taken in [ALB23]. In some sense, the category of
“admissible prismatic Dieudonné module” considered in loc. cit. is not flexible enough for
classifying finite flat group schemes. However, in mixed charactertistic, under the presence
of torsion, it turns out that even H2

∆(BG) is not the right invariant. This is a “pathology”

that does not occur when S has characteristic p (see Remark 3.2). To resolve this, we use
the 2-stack B2G.

Theorem 1.4 (Proposition 3.21). There exists a canonical functor M∨ : FFG(S) →
Dperf(S

syn) from the category of finite locally free commutative group schemes over a
quasisyntomic algebra S of p-power rank to perfect complexes of prismatic F -gauges induced
by

G 7→ “τ[−2,−3]RΓ∆(B
2G∨)[3]”

which is fully faithful.

Remark 1.5. For a precise definition ofM(G) =M∨(G∨), see Definition 3.9. As noted
in Proposition 3.12, the Dieudonné crystal M(G) that we define can also be described
alternatively as

M(G) ≃ τ≥0RHomD(Ssyn,Z)(G
syn,Ga[1]).

The above formula is somewhat similar to the notion of Dieudonné crystal introduced in
[BBM82].

A key data in our approach, that appears somewhat implicitly, is the divided Frobenius
(which has previously appeared in the work of Lau [Lau18]); this is not necessary in the
case of p-divisible groups and was not considered in [ALB23], but it plays an essential
role in the presence of torsion. See Remark 3.7 for an elaboration on this point, and
the results appearing before Remark 3.7, which explains what data is exactly necessary
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to functorially reconstruct a finite flat group scheme G from the prismatic cohomology
of BG or B2G. From our perspective, the Dieudonné module of a finite locally free
group scheme or a p-divisible group G should be regarded as a “p-adic motive”, which is
realized by the cohomology of BG or B2G. The work of Drinfeld [Dri21] and Bhatt–Lurie
([BL22a], [BL22b], [Bha23]) on prismatic F -gauges allow one to precisely formulate the
desired category as quasi-coherent sheaves on the stack Ssyn. We will now give a very brief
explanation of how to work with prismatic F -gauges, relevant in our set up.

By quasisyntomic descent (see [BMS19]), in order to understand Ssyn one can restrict
attention to the case when S = Spf(R) (see [Bha23]) for a quasiregular semiperfectoid
algebra R. In this case, we concretely spell out the stack (Spf(R))syn to give a sense of
what kind of objects we are working with, and how it keeps track of the divided Frobenius.

Construction 1.6. Let R be a quasiregular semiperfectoid algebra. Define Spf(R)∆ :=
Spf(∆R), where ∆R is the prism associated to R. Define

Spf(R)Nyg := Spf

(⊕
i∈Z

FiliNyg∆R {i}

)
/Gm.

The Nygaard filtration provides a map of graded rings
⊕

i∈Z Fil
i
Nyg∆R {i} →

⊕
i∈Z ∆R {i} ,

which induces a map

can : Spf(R)∆ → Spf(R)Nyg.

Also, the divided Frobenius defines a map of graded rings ⊕i∈Z(φi) :
⊕

i∈Z Fil
i
Nyg∆R {i} →⊕

i∈Z ∆R {i} , which induces a map

φ : Spf(R)∆ → Spf(R)Nyg.

One defines

Spf(R)syn := coeq

(
Spf(R)∆

can //

φ
// Spf(R)

Nyg

)
.

In this set up, the graded module
⊕

i∈Z Fil
i−1
Nyg∆R {i− 1} defines a vector bundle on

Spf(R)Nyg, which descends to a vector bundle on Spf(R)syn– this will be called the Breuil–
Kisin twist and will be denoted by O{−1} . For any M ∈ Spf(S)syn, we use M {−n} to
denote M ⊗O O{−1}⊗n . See Remark 3.18 for a discussion on what kind of structures are
encoded on quasicoherent sheaves on Spf(R)syn.

Our main technique for proving Theorem 1.4 above is using the formalism of quasi-
cohrent sheaves on the stack Ssyn and certain other computations of cohomology of BG
involving the Breuil–Kisin twist O{1} . A key role is played by the dualizability ofM∨(G)
as a prismatic F -gauge. In order to prove the latter statement, we work with the concrete
description appearing in Construction 1.6, and directly work with the full Nygaard filtration
on prismatic cohomology of BG.

Notations and conventions. We will use the language of ∞-categories as in [Lur09],
more specifically, the language of stable∞-categories [Lur17]. For an ordinary commutative
ring R, we will let D(R) denote the derived∞-category of R-modules, so that it is naturally
equipped with a t-structure and D≥0(R) (resp. D≤0(R)) denotes the connective (resp.
coconnective) objects, following the homological convention. We work with a fixed prime
p. We will let RΓcrys(·) denote derived crystalline cohomology, which reduces to derived de
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Rham cohomology dR(·) modulo p (see [Bha12]). We freely use the quasisyntomic descent
techniques using quasiregular semiperfectoid algebras introduced in [BMS19]. We also
freely use the formalism of prismatic cohomology developed by Bhatt–Scholze [BS19], as
well as the stacky approach to prismatic cohomology developed by Drinfeld [Dri21] and
Bhatt–Lurie [BL22a], [BL22b], [BL]. At the moment, our main reference for working with
prismatic F -gauges is based on Bhatt’s lecture notes [Bha23]. For a group scheme G, we
let BG denote the classifying stack and B2G denote the 2-stack K(G, 2).

Acknowledgements. I am grateful to Johannes Anschütz, Bhargav Bhatt, Vladimir
Drinfeld, Arthur-César Le Bras and Akhil Mathew for helpful conversation related to
the content of this paper. During the preparation of this article, I received support from
University of British Columbia, Vancouver and Institute for Advances Study, Princeton.

2. Crystalline Dieudonné theory

One of the key ingredients in our proof of Theorem 1.1 is the following construction
based on the de Rham–Witt complex. Construction 2.1 below extends a construction
from [Ill79, § 6] to stacks, which was originally introduced by Illusie to produce torsion in
crystalline cohomology by using the de Rham–Witt complex.

Construction 2.1. We discuss the construction of a map

T : RΓqsyn(Y, lim−→
n,V

Wn)→ σ∗RΓcrys(Y)[1]

for a stack Y over a perfect field k of characteristic p > 0, where the left hand side denotes
cohomology computed in the quaisyntomic site [BMS19]. By considering sheafification in
the quasisyntomic topology (see [BMS19, Example 5.12]) one may reduce this to the case
of affine schemes. Further, by considering simplicial resolutions using polynomial algebras
(see [SD23, Example 2.13]), this amounts to constructing a natural map

RΓqsyn(X, lim−→
n,V

Wn)→ σ∗RΓcrys(X)[1]

for an affine scheme X = SpecR, where R is a polynomial algebra over k. Note that we
have an exact sequence

0→W
V n

−−→W →Wn → 0

of group schemes over k. Let WΩ∗
X denote the de Rham Witt complex of X. Define

another complex WΩ∗
X(n) :=WOX

Fnd−−→WΩ1
X

d−→WΩ2
X

d−→ . . .. There is a natural map
WΩ∗

X → WΩ∗
X(n) induced by V n (since FdV = d). We obtain an exact sequence of

complexes

(2.0.1) 0→WΩ∗
X →WΩ∗

X(n)→WnOX → 0.

Taking direct limits produce an exact sequence of complexes

(2.0.2) 0→WΩ∗
X → lim−→

n,V

WΩ∗
X(n)→ lim−→

n,V

WnOX → 0.

Passing to the derived category, using the comparison of de Rham–Witt and crys-
talline cohomology and keeping track of the W (k)-module structure, we obtain the map
RΓqsyn(X, lim−→n,V

Wn)→ σ∗RΓcrys(X)[1] as desired.
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Remark 2.2. Let us give further explanation about the previous construction, which is
based on the construction of the natural map WnOX → RΓcrys(X)[1]. Note that such a
map arises from a map WnOX → RΓcrys(X)/pn via composition with RΓcrys(X)/pn →
RΓcrys(X)[1]. The desired mapWnOX → RΓcrys(X)/pn can be thought of as simply arising
from the more general conjugate filtration Fil∗conjRΓcrys(X)/pn whose graded pieces can be
understood by the φn-linear higher Cartier isomorphism

LWnΩ
i
X [−i] ≃ griconj (RΓcrys(X)/pn) .

