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Abstract. We show that de Rham–Witt forms are naturally isomorphic to p-typical curves on
p-adic Tate twists, which revisits a question of Artin–Mazur pursued in the earlier work of Bloch
and Kato. We show this by more generally equipping a related result of Hesselholt on topological
cyclic homology with the motivic filtrations introduced by Bhatt–Morrow–Scholze.
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1. Introduction

Let k be a perfect field of characteristic p > 0. For a smooth proper scheme X over k, Artin and
Mazur [AM77] constructed certain formal groups Φr(X) associated to X, with the property that
p-typical curves on Φr(X) recover the slope [0, 1) part of crystalline cohomology Hr

crys(X/W (k))Q
(see [AM77, Cor. 3.3]). Roughly speaking, this relies on the fact that the Dieudonné module of
p-typical curves on the formal group Ĝm is W (k) with the usual F and V -operators. In [AM77,
Qn. (b)], the authors raised the question of whether there is a way to recover the slope [i, i + 1)
part of Hr

crys(X/W (k))Q via the formalism of p-typical curves on certain group valued functors.
This question was answered by Bloch [Blo77] under the hypothesis that p > dim X by studying

p-typical curves on symbolic part of the higher algebraic K-groups, generalizing the role played by
Gm when i = 0. The possibility of removing some of these assumptions was expressed in [Kat80,
p. 635, Rmk. 2].

The goal of our paper is to revisit the above question of Artin and Mazur. We show that instead
of using the algebraic K-groups, one may simply use the p-adic Tate twists Zp(n)[n] from [BMS19],
which, in some sense, generalizes the role played by the p-adic completion of Gm when n = 1. More
precisely, we prove the following:

Theorem 1.1. Let S be a quasisyntomic Fp-algebra. Then for every n ≥ 0, we have a natural
isomorphism ∏

Ip

LWΩn−1
S ≃ fib

(
lim←−

k

Zp(n)(S[t]/tk)[n]→ Zp(n)(S)[n]
)

,

where Ip denotes the set of positive integers coprime to p.

In the above, LWΩn−1
S denotes the animated de Rham–Witt forms as in Definition 2.12. By

analogy with the classical work of Cartier [Car67], the right hand side may be regarded as curves
on the functor Zp(n)[n]; which is further equipped with Frobenius and Verschiebung operators
Fm, Vm for all m ≥ 0 (see Construction 4.3). Let D(Zp(n)[n]S) :=

⋂
(m,p)=1,m>1 fib(Fm) (see

1
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Construction 4.5), which may be regarded as p-typical curves on the functor Zp(n)[n]. Note that
D(Zp(n)[n]S) is naturally equipped with the operators F := Fp and V := Vp. As a corollary of
Theorem 1.1, one obtains

Corollary 1.2. Let S be a quasisyntomic Fp-algebra. Then for each n ≥ 0, we have a natural
isomorphism

LWΩn−1
S ≃ D(Zp(n)[n]S),

which is compatible with the F and V defined on both sides.

Remark 1.3. Let us explain Theorem 1.1 and Corollary 1.2 in the case n = 1. For a quasisyntomic
Fp-algebra S, one has Zp(1)(S)[1] ≃ RΓét(S,Gm)∧p . More or less by definition, it then follows that
the right hand side of Theorem 1.1 is isomorphic to the ring of big Witt vectors of S; which is
isomorphic to

∏
Ip

W (S), where W (S) denotes the ring of p-typical Witt vectors of S (see, e.g.,
[Blo77, Prop. 3.6]). Thus Corollary 1.2 in this case says that W (S) ≃ D(Zp(1)[1]S).

Remark 1.4. Note that by the degeneration of the slope spectral sequence as proved in [Ill79],
the slope [i, i + 1) part of Hr

crys(X/W (k))Q identifies with Hr−i(X, WΩi
X)Q. Thus, our formula

recovers the slopes desired in [AM77, Qn. (b)]. Also, Corollary 1.2 gives a way to reconstruct the
de Rham–Witt forms purely from the p-adic Tate twists Zp(n).