We will apply the map T from Construction 2.1 in the case Y = BG. To this end, let us
note a few general remarks about cohomology of BG. Let CRYS denote the big crystalline
topos, and CRYSn denote the n-truncated variant. Let F be any object in the derived
category of quasisyntomic sheaves. By Cech descent along the effective epimorphism
∗ → BG, we obtain

RΓ(BG,F) ≃ lim←−
m∈∆

RΓ(G[m],F),

whereG[m] is the Cech nerve of ∗ → BG. Applying this to F = RΓcrys(·) (resp. RΓcrys(·)/pn),
we obtain

RΓcrys(BG,F) ≃ lim←−
m∈∆

RΓcrys(G
[m],F) ≃ RHomCRYS( lim−→

n∈∆op

Z[G[m]],Ocrys).

Let us define Z[BG] := lim−→n∈∆op Z[G[m]]. This way, we get a spectral sequence with E2-page

(2.0.3) Ei,j
2 = ExtiCRYS(H

−j(Z[BG]),Ocrys) =⇒ H i+j
crys(BG)

(resp. a similar spectral sequence in CRYSn converging to H∗
crys(BG/Wn)).

Lemma 2.3. Let G be a group scheme of order pm. Then for any i > 0, the group
H i

crys(BG) is killed by a power of p.

Proof. This is a consequence of the above E2-spectral sequence and the fact that an n-torsion
ordinary abelian group T, the group homology Hi(T,Z) = Hi(Z[BT ]) is n-torsion. □

Note that, by definition, for any stack Y, we have an exact sequence

(2.0.4) 0→ H i
crys(Y)/pn → H i

crys(Y/Wn)→ H i+1
crys(Y)[pn]→ 0.

Lemma 2.4. Let G be a group scheme of order pm. Then H1
crys(BG) = 0

Proof. We choose a large enough n such that H1
crys(BG)[pn] = H1

crys(BG) and apply (2.0.4)
for i = 0. □

Lemma 2.5. Let G be a finite group scheme of p-power order. Then for all n≫ 0, the
map H1

crys(BG/Wn)→ H2
crys(BG) is an isomorphism.

Proof. We just need to choose n large enough such that H2
crys(BG) is killed by pn and

apply (2.0.4) for i = 1 along with the previous lemma. □

Lemma 2.6. Let k′/k be an extension of perfect fields. Then

RΓcrys(BGk′) ≃ RΓcrys(BG)⊗W (k) W (k′).
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Proof. By derived p-completeness, one can reduce modulo p. By the de Rham–crystalline
comparison, it would be enough to prove that RΓdR(BGk′) ≃ RΓdR(BG) ⊗k k

′. Since
RΓdR(Gk′) ≃ RΓdR(G) ⊗k k

′ the result follows from descent along ∗ → BG and using
the fact that totalization of bounded below cochain complexes commute with filtered
colimits. □

Lemma 2.7. Let 0 → G′ → G → G′′ → 0 be an exact sequence of finite group schemes
over k. Then we have an exact sequence 0→ H2

crys(BG
′′)→ H2

crys(BG)→ H2
crys(BG

′) of
W (k)-modules.

Proof. We pick an n large enough so that H2
crys(BG), H2

crys(BG
′), H2

crys(BG
′′) are all killed

by pn. Then the desired exactness of the maps follow from Lemma 2.5 and the fact that
H1

crys(BH/Wn) = Ext0QSyn(H,RΓ(·)/pn). □

Lemma 2.8. Let G be a finite group scheme of p-power rank over a perfect field k. Then
H2

crys(BG) is a finite length W (k)-module.

Proof. By Lemma 2.6, one may assume that k is algebraically closed. In that case, one
can argue by induction using Lemma 2.7, which reduces us to the statement for the simple
group schemes Z/p, αp and µp. This follows from Remark 3.19 below. □

Proposition 2.9 (cf. [ABM21]). H2
crys(BH) = k when H is either Z/p, µp or αp.

Proof. By base change, it is enough to argue when k = Fp. First note that for n ≫ 0,
we have isomorphisms Ext0QSyn(H,RΓ(·)/pn) ≃ H1

crys(BH/Wn) ≃ H2
crys(BH). Since H

is p-torsion, it follows by looking at the left term above that H2
crys(BH) is p-torsion.

Therefore, it suffices to show that H1
dR(BH) = k as a k-vector space.

(1) H = Z/p : Using descent along ∗ → BZ/p, one sees that H∗
dR(BZ/p) ≃ H∗(Z/p, k),

where the latter denotes group cohomology. Thus, the claim follows.
(2) H = µp : Since µp lifts to Z/p2 as a group scheme (along with lift of the Frobenius,

which is simply the zero map), the conjugate filtration on RΓdR(Bµp) splits. Since
LBµp = O ⊕O[−1], our claim follows by noting that H>0(Bµp,O) = 0.

(3) H = αp : We use the conjugate spectral sequence. Note that H1(Bαp,O) =
Hom(αp,Ga) = k. Note once again that LBαp = O⊕O[−1]. It would be enough to

prove that the map d given by the differential k = H0(Bαp,LBαp)→ H2(Bαp,O) is
injective. Note that there is an obstruction class c ∈ Ext2(LBαp ,O) = H2(Bαp,O)⊕
H3(Bαp,O), which is nonzero since Bαp does not lift to Z/p2. To see the latter
statement, note that if Bαp lifted to Z/p2, due to smoothness of Bαp as a stack,
we would be able to lift the map ∗ → Bαp too, thus ultimately, producing a lifting
of the group scheme αp to Z/p2, which is impossible. Now, the map d is obtained
by applying H0 to the map LBαp → O[2] parametrizing the obstruction class c.
Using the map Bαp → BGa, by functoriality of obstruction class (see [FGI+05,
8.5.10]), we know that the obstruction classes to lifting for Bαp and BGa have the
same image in H2(Bαp,O[1]) = H3(Bαp,O); but that must be zero, since BGa

is liftable. This implies that projection of c on H3(Bαp,O) is zero. Since c is
nonzero itself, we see that the map d must be nonzero. This gives the claim that
H1

dR(Bαp) = k.

This ends the proof. □
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Proposition 2.10. Let k be a perfect field. Then as W (k)-modules, we have a canonical
isomorphism H2

crys(Bµpm) ≃ σ∗(W (k)/pm).

Proof. Chern class of the line bundle corresponding to the map Bµpm → BGm defines a
canonical pm-torsion class on H2

crys(Bµpm). Since H1
crys(Bµpm) = 0, we obtain a canonical

map
σ∗W (k)⊕ σ∗W (k)/pm[−2]→ RΓcrys(Bµpm)

in the derived category of W (k)-modules. Let C denote the cofiber. It will be enough to
prove that C ∈ D≥3(W (k)). Since C is derived p-complete it is enough to prove the same
for C/p. It is therefore enough to prove that the induced map

k(1) ⊕ k(1)[−1]⊕ k(1)[−2]→ RΓdR(Bµpm)

has cofiber in D≥3(k). To this end, we will use the conjugate spectral sequence. Since
µpm lifts to W2(k) as a group scheme along with a lift of the Frobenius (which is just
multiplication by p), the conjugate filtration splits. The claim now follows from the fact
that LBµpm

= O ⊕O[−1] and H>0(Bµpm ,O) = 0, as the map constructed above is seen
to induce isomorphism on i-th cohomology for i ≤ 2. □

Construction 2.11. Now we can use the map T from Construction 2.1 to obtain a map

C : H1(BG, lim−→
n

Wn)→ H2
crys(BG).

Assume G is unipotent. Since H1(BG, lim−→n
Wn) = Hom(G, lim−→n

Wn), we get a natural
map

(2.0.5) Cuni : σ∗M(G)→ H2
crys(BG).

Suppose that G is a local group scheme over k of order pk whose Cartier dual G∗ is étale.
We will produce a natural map

(2.0.6) Cmult : H2
crys(BG)→ σ∗M(G).

To this end, in the remarks below, we recall certain constructions.

Remark 2.12 (Duality). Let ModflW (k) denote the category of finite length W (k)-modules.

The functor that sends M 7→ HomW (k)(M,W (k)[1p ]/W (k)) induces an antiequivalence of

ModflW (k). This duality also extends to the set up of Dieudonné modules whose underlying

W (k)-module is finite length.

Remark 2.13 (Galois descent). Let k be an algebraic closure of k. Let (Modfl
W (k)

)Gal(k/k)

denote the category of finite length W (k)-modules equipped with a (semilinear) action of

Gal(k/k). By Galois descent, we obtain an equivalence of categories (Modfl
W (k)

)Gal(k/k) ≃

ModflW (k) induced by the functors that sendM 7→M⊗W (k)W (k) ∈ (Modfl
W (k)

)Gal(k/k), and

N → NGal(k/k). To check this, one needs to prove that the natural map NGal(k/k) ⊗W (k)

W (k)→ N is an isomorphism. Suppose first that N is p-torsion. Then N corresponds to a
vector bundle in the étale site of Spec k, which must be trivial by descent; i.e., N ≃M ⊗k k
for some finite dimensional k-vector space N, which implies that the desired map is an
isomorphism. The case of general N follows by considering the (finite) p-adic filtration on
N and using that H>0(Gal(k/k), k) = 0.
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Now, let G be such that G∗ is étale. Note that for n≫ 0, we have

M(G∗
k
) ≃ Hom(G∗

k
,Z/pn)⊗Zp W (k) ≃ Hom(µpn , Gk)⊗Zp W (k),

where the last step follows from Cartier duality. By functoriality of crystalline cohomology
and Proposition 2.10, we obtain a map

Hom(µpn , Gk)⊗Zp W (k)→ Hom
Gal(k/k)

W (k)
(σ∗H

2
crys(BGk),W (k)/pn);

the latter denotes maps taken in (Modfl
W (k)

)Gal(k/k). Taking Galois fixed points, we obtain

a map M(G∗)→ (σ∗H
2
crys(BG))

∗. Applying duality now produces a map

σ∗H
2
crys(BG)→M(G∗)∗ =M(G).

This constructs Cmult as desired in (2.0.6).

Lemma 2.14. Let G be unipotent. The map Cuni is injective.

Proof. By Construction 2.1, we have the following commutative diagram where the bottom
row is exact:

H1(BG, lim−→Wn) H2
crys(BG)

H1(BG, lim−→V
W ) H1(BG, lim−→Wn) H2(BG,W )

Therefore, to prove the injectivity of Cuni, it suffices to show that H1(BG, lim−→V
W ) =

Hom(G, lim−→V
W ) = 0. But this follows because W is V -torsion free, and G, being finite

and unipotent, is killed by a power of V. □

Proposition 2.15. Let G be a finite commutative p-power rank group scheme over k. We
have a canonical isomorphism σ∗M(G) ≃ H2

crys(BG).

Proof. We use the natural maps Cuni and Cmult constructed before and argue separately.
To check that the natural maps are isomorphisms, we may assume that k is algebraically
closed (Lemma 2.6). We have an exact sequence 0→ G′ → G→ G′′ → 0, where one may
assume that G′ is simple. Since k is algebraically closed, G′ must be either Z/p, µp or αp.
By Lemma 2.7, we have the following diagram where the rows are exact:

0 H2
crys(BG

′′) H2
crys(BG) H2

crys(BG
′)

0 σ∗M(G′′) σ∗M(G) σ∗M(G′)

One sees directly that in this case, the map σ∗M(G)→ σ∗M(G′) is surjective; thus the
claim follows by Remark 3.19 and induction on the length of G. □

Proposition 2.16. Let G be a finite commutative p-power rank group scheme over k. We
have a canonical isomorphism H2

crys(BG) ≃ H3
crys(B

2G).
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Proof. Using descent along ∗ → B2G, we obtain an E1-spectral sequence

Ei,j
1 = Hj

crys((BG)
i) =⇒ H i+j

crys(B
2G).

The claim now follows by using this spectral sequence and Lemma 2.4. □

Lemma 2.17. For any group scheme G over k, one has H3
crys(B

2G) ≃ Ext1CRYS(G,Ocrys).

Proof. By applying descent along ∗ → B2G, similar to (2.0.3), we obtain an E2-spectral
sequence

Ei,j
2 = ExtiCRYS(H

−j(Z[B2G]),Ocrys) =⇒ H i+j
crys(B

2G).

The claim now follows from the fact that H−1(Z[B2G]) = 0, H−2(Z[B2G]) = G (by e.g.,
Hurewicz theorem) and H−3(Z[B2G]) = 0; the latter vanishing can be seen by applying
the Serre fibration spectral sequence for the fibration K(G,n)→ ∗ → K(G,n+ 1). □

Combining the three propositions before, we obtain

Corollary 2.18 (Berthelot–Breen–Messing). Let G be a finite group scheme over k of
p-power rank. Then σ∗M(G) ≃ Ext1CRYS(G,Ocrys).

3. Classification of finite locally free group schemes and p-divisible groups

In this section, we prove that the Dieudonné module functor induced by G 7→ H2
∆(BG)

give a fully faithful functor. However, one cannot expect this functor to be fully fathful
without carefully analyzing what other extra data on H2

∆(BG) one needs to remember.

Let us first take a step back to explain our perspective on Dieudonné theory taken in this
paper.

By Pontryagin duality, for a finite discrete abelian grouopG, the functorG 7→ Hom(G, S1)
gives an equivalence of categories. Note that in this case, since S1 = K(Z, 1) and G is finite,
one has a natural isomorphism Hom(G,S1) = H1(BG,Z[1]) = H2(BG,Z), where the latter
denotes Betti cohomology. Our main point here is that it is possible to reconstruct a group
(or rather its Pontryagin dual) from the cohomology of BG.

Now, let G be a finite locally free commutative group scheme over a base scheme S. By
Cartier duality, the functor G→ G∨ := Hom(G,Gm) gives an antiequivalence of categories.
Note that Hom(G,Gm) = H1(BG,Gm). Further, one may write Gm = Z(1)[1], where
Z(1) is the Tate twist. Thus, H1(BG,Gm) = H2(BG,Z(1)); the latter recovers the group
scheme G (or rather, its Cartier dual). The notion of Tate twists and other related twists
would play a very important role in our approach.

Since the goal of Dieudonné theory is to classify finite locally free or p-divisible group
schemes by linear algebraic data, it is natural to look for a more linearized way to recover
the Tate twist Z(1). To this end, we now entirely specialize to the p-adic set up. We take
S to be a p-complete quasisyntomic formal scheme. The p-adic Tate twist Zp(1) maybe
obtained from prismatic cohomology by means of the following formula:

(3.0.1) RΓ(Y,Zp(1)) ≃ Fib
(
Fil1NygRΓ∆(Y) {1}

φ1−can−−−−−→ RΓ∆(Y) {1}
)
,

where the curly brackets denote the Breuil–Kisin twist. Let us specialize to Y = BG.
Note the following vanishings, that would allow us to simply the above formula.

Lemma 3.1. Let G be a p-divisible group. We have H1
∆(BG) = 0.
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Proof. Note that any class in prismatic cohomology is killed quasisyntomic locally, thus it is
enough to prove that Hom(G,∆(·)) = 0 in the quasisyntomic topos. When G is p-divisible,
this follows because ∆(·) is derived p-complete. □

Remark 3.2. Even if we are working over a quasisyntomic base ring S, for a finite locally
group G scheme over S, the above vanishing need not hold. One can take S to be a
quasiregular semiperfectoid algebra such that ∆S has p-torsion. Then G = Z/pZS gives
such an example. Let us point out that if S has characteristic p > 0, this “pathology” does
not occur since for any quasiregular semiperfect ring S, the ring Acrys(S) is p-torsion free.
It is precisely to circumvent this pathology that we will be working with B2G for finite
locally free commutative group schemes, whereas for p-divisible groups G, the stack BG
suffices. This makes sense from a conceptual view point: formation of the stack BG does
not require G to be commutative, while B2G does.