Let us now mention the main ideas that go into the proof of Theorem 1.1, which, in particular,
uses some of the recent techniques introduced in p-adic geometry by Bhatt–Morrow–Scholze. In
[Hes96], Hesselholt proved that there is a natural isomorphism

TR(S)[1] ≃ fib(lim←−
k

TC(S[t]/tk)→ TC(S)), (1.1)

where TR denotes topological restriction homology and TC denotes topological cyclic homology1.
Further, Hesselholt [Hes96, Thm. C] showed that if S is smooth, then π∗TR(S, p) ≃ WΩ∗

S ,
where TR(S, p) denotes p-typical part of TR(S). In [BMS19], Bhatt–Morrow–Scholze constructed
a “motivic” filtration Fil∗ TC(S) on TC(S) where the graded pieces grnTC(S) are given by
Zp(n)(S)[2n]. Using techniques similar to [BMS19] and animating the theory of de Rham Witt
forms (Definition 2.12), we obtain the following:

Proposition 1.5. Let A be an Fp-algebra. There is a descending exhaustive complete Z-indexed
filtration Fil∗TR(A, p) on TR(A, p) such that grnTR(A, p) ≃ LWΩn

A[n].

Therefore, we pursue the more general question of obtaining a filtered version of (1.1). More
precisely, we prove the following:

Theorem 1.6. Let S be a quasisyntomic Fp-algebra. Then we have a natural isomorphism

(Fil∗−1 TR(S))[1] ≃ lim←−
k

fib
(
Fil∗ TC(S[t]/tk)→ Fil∗ TC(S)

)
.

Note that passing to graded pieces yields Theorem 1.1. In order to prove Theorem 1.6, we
crucially use the technique of quasisyntomic descent introduced in [BMS19]. This allows one
to reduce to the case when S is a quasiregular semiperfect algebra. In this case, the filtration
Fil∗ TC(S) is understood concretely by the work of [BMS19]. In Corollary 2.31, by studying the
animated de Rham Witt forms, we prove that if S is a quasiregular semiperfect algebra, then
Filn TR(S) is given by τ≥2nTR(S). Relatedly, we use the animated de Rham–Witt forms to give a
different proof of the following result of Darrell and Riggenbach [DR23, Thm. A].

Proposition 1.7. Let S be a quasiregular semiperfect algebra. Then π∗TR(S) is concentrated in
even degrees.

1Combine [Hes96, Thm. 3.1.9] and [Hes96, Thm. 3.1.10] to obtain this statement.
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Back to Theorem 1.6, one further needs to understand lim←−k
Fil∗ TC(S[t]/tk), when S is quasireg-

ular semiperfect. We show that this is given by the “odd filtration”:
lim←−

k

Filn TC(S[t]/tk) ≃ τ≥2n−1 lim←−
k

TC(S[t]/tk) (1.2)

(see Proposition 3.16). In order to show this, we require certain estimates on lim←−k
Zp(n)(S[t]/tk).

To this end, we show the following, which, along with Lemma 3.15, implies (1.2).

Proposition 1.8. Let S be a quasiregular semiperfect ring. Then

lim←−
k

Zp(i)(S[t]/tk) ∈ D[−1,0](Zp).

The arguments for proving the above proposition relies on studying properties of Nygaard
filtration on derived crystalline cohomology as well as Hodge and conjugate filtration on derived
de Rham cohomology. This result is the content of Section 3. In Section 4, we put together the
knowledge of all these filtrations to prove Theorem 1.6.

Conventions: We will freely use the language of ∞-categories as in [Lur09b], more specifically,
the language of stable ∞-categories [Lur17]. For an ordinary commutative ring R, we will let D(R)
denote the derived∞-category of R-modules, so that it is naturally equipped with a t-structure and
D≥0(R) (resp. D≤0(R)) denotes the connective (resp. coconnective) objects. For a map W → V ,
V/W will mean the cofiber unless otherwise mentioned. If C is a stable ∞-category, its associated
category of pro-objects Pro(C) is also a stable∞-category2. Let PolyR denote the category of finitely
generated polynomial algebras and AlgR denote the category of ordinary commutative R-algebras.
Then any functor F : PolyR → D can be left Kan extended to a functor F : Ani(AlgR) → D,
where Ani(AlgR) denotes the ∞-category of animated R-algebras. The functor F , or F |AlgR

will
be called the animation of F. If A is an algebra over a field of characteristic p > 0, we will write
A(pn) to denote its n-fold Frobenius twist. W (A) will denote the ring of p-typical Witt vectors.

Acknowledgement. We are very thankful to Bhargav Bhatt and Peter Scholze for helpful
conversations and suggestions. We would further like to thank Luc Illusie, Akhil Mathew, Alexander
Petrov, Noah Riggenbach, Arpon Raksit and Lucy Yang for helpful discussions regarding the paper.
We are especially grateful to Luc Illusie for many detailed comments and questions on a draft version
of this paper. The first author is supported by the PD Soros Fellowship and NSF DGE-2140743.
The second author acknowledges support from the Max Planck Institute for Mathematics, Bonn
and the University of British Columbia.

2. Animated de Rham–Witt theory and filtration on p-typical TR

Let k be a perfect field of characteristic p > 0. In this section, we discuss the “motivic” filtration
on TR(A, p) for a k-algebra A. In order to do so, we discuss an animated form of the theory of
de Rham–Witt forms from [Ill79]. As demonstrated in [Ill79], the theory of Cartier operators (see
[Ill79, § 2]) play an important role in analyzing the de Rham–Witt forms via devissage. To this
end, we will begin by discussing an animated form of Cartier operators, which would play a similar
role in analyzing the animated de Rham–Witt forms. We will focus on understanding the animated
Cartier operators in the case of quasiregular semiperfect algebras, which determines the entire
theory via quasisyntomic descent.

Construction 2.1 (Animated Cartier operators). Let A ∈ Algk. For each i ≥ 0, we define ZnLΩi
A

to be the animation of the functor ZnΩi
(·) : Polyk → D(k) from [Ill79, § 2.2.2]. Similarly, we define

BnLΩi
A to be the animation of the functor BnΩi

(·) : Polyk → D(k) from [Ill79, § 2.2.2]. There are

2Combine [Lur09a, Rmk. 2.13] and [Lur09a, Thm. 4.5] to obtain this statement.
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canonical maps BnLΩi
A → ZnLΩi

A and ZnLΩi
A → LΩi

A. Animating the Cartier isomorphism (see
[Ill79, § 2]), we obtain a fiber sequence

BnLΩi
A → ZnLΩi

A → LΩi
A(pn) . (2.1)

By construction, for each n ≥ 0, we have the following natural fiber sequences in D(Z):

B1LΩi
A → Zn+1LΩi

A
C−→ ZnLΩi

A (2.2)

B1LΩi
A → Bn+1LΩi

A
C−→ BnLΩi

A. (2.3)
Note that we set B0LΩi

A = 0 and Z0LΩi
A = LΩi

A. By construction, it follows that for all n ≥ 0,
we have BnLΩ0

A ≃ 0 and ZnLΩ0
A ≃ A(pn). Again, by construction, we have a fiber sequence

Z1LΩi
A → LΩi

A
d−→ B1LΩi+1

A . (2.4)

Proposition 2.2. The functors from Algop
k to D(Z) determined by A 7→ BnLΩi

A and A 7→ ZnLΩi
A

are fpqc sheaves for all n ≥ 0.

Proof. Note that the claim holds when i = 0. Let us suppose that for a fixed i ≥ 0, we have shown
that the functors A 7→ BnLΩi

A and A 7→ ZnLΩi
A are fpqc sheaves. Since the functor A 7→ LΩj

A

satisfies fpqc descent for all j (see [BMS19, Thm. 3.1]), by (2.4), A 7→ B1LΩi+1
A is an fpqc sheaf.

By (2.3), A 7→ BnLΩi+1
A is an fpqc sheaf for all n. By (2.1), A 7→ ZnLΩi+1

A is an fpqc sheaf for all
n. Therefore, by induction on i, we are done. □

Remark 2.3. For A ∈ Algk, the objects ZnLΩi
A and BnLΩi

A can be naturally viewed as objects
of D(A(pn)). The fiber sequence (2.1) lifts to a fiber sequence in D(A(pn)).

In order to further understand Z1LΩi
A via descent, it would be useful to relate it to the conjugate

filtration Fil∗conjLΩ∗
A and the Hodge filtration Fil∗Hodge LΩ∗

A on derived de Rham cohomology. Recall
that when A is a polynomial algebra, then Z1LΩi

A ≃ Z1Ωi
A := Ker(Ωi

A
d−→ Ωi+1

A ). We begin by
observing the following:

Proposition 2.4. Let A be a polynomial algebra over k. Then
Z1Ωi

A[−i] ≃ Filiconj LΩ∗
A ×LΩ∗

A
FiliHodge LΩ∗

A.

Proof. Since A is a polynomial algebra over k, we have Filiconj LΩ∗
A ≃ τ≥−iΩ∗

A and FiliHodge LΩ∗
A ≃

Ω≥i
A . Note that there is a natural map Z1Ωi

A[−i] ≃ τ≥−iΩ≥i
A → Filiconj LΩ∗

A ×LΩ∗
A

FiliHodge LΩ∗
A.