Lemma 3.3. Let G be finite locally free group scheme of p-power rank. Then

H2(BG,Zp(1)) = Ext1(G,Zp(1)) = G∨.

Proof. Since G is killed by a power of p, it follows that the natural map Gm → Zp(1)[1] in-
duces an isomorphism Ext1(G,Zp(1)) = Hom(G,Gm) = G∨. To see that H2(BG,Zp(1)) =
Ext1(G,Zp(1)), it suffices to show that Hom(G∧G,Zp(1)) = 0; the latter follows from the
fact that Hom(G,Zp(1)) = Ext−1(G,Gm) = 0. □

Proposition 3.4. Let G be a finite locally free group scheme of p-power rank over a
quasisyntomic ring S. Then H2(B2G,Zp(1)) = 0 and H3(B2G,Zp(1)) = G∨.

Proof. For any quasisyntomic sheaf F such that H i(∗,F) = 0 for i > 0, we have
H2(B2G,F) = Hom(G,F) and H3(B2G,F)) = Ext1(G,F) = 0. We prove the latter
statement. Indeed, H3(B2G,F)) = π0Maps∗(B

2G,B3F), where the latter denotes pointed
maps. By delooping twice, that corresponds to homotopy classes E2-group objectsG→ BF .
However, since the objects are 1-truncated, that corresponds to Ext1(G,F). Applying this
to F = Zp(1), the conclusion follows from Lemma 3.3. □

Lemma 3.5. Let G be a p-divisible group. Then

H2(BG,Zp(1)) = Ext1(G,Zp(1)) = Tp(G
∨).

Proof. Follows from the above lemma by taking inverse limits. □

Lemma 3.6. Let G be a finite locally free group scheme or a p-divisible group. Then
Ext2(G,Zp(1)) = 0.

Proof. By considering inverse limits, one reduces to the finite locally free case. The fiber of
the natural map Gm → Zp(1)[1] is uniquely p-divisible. But since G is killed by a power of
p, we must have Ext2(G,Zp(1)) = Ext1(G,Gm). To show vanishing of the latter, let n be an

integer that kills G. Using the exact sequence 0→ µn → Gm
n−→ Gm → 0, one sees that any

class u ∈ Ext1(G,Gm) arises from a class v ∈ Ext1(G,µn). Let us represent v by an exact
sequence 0 → µn → H → G → 0. The class u can be described via pushout of µn → H
along µn → Gm. The class u can be killed if there exists a map H → Gm such that the
composition µn → H → Gm is the natural inclusion. However, by Cartier duality, we have
a surjection of group schemes H∨ → µ∨n ; therefore, u can be killed syntomic locally. □
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Let us now specialize (3.0.1) to Y = BG and apply H2(·). For a finite locally free group
scheme G for which H1

∆(BG) = 0, we get (by using the lemmas above)

(3.0.2) 0→ G∨ → H2
∆(Fil

1
NygBG) {1}

φ1−can−−−−−→ H2
∆(BG) {1} → 0.

For a p-divisible group G, we obtain

(3.0.3) 0→ Tp(G
∨)→ H2

∆(Fil
1
NygBG) {1}

φ1−can−−−−−→ H2
∆(BG) {1} → 0.

If G is a finite flat group scheme, by taking Y = B2G, we have the following fiber sequence
of D(Z)-valued quasisyntomic sheaves on S
(3.0.4)

τ[−3,−2]RΓ(B
2G(·),Zp(1))→ τ[−3,−2]Fil

1
NygRΓ∆(B

2G(·)) {1}
φ1−can−−−−−→ τ[−3,−2]RΓ∆(B

2G(·)) {1} .

The above follows because H1
∆(B

2G) = 0 and the vanishing from Lemma 3.6. By using

Proposition 3.4, one may further simply it to the following fiber sequence of D(Z)-valued
quasisyntomic sheaves
(3.0.5)

RΓqsyn((·), G∨)[−3]→ τ[−3,−2]Fil
1
NygRΓ∆(B

2G(·)) {1}
φ1−can−−−−−→ τ[−3,−2]RΓ∆(B

2G(·)) {1} .

Remark 3.7. One of the tricky feature of Dieudonné theory over general base rings is to
keep track of all the necessary data. A puzzling aspect of this theory is that certain extra
data, under specific situations, become conditions, or properties. More concretely, certain
data such as a “divided Frobenius” can often be ignored in torsion free cases, but they
become essential to record in torsion cases. Further, certain filtration data can be ignored
in the locally free cases (corresponding to Dieudonné theory for p-divisible groups), but
become essential in the general cases (e.g., finite flat group schemes).

The above exact sequences make it clear that it is possible to reconstructG from prismatic
cohomology, and what other extra data is essential for the purpose of reconstruction. Namely,
we use H2

∆(BG) or τ[−2,−3]RΓ∆(B
2G), viewed as a prismatic crystal, as well as the Nygaard

filtration, and the divided Frobenius. If one wanted to fully faithfully embed p-divisible
groups and finite locally free group schemes, one naturally looks for a certain category
where all of these data make sense. This is given by the derived category of the stack
Ssyn, introduced by Drinfeld and Bhatt–Lurie, which gives the category of coefficients for
prismatic cohomology along with the other natural data such as the Nygaard filtration,
divided Frobenius, etc. We will see that the formalism of quasi-coherent sheaves on these
stacks (which automatically keeps track of the relevant data) gives a very convenient
framework for Dieudonné theory.

The advantage of the stacky approach to Dieudonné theory taken in this paper is that
it makes to following construction of the Dieudonné module functor easy, thanks to the
stacky approach of Drinfeld and Bhatt–Lurie.

Definition 3.8 (Dieudonné crystal of a p-divisible group). Let G be a p-divisible group
over S. By functoriality of the stacky approach, we obtain a natural map

v : BGsyn → Ssyn.

The Dieudonné crystal of G, denoted asM(G), is defined to be R2v∗OBGsyn ∈ Dqc(S
syn).
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Definition 3.9 (Dieudonné crystal). Let G be a p-divisible group or a finite locally free
commutative group scheme of p-power rank over S. We have a natural map u : B2Gsyn →
Ssyn. The Dieudonné crystal of G, denoted asM(G), is defined to be

M(G) := τ[−3,−2]Rv∗OB2Gsyn [3].

Remark 3.10. Let us explain why the above two definitions are consistent in the case of
a p-divisible group. Since Fili∆(·) is derived p-complete as a quasisyntomic sheaf for all i,

similar to the proof of Lemma 3.1, it follows that H1(FiliNygRΓ∆BG) = 0. In the notation of

the above two definitions, this implies by quasisyntomic descent that R1v∗O = 0 = R2u∗O.
Similar to Proposition 2.16, one sees that R3u∗O ≃ R2v∗O.

It would be useful to have an alternative description ofM(G). Below, we work in the
category of sheaves for the p-completely faithfully flat topology on Ssyn with values in
D(Z); this will be denoted by D(Ssyn,Z). Note that Gsyn is a commutative group stack,
and can be viewed naturally as an object of D(Ssyn,Z).

Proposition 3.11. Let G be a p-divisible group over S. ThenM(G) ≃ Ext1D(Ssyn,Z)(G
syn,Ga).

Proof. Note thatM(G) ≃ π0Maps∗(B
2Gsyn,K(Ga, 3)), where the latter denotes internal

mapping space as pointed objects. By delooping twice, it is equivalent to π0MapsE2(G
syn,K(Ga, 1)),

where the latter denote maps as E2-group objects. Since the group objects themselves are
1-truncated, we see that it is isomorphic to Ext1(Gsyn,Ga), which gives the claim. □

Proposition 3.12. Let G be a p-divisible group or a finite locally free commutative group
scheme over S. Then

M(G) ≃ τ≥0RHomD(Ssyn,Z)(G
syn,Ga[1]).