Since we have a fiber sequence Ω≥i
A → Ω∗

A → Ω≤i−1
A , we obtain a natural isomorphism

Filiconj LΩ∗
A ×LΩ∗

A
FiliHodge LΩ∗

A
≃−→ fib(Filiconj LΩ∗

A → Ω≤i−1
A ).

By computing homotopy groups, one sees that the map Z1Ωi
A[−i]→ fib(Filiconj LΩ∗

A → Ω≤i−1
A ) is

an isomorphism, which finishes the proof. □

By animating Proposition 2.4, we obtain the following:

Corollary 2.5. Let A ∈ Algk. Then
Z1LΩi

A[−i] ≃ Filiconj LΩ∗
A ×LΩ∗

A
FiliHodge LΩ∗

A.

Proposition 2.6. Let A be a perfect ring. Then BnLΩi
A ≃ ZnLΩi

A ≃ 0 for all i > 0.

Proof. Since A is perfect, we have LΩi
A = 0 for i > 0. Therefore, using (2.1), it suffices to prove

that BnLΩi
A ≃ 0 for i > 0. By (2.3), this reduces to the case n = 1. Using (2.4) and descending

induction on i, it suffices to show that the map can : Z1LΩ0
A → LΩ0

A is an isomorphism, which
follows because A is perfect. □

Before proceeding further, let us recall two definitions from [BMS19].
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Definition 2.7 ([BMS19, Def. 4.10]). Let f : A→ B be a map of Fp-algebras. Then f is said to
be quasisyntomic if it is flat and the cotangent complex LB/A has Tor amplitude in homological
degrees [0, 1].

Proposition 2.8 ([BMS19, Def. 8.8]). An Fp-algebra S is said to be semiperfect if the natural
map S♭ := lim←−x→xp

S → S is surjective. S is called quasiregular semiperfect if S is semiperfect and
LS/Fp

is a flat S-module supported in homological degree 1.

Proposition 2.9. Let A let a quasiregular semiperfect algebra. Then Z1LΩi
A[−i] is discrete for all

i ≥ 0.

Proof. Let I := Ker(A♭ → A). By [BMS], one knows that LΩ∗
A ≃ DA♭(I). Further, the conjugate

filtration FiliconjLΩ∗
A is also discrete and is given by the A♭-submodule of DA♭(I) generated by

elements of the form a
[l1]
1 · · · a[lm]

m such that m ≥ 0, ai ∈ I and
∑m

u=1 lu < (i + 1)p. The Hodge
filtration on LΩ∗

A identifies with the divided power filtration on DA♭(I), i.e., FiliHodge LΩ∗
A is the

ideal generated by elements of the form a
[l1]
1 · · · a[lm]

m such that m ≥ 0, ai ∈ I and
∑m

u=1 lu ≥ i. In
particular, note that the map FiliHodge LΩ∗

A → LΩ∗
A is injective.

From the above description, we see that the composite map
Filiconj LΩ∗

A → LΩ∗
A → LΩ∗

A/ FiliHodge LΩ∗
A

is surjective. This implies that the fiber of Filiconj LΩ∗
A → LΩ∗

A/ FiliHodge LΩ∗
A must be discrete. By

Corollary 2.5, the fiber identifies with Z1LΩi
A[−i], which finishes the proof. □

Proposition 2.10. Let A be a quasiregular semiperfect algebra. Then BnLΩi
A[−i] and ZnLΩi

A[−i]
are discrete for all n, i ≥ 0.

Proof. Note that B0LΩi
A = 0 by construction, and Z0LΩi

A[−i] ≃ LΩi
A[−i] ≃ Γi

A(I/I2), where
I := Ker(A♭ → A), thus the claim holds when n = 0. By the proof of Proposition 2.9, we see
that if A is a quasiregular semiperfect algebra, one has a natural identification Z1LΩi

A[−i] ≃
Filiconj LΩ∗

A∩FiliHodge LΩ∗
A owing to the discreteness of all objects involved. The explicit description

of Filiconj LΩ∗
A and FiliHodge LΩ∗

A in this case implies that the natural map Z1LΩi
A[−i]→ gri

conjLΩ∗
A

is surjective. Using the fiber sequence (2.1), it follows that B1LΩi
A[−i] is discrete. By (2.3), it

inductively follows that BnLΩi
A[−i] is discrete for all n ≥ 1. Applying (2.1) again, and using the

fact that LΩi
A[−i] is discrete, we see that ZnLΩi

A[−i] is discrete for all n ≥ 1. □

Now, we will discuss animation of the de Rham–Witt theory from [Ill79].

Definition 2.11. Let Algk denote the category of k-algebras. For each i ≥ 0, we define
LWnΩi

(·) : Algk → D(Wn(k))

to be the animation of the functor WnΩi
(·) : Polyk → D(Wn(k)) defined in [Ill79].

For A ∈ Algk, the object LWnΩi
A is naturally an object of D(Wn(A)); further, the usual operators

on the de Rham–Witt complex extend to LWnΩi
A. In particular, we have F : LWnΩi

A → LWn−1Ωi
A,

V : LWnΩi
A → LWn+1Ωi

A which extend the Frobenius and Verschiebung maps. We also have a map
R : LWnΩi

A → LWn−1Ωi
A extending the restriction maps which allows one to obtain a pro-object

LW•Ωi
A in the derived ∞-category of W (k)-modules. The operators F and V may be lifted to

maps F : LW•Ωi
A → LW•−1Ωi

A and V : LW•Ωi
A → LW•+1Ωi

A. When A is a polynomial algebra, it
follows that FV = V F = p; by animation, this gives natural fiber sequences of pro-objects

LW•Ωi
A/F → LW•Ωi

A/p→ LW•Ωi
A/V (2.5)

and
LW•Ωi

A/V → LW•Ωi
A/p→ LW•Ωi

A/F. (2.6)
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Definition 2.12. Let Algk denote the category of k-algebras. For each i ≥ 0, we define
LWΩi

(·) : Algk → D(W (k))

to be the functor determined by sending a k-algebra A to LWΩi
A : = lim←−n,R

LWnΩi
A.

Example 2.13. Note that LWnΩ0
A ≃ Wn(A) and therefore, LWΩ0

A ≃ W (A), the usual ring of
p-typical Witt vectors.

We have natural maps F, V : LWΩi
A → LWΩi

A which are obtained by passing to the limit of
the map of pro-objects above. We also obtain the following fiber sequences

LWΩi
A/F → LWΩi

A/p→ LWΩi
A/V (2.7)

and
LWΩi

A/V → LWΩi
A/p→ LWΩi

A/F. (2.8)
The following proposition will allow us to calculate the animated de Rham–Witt sheaves by

devissage.
Proposition 2.14. Let A ∈ Algk. For r ≥ 1, we have a fiber sequence

LWΩi−1
A /F r → LWΩi

A/V r → LWrΩi
A

Proof. When r = 1, the proposition follows from animating [Ill79, Prop. 3.18] and passing to inverse
limits. In general, our claim is a consequence of the following: □

Lemma 2.15. Let A ∈ Algk Then we have a fiber sequence of pro-objects

LW•−rΩi−1
A /F r dV r

−−→ LW•Ωi
A/V r → LWrΩi

A

Proof. Suppose that A is a polynomial algebra. Let R : Wn+1Ωi
A[pr]→WnΩi

A[pr] be the induced
restriction maps. By [Ill79, Prop. 3.4], Rr = 0; in particular, the same holds for Wn+1Ωi

A[F r] and
Wn+1Ωi

A[V r]. Therefore, the desired result follows from animation and passing to pro-objects, once
we show that for a polynomial algebra A, the following sequence is exact for n ≥ 2r, where the
quotients are taken in the discrete sense:

0→ V rWn−rΩi−1
A /prWnΩi−1

A
d−→WnΩi

A/V rWn−rΩi
A →WrΩi

A → 0.

Using [Ill79, Prop. 3.2], one obtains the exactness in the middle and right. For the injectivity of
d, let us suppose that there is an x ∈ Wn−rΩi−1

A such that dV rx = V ry for some y ∈ Wn−rΩi
A.

Applying F r on both sides (also using FdV = d and FV = p), we obtain dx = pry. Let x ∈WrΩi−1
A

be the restriction of x. Therefore, we have dx = 0. It follows from [Ill79, Prop. 3.21]3 that there
exists an α ∈W2rΩi−1

A such that x = F rα. Now let α̃, x̃ ∈W Ωi−1
A be elements that restrict to α, x

respectively. Then it follows that x̃− F rα̃ restricts to zero in WrΩi−1
A . Since the restriction maps

induce a quasi-isomorphism of complexes WΩ∗
A/pr →WrΩ∗

A (see [Ill79, Cor. 3.17]), it follows that
x̃− F rα̃ ∈ prW Ωi−1

A + dW Ωi−2. This implies that V rx̃ = prz for some z ∈W Ωi−1
A . By restriction,

we obtain V rx = prz, where z ∈WnΩi−1
A . This finishes the proof. □

To further analyze the animated de Rham–Witt sheaves, we use the following notion from
[AN21].
Definition 2.16. Let M ∈ D(Z) and V : M →M be an endomorphism. We will say that M is
derived V -complete if lim←−V

M = 0.