Proof. Let P be an ordinary abelian group. We have a natural map Z→ Z[B2P ] whose
cofiber will be denoted as Zred[B2P ]. There is a natural map Zred[B2P ] → P [2]. By
animation, one obtains a natural map Z[B2P ]→ P [2] for any P ∈ D(Z)≥0. Using this, we
obtain a natural map

RHom(Gsyn[2],Ga)→ RHom(Z[B2Gsyn],Ga).

By the proof of Proposition 3.11, we see that Exti(Z[B2Gsyn],Ga) ≃ Exti−2(Gsyn,Ga) for
i ∈ {2, 3} . This yields the desired statement. □

Before we proceed to prove that the functor induced byM is fully faithful, we will prove
certain basic properties of the functorM. To this end, we note an important computation
and a duality compatibility.

Proposition 3.13. Let ψ : BGsyn
m → Ssyn be the structure map. Then R2ψ∗O ≃ O {−1} ∈

Dqc(S
syn).

Proof. Chern class of the tautological line bundle onBGm gives a mapO → R2ψ∗OBGsyn
m
{1} ,

which, as one can check, is an isomorphism. We give sketch of an argument. by quasisyn-
tomic descent, we may reduce to the case when S is a quasiregular semiperfectoid algebra.
Let us also choose a map R→ S, where R is a perfectoid ring mapping onto S. It would
suffice to prove that the natural map⊕

i∈Z
Fili−1

Nyg∆S {i− 1} →
⊕
i∈Z

H2(FiliNygRΓ∆(BGm) {i})
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of graded of modules over the graded ring ⊕i∈ZFil
i
Nyg∆S {i} induced by the tautological

Chern class c1 ∈ H2(Fil1NygRΓ∆(BGm) {1}) is an isomorphism. It suffices to prove that
the map on each component

Fili−1
Nyg∆S {i− 1} → H2(FiliNygRΓ∆(BGm) {i})

is an isomorphism. By reducing to Hodge–Tate cohomology and using the fact that
LBGm/S = O[−1], we can deduce that the above map is an isomorphism for i = 0. From

now on in this proof, we omit the Breuil–Kisin twists. By using the fact griNygRΓ∆(BGm) ≃
FiliconjRΓ∆(BGm), where the latter denotes i-th conjugate conjugate filtration on absolute

Hodge–Tate cohomology. Using the Nygaard filtration and induction on i, we would be
done if we prove that the induced map

Fili−1
conj∆S → H2(FiliconjRΓ∆(BGm))

is an isomorphism. To check this, we use the fact that griconjRΓ∆(BGm) ≃ ∧iLBGm/R[−i],
and the isomorphism LBGm/R ≃ LS/R ⊕O[−1]. The latter implies that

∧iLBGm/R[−i] ≃
⊕
m≥0

∧i−mLS/R[m− i][−2m] ≃
⊕
m≥0

gri−m
conj ∆S [−2m],

which yields the desired claim. □

Proposition 3.14. Let π : A→ S be an abelian scheme. Then R1πsyn∗ OAsyn is a vector
bundle of rank 2 dimA as an object of Dqc(S

syn). Further, let π∨ : A∨ → S be the dual

abelian scheme. Then we have R1π∨ syn
∗ O ≃ (R1πsyn∗ O)∗ {−1} .

Proof. The fact that R1πsyn∗ O is a vector bundle of rank 2 dimA can be checked in a way
similar to Proposition 3.29, by computing the Nygaard filtration by reducing to conjugate
filtration, and computing the latter by further using the fact that LA/S ≃ ΩA is a locally
free S-module of rank dimA. We explain a different proof using the classifying stack BA,
which in fact gives a proof identical to Proposition 3.29. Let π × π : A×A→ S. Then the
natural map R1πsyn∗ O ⊕R1πsyn∗ O → R1(π × π)syn∗ O is an isomorphism. To check this, by
quasisyntomic descent, we may assume that S is a quasiregular semiperfectoid algebra. It
would suffice to show that H1(FiliNygRΓ∆(A))⊕H

1(FiliNygRΓ∆(A)) ≃ H
1(FiliNygRΓ∆(A×

A)). The latter follows by induction on i, starting from the case i = 0, using the description
of graded pieces of the Nygaard filtration in terms of conjugate filtered Hodge–Tate
cohomology, where we use the fact that for any perfectoid ring R mapping onto S, we have
LA/R = LS/R ⊕ ΩA. Now using the E1-spectral sequence associated to applying descent

along ∗ → BA, we see that R1πsyn∗ O ≃ R2vsyn∗ O, where v : BA→ S is the structure map.
It is therefore enough to prove that R2v∗O is a vector bundle on Ssyn of rank 2 dimA.
This proof is identical to Proposition 3.29, where we deal with the more general case of
p-divisible groups.

For the formula for duality, we use the tautological map A× A∨ → BGm to obtain a
map

O{−1} → R1πsyn∗ O ⊗R1π∨ syn
∗ O

which gives the claim. □

Remark 3.15. Let R→ S be a perfectoid ring R mapping to a quasiregular semiperfectoid
ring S and let A be an abelian variety over S. As carried out later in the more general
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case of p-divisible groups, by using the vanishing H3(BA,O) = 0 for any abelian variety
A, and the fact LBA/R ≃ LS/R ⊕ ΩA[−1], one can show that the Hodge–Tate cohomology

H3

∆
(BA) = 0. This implies that H3

∆(BA) = 0. Similar to the case of p-divisible groups,

we have H3(FiliNygRΓ∆(BA)) = 0 (resp. H1(FiliNygRΓ∆(BA)) = 0) for all i ≥ 0. In the

quasisyntomic topos of S, this implies Ext2(A,FiliNyg∆(·)) = 0 (resp. Hom(A,FiliNyg∆(·)) =
0) for all i ≥ 0. Further, by the above proof, we have

H1(FiliNygRΓ∆(A)) = H2(FiliNygRΓ∆(BA)) = Ext1(A,FiliNyg∆(·)).

This has the following consequence

Proposition 3.16 (Duality). Let G be a finite locally free group scheme of p-power rank
over S. ThenM(G) is a dualizable object of dimension 0 of Tor amplitude in homological
degrees [0, 1]. Further, if G∨ is the Cartier dual of G, then we have a natural isomorphism

M(G∨) ≃M(G)∗ {−1} [1].

Proof. We can assume that S is a quasiregular semiperfectoid algebra. For the first
statement, we may work Zariski locally on S and assume that there is an exact sequence
0 → G → A′ → A → 0, where π : A → S and π′ : A′ → S are abelian schemes. By the
Ext-vanishings from Remark 3.15, it follows that we have a fiber sequence

R1πsyn∗ O → R1π′
syn
∗ O →M(G).

Applying Proposition 3.14 now gives the claim.
The duality compatibility follows once again by locally embedding G in abelian varieties,

using Proposition 3.14, and varying over all such local embeddings, to get a natural
map. □

Definition 3.17. Let Dperf(S
syn) denote the ∞-category of dualizable OSsyn-modules. We

will construct a functor

T(·)(n) : Dperf(S
syn)→ Dqsyn(S,Z),

that we think of as a certain Tate module functor of weight n. Let M ∈ Dperf(S
syn).

For a scheme f : R → S, we may consider f∗M ∈ Dperf(R
syn). The association R 7→

RΓ(Rsyn, f∗M {n}) defines a D(Z)-valued quasisyntomic sheaf on Sqsyn, which determines
the functor T (·)(n)

For our purposes, we will only need to use H0(T (·)(1)), which we denote as T 0(·)(1).