Let M/V n := cofib(M V n

−−→ M). Then we have a fiber sequence lim←−V
M → M → lim←−M/V n,

which implies that M is derived V -complete if and only if the natural map M → lim←−M/V n is an
isomorphism. The ∞-category of derived V -complete objects are stable under limits.

3Illusie pointed out that there was a gap in the proof of [Ill79, Prop. 3.21] which was fixed in [IR83, II, 1.3].
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Lemma 2.17. Let M ∈ D(Z) and V : M →M be such that M is derived V -complete. If M/V is
discrete then so is M.

Proof. We will prove that M/V n is discrete by induction on n. The diagram M
V−→M

V n−1

−−−→M
yields a fiber sequence

M/V →M/V n →M/V n−1.

It follows inductively from the hypothesis that M/V n is discrete for all n ≥ 1 and the natural
maps M/V n → M/V n−1 are surjective. Since M ≃ lim←−M/V n by derived V -completeness of M ,
the conclusion follows. □

Lemma 2.18. Let A ∈ Algk. Then LWΩi
A is derived V -complete for each i ≥ 0.

Proof. Let us define V ′ : LWnΩi
A → LWnΩi

A as the composite of V : LWnΩi
A → LWn+1Ωi

A with
R : LWn+1Ωi

A → LWnΩi
A. When A is a polynomial algebra, it follows that V ′n = 0. Therefore,

LWnΩi
A is derived V ′-complete after animation. Passing to inverse limit over n, it follows that

LWΩi
A is derived V -complete. □

Proposition 2.19. The functor Algop
k → D(Z) determined by A 7→ LWΩi

A is an fpqc sheaf.

Proof. We will use induction on i; the case i = 0 is clear. By Lemma 2.18, we reduce to checking
that A 7→ LWΩi

A/V is an fpqc sheaf. The latter follows inductively from [BMS19, Theorem 3.1]
and Proposition 2.14 (in the case r = 1). □

Remark 2.20. The functor Algop
k → D(Z) determined by A 7→ LWrΩi

A is also an fpqc sheaf; this
follows from Proposition 2.14 and Proposition 2.19.

The importance of Cartier operators for our purposes is reflected in the following proposition.

Proposition 2.21. Let A ∈ Algk. Then LW Ωi
A/V ≃ lim←−C

ZnLΩi
A and LW Ωi

A/F ≃ lim←−C
BnLΩi+1

A .

Proof. Let A be a polynomial algebra over k. Then by [Ill79, Prop. 3.11], there is a natural map
cofib(WnΩi

A
V−→ Wn+1Ωi

A) F n

−−→ ZnΩi
A of N-indexed (via the restriction maps Wn+1Ωi

A → WnΩi
A

on the left-hand side and via C on the right-hand side) objects whose fiber is an N-indexed object
whose transition maps are all zero. By animation and taking inverse limit over n ∈ N, we obtain

LWΩi
A/V ≃ lim←−

C

ZnLΩi
A.

The other assertion is deduced similarly from loc. cit. □

Proposition 2.22. Let S be a perfect ring. Then LWΩi
S = 0 for i > 0.

Proof. Follows from Proposition 2.6 and Proposition 2.21. □

Proposition 2.23. Let S be a quasiregular semiperfect algebra. Then LWΩi
S [−i] is discrete for

each i ≥ 0.

Proof. Using Lemma 2.17, it suffices to prove that (LW Ωi
S/V )[−i] is discrete. By Proposition 2.21,

LWΩi
S/V ≃ lim←−ZnLΩi

A. By Proposition 2.10, ZnLΩi
A[−i] is discrete. Since (by Proposition 2.10),

B1LΩi
A[−i] is also discrete, using the fiber sequence (2.2), we see that the maps Zn+1LΩi

A[−i] C−→
ZnLΩi

A[−i] are surjections. This finishes the proof. □

Finally, we begin our discussion on TR.
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Construction 2.24. Note that for a k-algebra A, the functor A 7→ TRr(A, p) is the animation of
its restriction to the full subcategory of finitely generated polynomial algebras. Further, when A is
smooth, by [Hes96, Thm. B], we have

πnTRr(A, p) ≃
⊕

0≤i≤n
n−i is even

WrΩi
A.

Therefore, by animating the decreasing Postnikov filtration on TRr(A, p) (given by τ≥∗TRr(A, p))
from the category of polynomial algebras, one can equip TRr(A, p) with the structure of a filtered
object Fil∗TRr(A, p) such that

grn
MTRr(A, p) ∼=

⊕
0≤i≤n

n−i is even

LWrΩi
A[n] (2.9)

Note that there natural restriction maps R : TRr+1(A, p)→ TRr(A, p), and one sets
TR(A, p) : = lim←−

r,R

TRr(A, p).

By passing to inverse limit over the restriction maps one can equip TR(A, p) with the structure of a
filtered object Fil∗MTR(A, p). Note that by [Hes96, Thm. B], the map R : TRr+1(A, p)→ TRr(A, p)
induces a map Rn,r,i : LWr+1Ωi

A[n] → LWrΩi
A[n] at the level of the i-th summand of grn that

is equivalent to (pλr+1) n−i
2 R[n], where λr+1 ∈ (Z/pr+1Z)×. It follows from this description that

lim←−r,Rn,r,i
LWrΩi

A[n] ≃ 0 if n > i. Therefore, we see that grnTR(A, p) ≃ LWΩn
A[n]. Let us

summarize this construction in the following proposition.

Proposition 2.25. Let A be a k-algebra. There is a descending exhaustive complete Z-indexed
filtration Fil∗TR(A, p) on TR(A, p) such that grnTR(A, p) ≃ LWΩn

A[n]. This may be be called the
“motivic” filtration on TR(A, p).

Proof. The construction of the filtration and the description of the graded pieces follow from the
above discussion. In order to prove the completeness of the filtration Fil∗ TR(A, p), by construction,
it would be enough to show the completeness of Fil∗ TRr(A, p). To this end, it is enough to show
that Filk TRr(A, p) is k-connective. By considering sifted colimits, this reduces to the case when A
is a polynomial algebra, in which case the result follows since the filtration is given by the Postnikov
filtration. □

Corollary 2.26 ([AN21, Thm. 6.14]). Let S be a perfect ring. Then TR(S, p) ≃W (S).

Proof. Follows from Proposition 2.22 and Proposition 2.25. □

Let us now consider the category of quasisyntomic k-algebras qSynk, thought of as a Grothendieck
site equipped with the quasisyntomic topology. If A is in qSynk, we will give a different construction
of Fil∗ TR(A, p) by quasisyntomic descent that will be important later in this paper. By [BMS19,
Prop. 4.31] any quasisyntomic sheaf on qSynk is determined by its values on quasiregular semiperfect
algebras.

Proposition 2.27. Let A ∈ qSynk. The functor A 7→ Fil∗TR(A, p) is a quasisyntomic sheaf with
values in filtered spectra.

Proof. Since Fil∗ TR(A, p) is a complete descending filtration on TR(A, p), by considering limits,
it would be enough to prove that A 7→ grnTR(A, p) ≃ LWΩn

A[n] is a sheaf for all n. The latter
follows from Proposition 2.19. □

Proposition 2.28. Let R be a quasiregular semiperfect algebra. Then π∗TR(R, p) is concentrated
in even degrees.
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Proof. Follows from Proposition 2.25 and Proposition 2.23. □

The following proposition, along with Proposition 2.27, gives an alternative way to understand
the filtration on p-typical TR via quasisyntomic descent (see [BMS19, Prop. 4.31]).

Proposition 2.29. Let R be a quasiregular semiperfect algebra. Then
Filn TR(R, p) ≃ τ≥2nTR(R, p).

Proof. Follows because grn TR(R, p)[−2n] is discrete. □

Note that for any Fp-algebra A, there is a canonical product decomposition TR(A) ≃
∏

(k,p)=1 TR(A, p).
One may define a filtration Fil∗ TR(A) :=

∏
(k,p)=1 Fil∗ TR(A, p). This equips TR(A) with a de-

scending complete exhaustive filtration such that grn TR(A) ≃
∏

(k,p)=1 LWΩn
A[n]. Our previous

discussion on TR(A, p) implies the following corollaries.

Corollary 2.30. Let A ∈ qSynk. The functor A 7→ Fil∗TR(A) is a quasisyntomic sheaf with values
in filtered spectra.