Remark 3.18. Suppose that S is a quasiregular semiperfectoid algebra. Using the concrete
descriptions from Construction 1.6, let us explain how to describe T (M)(n) for n ≥ 0.
Any such M ∈ Dqc(S

syn) arises from a (derived) graded module M ′ :=
⊕

i∈ZMi over

the graded ring
⊕

i∈Z Fil
i
Nyg∆S {i} . We assume that the associated maps Mi →Mi−1 {1}

are isomorphisms for i ≤ 0. Realizing M ′ as an object of Dqc(Spf(S)
Nyg), the pullback of

M ′ {n} along the map “can” can be identified with M0 {n} considered as a ∆S-module. By
applying the (derived) global section functor, the latter identifications recover the map
i : Mn → M0 {n} . Since M ′ {n} descends to Ssyn, we have an isomorphism φ∗M ′ {n} ≃
can∗M ′ {n} . By using the previous identification, applying the global section functor, we
obtain a map νn :Mn →M0 {n} , which maybe regarded as the “n-th divided Frobenius”.
It follows that

RΓ(Ssyn,M {n}) ≃ fib
(
Mn

νn−i−−−→M0 {n}
)
.
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Remark 3.19. Let S be a quasiregular semiperfectoid algebra and let G be a finite flat
locally free commutative group scheme of p-power rank over S. As a consequence of (3.0.5)
and Remark 3.18, we obtain an isomorphism

RΓqsyn(S,G
∨) ≃ RΓ(Ssyn,M(G) {1}).

By quasisyntomic descent, the same result remains true if we only assume S to be
quasisyntomic; this explains how to compute cohomology with coefficients in G in terms of
coherent cohomology of the Dieudonné crystal of G.

Similarly, for a p-divisible group G over S, we have

RΓqsyn(S, Tp(G
∨)) ≃ RΓ(Ssyn,M(G) {1}).

Let Dperf(S
syn)c≤1 denote the full subcategory of dualizable OSsyn-modules M with Tor

amplitude in homological degrees ≤ 1 for which T (M)(1) is coconnective and T 0M(1) is
representable by a finite locally free group scheme of p-power rank. Let FFG(S) denote
the category of finite locally free group schemes of p-power rank over S.

Proposition 3.20. The functor M∨ : FFG(S) → Dperf(S
syn)c≤1 that is determined by

G 7→ M(G∨) is left adjoint to T 0(M)(1).

Proof. In the proof below, we simply write Hom to mean connective cover of “RHom” in
the relevant stable ∞-categories. Let G ∈ FFG(S) and M ∈ Dperf(S

syn)c≤1. We note that

HomD(Ssyn,O)(M(G∨),M)
∼−→ HomO(M

∗[1],M(G∨)∗[1])
∼−→ HomO(M

∗[1],M(G) {1})
∼−→ HomO(M

∗[1],RHomD(Ssyn,Z)(G
syn,O[1]) {1})

∼−→ HomZ(G
syn,RHomO(O,M {1}))

∼−→ HomDqsyn(S,Z)(G,T
0(M)(1)).

In the above, the first isomorphism is a consequence of dualizability as objects ofD(Ssyn,O),
the second one follows from the Cartier duality compatibility from Proposition 3.16, the
third one comes from Proposition 3.12, the fourth one is a consequence of adjunction, and
the final one follows from Yoneda lemma and Definition 3.17.

This finishes the proof. □

Proposition 3.21. The functorM∨ : FFG(S)→ Dperf(S
syn) is fully faithful.

Proof. In view of Proposition 3.20, it would be enough to show that for any G ∈ FFG(S),
we have T 0(M(G∨))(1) ≃ G. This follows from Remark 3.18 and (3.0.5). □

Now, we turn to the case of a p-divisible group over S. In the spirit of our stacky
approach, we will begin by an understanding of the cotangent complex of the classifying
stack of a p-divisible group (cf. [Ill85]). At first, we assume that pNS = 0, and we consider
an n-truncated Barsotti–Tate group G for n ≥ N over S. Let ℓG denote the co-Lie complex
of G, which is a perfect complex of S-modules with Tor amplitude in [0, 1]. Its dual ℓ∨G is
called the lie complex. We let ωG := H0(ℓG), which is a finite locally free S-module, whose
rank is called the dimension of G.

By a result of Grothendieck, one has ℓ∨G = τ≥−1RHomZ(G
∗,Ga). Note that there is

a natural map ϕn : Ext1(G∗,Ga) → Hom(G∗,Ga) obtained as follows: an element of
Ext1(G∗,Ga) determines a map u : G∗ → Ga[1]. Applying (·)⊗L

Z Z/pn and noting that G∗
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is killed by pn, we obtain a map G∗[1]⊗G∗ → Ga[2]⊕Ga[1]; applying π1 gives the desired
map ϕn. If G is an n-truncated Barsotti–Tate group, then ϕn is an isomorphism. Suppose
now that G = {Gn} is a p-divisible group over S. Let f : Gn+1 → Gn be any map of group
schemes. By construction, we have a commutative diagram

Ext1(Gn,Ga) Hom(Gn,Ga)

Ext1(Gn+1,Ga) Hom(Gn+1,Ga).

ϕn

f pf

ϕn+1

Proposition 3.22. Let S be a bounded p∞-torsion, p-complete ring and G = {Gn} be a
p-divisible group over S. Then, we have a natural isomorphism

LBG/S := lim←−L∧p
BGn/S

≃ ωG[−1],

where ωG is a locally free S-module of finite rank.

Proof. First, we argue over S/pNS. The above commutative diagram shows that the map
“p” : G∗

n+1 → G∗
n induces an ind-object Ext1(G∗

n,Ga) that is equivalent to zero. By duality,

this implies that the pro-object H−1(ℓG) is zero. Since LBGn ≃ ℓGn [−1], we see that LBGn

is naturally pro-isomorphic to ωGn [−1]; since ωG := lim←−ωGn is locally free, this gives the

claim in that case. Since S has bounded p-power torsion, the pro-objects (in the category of
animated rings) S⊗L

Z Z/pk and S/pkS are pro-isomorphic, and our claim in the p-complete
case follows from base change properties of cotangent complex and taking limits. □

Remark 3.23. Note that for any map g : Gn → Gn+1, one has a similar diagram

Ext1(Gn+1,Ga) Hom(Gn+1,Ga)

Ext1(Gn,Ga) Hom(Gn,Ga).

ϕn+1

pg g

ϕn

Let S be such that pNS = 0. For a p-divisible group G = {Gn} over S, the above diagram
implies that the structure maps i : Gn → Gn+1 induces a pro-system Hom(Gn,Ga) that
is pro-zero. We have already seen in the above proof that the maps “p” : Gn+1 →
Gn induces a direct system Ext1(Gn,Ga) that is equivalent to zero. However, the pro-
system Ext1(Gn,Ga) induced by the maps i : Gn → Gn+1 is nonzero; in fact, we have
Ext1(G,Ga) ≃ ω∨

G∗ , the latter will be denoted by tG∗ .

Proposition 3.24. Let R→ S be a perfectoid ring surjecting onto a quasiregular semiper-
fectoid algebra S. Let G be a p-divisible group over S. Then we have

LBG/R ≃ LS/R ⊕ ωG[−1].

Proof. Follows from the transitivity fiber sequence of cotangent complex associated to the
maps R→ S → BG and the fact that ωG is locally free. □

Using the above proposition, one can fully describe the conjugate filtration on absolute
Hodge–Tate cohomology H2

∆
(BG). Below, let tG∗ := H2(BG,O), which is a locally free

S-module.

Proposition 3.25 (Hodge–Tate sequence). Let G be a p-divisible group over a quasiregular
semiperfectoid ring S. Then there is a canonical exact sequence
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0→ ∆S ⊗S tG∗ → H2

∆
(BG)→ (∆S ⊗S ωG) {−1} → 0.

Proof. Note that H2
∆(BG) can be computed as relative prismatic cohomology of BG∆S

with respect to the canonical prism (∆S , I) associated to S. The claim now follows from
the relative Hodge–Tate filtration and Proposition 3.22. □

Remark 3.26. The above sequence can be split non-canonically. It also implies that
H2

∆
(BG) is a locally free ∆S-module of rank height(G). Using the fact that H3(BG,O) = 0

(resp. H1(BG,O) = 0) and Proposition 3.22, one can obtain that H3

∆
(BG) = 0 (resp.

H1

∆
(BG) = 0).

Proposition 3.27. Let G be a p-divisible group over a quasiregular semiperfectoid ring S.
Then H2

∆(BG) is a locally free ∆S-module of rank height(G).

Proof. Let (∆S , I) be the prism associated to I. In this situation, I = (d) for some element
d. Using the fact that RΓ∆(BG) is derived d-complete, by a limit argument, one deduces

that H3
∆(BG) = 0. Using the fact that H1

∆
(BG) = 0, and the universal coefficient theorem,

one see that H2
∆(BG) ⊗

L
∆S

(∆S/d) = H2
∆(BG). Invoking Proposition 3.25 now gives the

claim. □

Let G be a p-divisible group over a quasiregular semiperfectoid ring S. Let RΓ∆(BG)
denote the absolute prismatic cohomology. Below, we use the following notations: F k

N :=

H2(FilkNygRΓ∆(BG)) and F
k
conj := H2(FilkconjRΓ∆(BG)).

Lemma 3.28. Let R→ S be a perfectoid ring mapping surjectively onto the quasiregular
semiperfectoid algebra S. In the above notations, the natural maps F k−1

conj → F k
conj are

injective and

F k
conj/F

k−1
conj ≃ (∧kLS/R[−k]⊗S tG∗)⊕ (∧k−1LS/R[−k + 1]⊗S ωG).

Proof. We have a fiber sequence

(3.0.6) Filk−1
conjRΓ∆(BG)→ FilkconjRΓ∆(BG)→ grkconjRΓ∆(BG).

Note that

grkconjRΓ∆(BG) ≃ ∧
kLS/R[−k] ≃

⊕
u+v=k

∧uLS/R[−u]⊗S SymvωG[−2v].

It follows that H2(grkconjRΓ∆(BG)) ≃ (∧kLS/R[−k]⊗S tG∗)⊕(∧k−1LS/R[−k+1]⊗SωG).We

also note that H1(grkconjRΓ∆(BG)) = 0. Moreover, using the vanishing H3(BG,O) = 0, it

follows thatH3(grkconjRΓ∆(BG)) = 0. Inductively, we obtain thatH3(FilkconjRΓ∆(BG)) = 0

for all k. Applying H2(·) to (3.0.6) now gives the desired claim. □

Proposition 3.29 (Dualizability). Let G be a p-divisible group over S of height h. Then
M(G) is a vector bundle on Spf(S)syn of rank h.
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Proof. In order to prove this, by quasisyntomic descent, we may reduce to the case where
S is a quasiregular semiperfectoid algebra. In this case, it suffices to prove that the filtered
object F k

N := H2
∆(Fil

k
NygRΓ∆(BG)) determines a vector bundle of rank h over the stack

Spf(S)Nyg = Spf
⊕

i∈Z(Fil
i
Nyg∆S)/Gm.

Note that we have a short exact sequence 0→ F 1
N → H2

∆(BG)→ tG∗ → 0. This gives

a natural surjection H2
∆(BG) ⊗∆S

S → tG∗ . Further, one sees that the kernel admits a

surjection to H2(BG,LBG/S [−1]) = ωG. By Proposition 3.27, this gives a natural short

exact sequence 0 → ωG → H2
∆(BG) ⊗∆S

S → tG∗ → 0. We recall that the modules wG

and tG∗ are locally free. Let us choose a splitting H2
∆(BG)⊗∆S

S ≃ ωG ⊕ tG∗ . Since the

surjection ∆S → S is henselian (see [ALB23, Lem. 4.1.28]), it is possible to choose an
isomorphism H2

∆(BG) ≃ W ⊕ T , such that W ⊗∆S
S ≃ ωG, T ⊗∆S

S ≃ tG∗ , and lifting

the isomorphism H2
∆(BG)⊗∆S

S ≃ ωG ⊕ tG∗ . It follows that under these identifications,

F 1
N = (Fil1Nyg∆S ⊗∆S

T )⊕W. Let us define

Gk
N := (FilkNyg∆S ⊗∆S

T )⊕ (Filk−1
Nyg∆S ⊗∆S

W ).

We have a natural map Gk
N → F k

N of (decreasing) filtered objects. We will show that it is
an isomorphism. Since the underlying objects are isomorphic, we need to check that it
induces isomorphism on graded pieces. The graded pieces for the left hand side are given
by

T k := grk(G•
N) ≃ (Filkconj∆S {k} ⊗S tG∗)⊕ (Filk−1

conj∆S {k − 1} ⊗S ωG).

Note that we have a fiber sequence

(3.0.7) Filk+1
NygRΓ∆(BG)→ FilkNygRΓ∆(BG)→ FilkconjRΓ∆(BG) {k} .

Since H1(FilkconjRΓ∆(BG)) = 0, it follows that F k+1
N → F k

N is injective. This gives a

map T k {−k} → Fk
conj of (increasing) filtered objects. By Proposition 3.25, the underlying

objects are isomorphic. Thus, to prove that T k {−k} → Fk
conj is an isomorphism, we are

reduced to checking isomorphism on graded pieces. However, this follows from Lemma 3.28.
Now, we have maps

T k → F k
N/F

k+1
N → F k

conj {k}
such that the composition is an isomorphism. From (3.0.7), we see that the map in the
right is injective. Therefore, T k = grk(G•

N) ≃ grk(F •
N), which implies that there is an

isomorphism

F k
N ≃ (FilkNyg∆S ⊗∆S

T )⊕ (Filk−1
Nyg∆S ⊗∆S

W ).

Note that
⊕

k F
k
N corresponds to the pullback of the associated vector bundle on Spf(S)Nyg

along the faithfully flat map Spf
⊕

i∈S(Fil
i
Nyg∆S)→ Spf(S)Nyg, and is locally free (since T

and W are locally free by choice). By faithfully flat descent, we conclude thatM(G) is a
vector bundle on of rank height(G). □

Remark 3.30. As a consequence of the above proof, when S is a quasiregular semiperfectoid
algbra, using (3.0.7), we see that the map F k

N → F k
conj is surjective. Using the fact that

H3
∆(BG) = 0, we inductively obtain that H3(FilkNygRΓ∆(BG)) = 0 for all k. Using the the

E2-spectral sequence (where the Ext-groups are computed in the quasisyntomic topos)

Ei,j
2 = Exti(H−j(Z[BG]),FilkNyg∆(·)) =⇒ H i+j(FilkNyg(RΓ∆(BG)),
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the vanishing H3(FilkNygRΓ∆(BG)) = 0 implies that Ext2(G,FilkNyg∆(·)) = 0. Similarly,

using H1(FilkNygRΓ∆(BG)) = 0, we also obtain Hom(G,FilkNyg∆(·)) = 0. Further, one also
has

H2(FiliNygRΓ∆(BG)) = Ext1(G,FiliNyg∆(·)).

Proposition 3.31 (Duality). Let G be a p-divisible group over S of height h. If G∨ is the
Cartier dual of G, then we have a natural isomorphism

M(G∨) ≃M(G)∗ {−1} .

Proof. Let us write G = {Gn} . We have a fiber sequence Gn → G
pn−→ G. Applying the

vanishing from Remark 3.30 gives us a fiber sequence

M(G)
pn−→M(G) −→M(Gn).

Dualizing, we obtain thatM(Gn)
∗ ≃ (M(G)∗/pn)[−1]. Now, we have

M(G)∨ ≃ lim←−M(G∨
n) ≃ lim←−M(Gn)

∗ {−1} [1],

where the last step follows from Proposition 3.16. Further,

lim←−M(Gn)
∗ {−1} [1] ≃ lim←−(M(G)∗ {−1})/pn ≃M(G)∗ {−1} .

This finishes the proof. □

Proposition 3.32. Let S be a quasisyntomic algebra and let BT(S) denote the category
of p-divisible groups over S. The functorM∨ : BT(S)→ Vect(Ssyn) is fully faithful.

Proof. Let G,H ∈ BT(S). We have

HomD(Ssyn,O)(M(G∨),M(H∨))
∼−→ HomO(M(H∨)∗,M(G∨)∗)
∼−→ HomO(M(H∨)∗,M(G) {1})
∼−→ HomO(M(H∨)∗,RHomD(Ssyn,Z)(G

syn,O[1]) {1})
∼−→ HomZ(G

syn,RHomO(O,M(H∨)[1] {1}))
∼−→ HomDqsyn(S,Z)(G[−1], τ≥−1T (M(H∨))(1)).

Note that, by Lemma 3.5, it follows that T 0(M(H∨))(1) ≃ Tp(H). Using the fiber sequence
Tp(G) → lim←−p

G → G and the fact that T (M(H∨))(1) is derived p-complete, it follows

further that

HomDqsyn(S,Z)(G[−1], τ≥−1T (M(H∨))(1))
∼−→ HomDqsyn(S,Z)(Tp(G), τ≥−1T (M(H∨))(1))
∼−→ Hom(Tp(G), Tp(H))
∼−→ HomBT(S)(G,H).

This finishes the proof. □

Definition 3.33 (Hodge–Tate weights). Let us suppose that S is a quasiregular semiper-
fectoid algebra. We have a natural map of graded rings⊕

i∈Z
FiliNyg∆S {i} → S,



20 SHUBHODIP MONDAL

which is obtained by quotenting the left hand side by the graded ideal

I :=

⊕
i ̸=0

FiliNyg∆S {i}

⊕ Fil1Nyg∆S .

This defines a map Spf(S)×BGm → Spf(S)Nyg. By quasisyntomic descent, this defines a
map

j : Spf(S)×BGm → Spf(S)Nyg

for any quasisyntomic S (cf. [Bha23, Remark 5.3.14]). For any M ∈ Dqc(Spf(S)
Nyg), the

pullback j∗M can be identified with ⊕i∈ZMi ∈ Dqc(Spf(S)
Nyg). The set of integers i such

that Mi ̸= 0 is called the set of Hodge–Tate weights of M. For M ∈ Dqc(Spf(S)
syn), the

set of Hodge–Tate weights of M is defined as the set of Hodge–Tate weights of the pullback
of M along Spf(S)Nyg → Spf(S)syn.

Remark 3.34 (Essential image of p-divisible groups, cf. [Kis06]). Let S be a quasisyntomic
algebra and let G be a p-divisible group over S. We know thatM(G) is a vector bundle
on Ssyn. Pullback ofM(G) to Spf(S)×BGm is given by

⊕
i∈ZH

2(BG,∧iLBG/S [−i]) (see
[Bha23, Remark 5.3.14]). By the calculation of cotangent complex from Proposition 3.22,
it follows thatM(G) has Hodge–Tate weights in {0, 1} . This implies that the functorM∨

from Proposition 3.32 lands in the subcategory Vect{0,1}(S
syn) of vector bundles on Ssyn

with Hodge–Tate weights in {0, 1} . In fact, as shown in [ALB23] (by reducing to the case
when S is perfectoid [SW20, Theorem 17.5.2]), the essential image can be exactly identified
with Vect{0,1}(S

syn) under the identification of admissible Prismatic Dieudonné modules
over S with Vect{0,1}(S

syn).

Remark 3.35 (Essential image of finite locally free p-power rank group schemes, cf. [Kis06]).
Let S be a quasisyntomic algebra. We will determine the full subcategory of Dperf(S

syn)
given by the essential image of finite locally free group schemes of p-power rank over S.
Let Dperf(S

syn)iso be the full subcategory of Dperf(S
syn) spanned by objects M satisfying

the following properties:

(1) There exists a Zariski open cover (Si)i∈I of S such thatMi :=M |Si
syn is isomorphic

to cofib(Vi
fi−→ V ′

i ), for some Vi, V
′
i ∈ Vect(Ssyn) and fi : Vi → V ′

i .
(2) The vector bundles Vi, V

′
i appearing above have Hodge–Tate weights in {0, 1} for

all i ∈ I.
(3) The map fi appearing above has the property that it is an isomorphism when

viewed in the category Vect(Ssyn)⊗Zp Qp.

Let G ∈ FFG(S). By a result of Raynaud [BBM82, Thm. 3.1.1], one can Zariski locally
realize G as a kernel of an isogeny A′ → A of abelian varieties. As in the proof of
Proposition 3.16, it follows that (locally) we have a fiber sequence

M(A)→M(A′)→M(G).

Since M(A) and M(A′) are vector bundles of Hodge–Tate weights in {0, 1} , it follows
thatM(G) indeed lies in Dperf(S

syn)iso. Now we can formulate the following.

Proposition 3.36. The functor

(3.0.8) M∨ : FFG(S)→ Dperf(S
syn)iso

induces an equivalence of categories.
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Proof. Since we have already shown that T 0(M(G∨))(1) ≃ G (see proof of Proposition 3.21),
it would be enough to prove that if M ∈ Dperf(S

syn)iso, then the quasi-syntomic sheaf
T 0(M)(1) lies in FFG(S), and M∨(T 0(M)(1)) ≃ M. To this end, we may work locally
and assume without loss of generality that there exists V, V ′ ∈ Vect{0,1}(S

syn) and a map

f : V → V ′ such that we have a fiber sequence V → V ′ →M and f [1p ] is an isomorphism.

By construction (see Definition 3.17), we have a fiber sequence

(3.0.9) T (V )(1)→ T (V ′)(1)→ T (M)(1)

By Remark 3.34, the map f corresponds to an isogeny f : G′ → G of p-divisible groups

such that M(G′),M(G) identify with V ′, V respectively. We have a fiber sequence
H∨ → G∨ → G′∨ where H is a finite locally free group scheme of p-power rank. It follows
that H∨ is killed by a power of p. Passing to derived p-completion, we obtain a fiber
sequence

H∨ → Tp(G
∨)[1]→ Tp(G

′∨)[1],

which maybe rewritten as a fiber sequence

(3.0.10) Tp(G
∨)→ Tp(G

′∨)→ H∨

of quasi-syntomic sheaves. Using (3.0.9), (3.0.10) and Remark 3.19, it follows that we
have a natural identification RΓ((·), H∨) ≃ T (M)(1) as D(Z)-valued quasisyntomic
sheaves. This shows that T 0(M)(1) ≃ H∨ as quasisyntomic sheaf of abelian groups.
Now, M∨(T 0(M)(1)) ≃ M∨(H∨) ≃ M(H) ≃ cofib(M(G) → M(G′)), where the last
isomorphism follows from the fiber sequence H → G′ → G. SinceM(G′),M(G) naturally
identify with V ′, V respectively, and we have a fiber sequence V → V ′ →M, we see that
M(H) ≃M. Thus, we obtainM∨(T 0(M)(1)) ≃M, which finishes the proof. □
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Mathématique de France, Paris, 1977. MR 498610

[Ill79] Luc Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup.
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[Mon21] S. Mondal, Dieudonné theory via cohomology of classifying stacks, Forum of Mathematics, Sigma

9 (2021), no. e21.
[SD23] S. Mondal S. Devalapurkar, p-typical curves on p-adic Tate twists and de Rham-Witt forms,

https://arxiv.org/abs/2309.16623, 2023.
[SW20] Peter Scholze and Jared Weinstein, Berkeley lectures on p-adic geometry, Annals of Mathematics

Studies, vol. 207, Princeton University Press, Princeton, NJ, 2020. MR 4446467

(Shubhodip Mondal) Dept. of Mathematics, University of British Columbia, 1984 Mathematics
Rd, Vancouver, BC V6T 1Z2

Email address: smondal@math.ubc.ca

https://www.math.ias.edu/~bhatt/teaching/mat549f22/lectures.pdf
https://www.math.ias.edu/~bhatt/teaching/mat549f22/lectures.pdf
https://arxiv.org/abs/1811.09439
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://arxiv.org/abs/2309.16623

	1. INTRODUCTION
	Notations and conventions
	Acknowledgements

	2. Crystalline Dieudonné theory
	3. Classification of finite locally free group schemes and p-divisible groups
	References