Corollary 2.31. Let R be a quasiregular semiperfect algebra. Then π∗TR(R) is concentrated in
even degrees, and

Filn TR(R) ≃ τ≥2nTR(R).

3. Pro-system of truncated polynomial rings

Let S be a quasisyntomic Fp-algebra. In [BMS19], Bhatt–Morrow–Scholze constructed a “motivic”
filtration Fil∗ TC(S) on TC(S) where the graded pieces grnTC(S) are given by Zp(n)(S)[2n]. The
goal of this section is to identify the induced motivic filtration on lim←−TC(R[t]/tk), when R is a
quasiregular semiperfect algebra, with the “odd filtration” (see Proposition 3.16). We will use the
description of the Tate twists Zp(n) in terms of Nygaard filtration on derived crystalline cohomology.
To this end, we recall a few notations and basic properties.

Notation 3.1. Let A be an Fp-algebra. We will use dR, Fil∗Hodge dR and Fil∗conj dR to denote
the functors LΩ∗

(·), Fil∗Hodge LΩ∗
(·) and Fil∗conj LΩ∗

(·). Let d̂R denote the completion of dR with
respect to Fil∗Hodge dR, so that it is naturally equipped with a filtration Fil∗Hodge d̂R. By con-
struction, grn

Hodge dR(A) ≃ grn
Hodged̂R(A) ≃ ∧nLA/Fp

[−n]. By animating the Cartier isomorphism,
grn

conj dR(A) ≃ ∧nLA(p)/Fp
[−n] (see [Bha12, Prop. 3.5]). The following proposition discusses certain

monoidal properties of these functors that will be useful later.

Proposition 3.2. Let A and B be two Fp-algebras. Then,
(1) dR(A⊗Fp B) ≃ dR(A)⊗Fp dR(B).
(2) FilnHodge dR(A⊗Fp

B) ≃ colimj+k≥n FiljHodge dR(A)⊗Fp
FilkHodge dR(B).

(3) Filnconj dR(A⊗Fp
B) ≃ colimj+k≤n Filjconj dR(A)⊗Fp

Filkconj dR(B).

Proof. By animation, these can be checked by reducing to polynomial algebras. For polynomial
algebras, one can further reduce it to checking on graded pieces and use [BMS19, Lem. 5.2]
(cf. [GP18]). □

Remark 3.3. In the language of filtered derived categories DF (Fp) as in [BMS19], the construction
appearing in the right hand side is called the Day convolution, which turns DF (Fp) into a
symmetric monoidal stable ∞-category. One also has the completed filtered derived category
D̂F (Fp), equipped with an induced monoidal structure. It follows from Proposition 3.2 that
Fil∗Hodge d̂R(A ⊗Fp

B) ≃ Fil∗Hodge d̂R(A)⊗̂Fil∗Hodge d̂R(B), where the right hand side denotes the
monoidal operation on D̂F (Fp).
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Notation 3.4. Let A be an Fp-algebra. We let RΓcrys(A) denote derived crystalline cohomology,
and Fil∗Nyg RΓcrys(A) denote the Nygaard filtration; they are both defined to be animated from
polynomial algebras. The associated Nygaard completed object will be dentoted by R̂Γcrys(A),
which is naturally equipped with a filtration Fil∗Nyg R̂Γcrys(A). We will only apply these notions in
the case when A is a quasisyntomic Fp-algebra, and we will assume A to be quasisyntomic from
now for simplicity. The proposition below lists some basic properties of the Nygaard filtration.

Proposition 3.5. Let A be a quasisyntomic Fp-algebra. Then,
(1) R̂Γcrys(A)/p ≃ d̂R(A).
(2) grn

NygRΓcrys(A) ≃ grn
NygR̂Γcrys(A) ≃ Filnconj dR(A).

(3) Multiplication by p induces a natural map p : Filn−1
Nyg RΓcrys(A)→ FilnNyg RΓcrys(A) whose

cofiber is naturally isomorphic to FilnHodge dR(A).
(4) Multiplication by p induces a natural map p : Filn−1

Nyg R̂Γcrys(A)→ FilnNyg R̂Γcrys(A) whose
cofiber is naturally isomorphic to FilnHodge d̂R(A).

(5) There is a divided Frobenius map φn : FilnNygRΓcrys(A) → RΓcrys(A) which gives a fiber
sequence

Zp(n)(A) −→ FilnNygRΓcrys(A) φn−can−−−−−→ RΓcrys(A).
(6) There is a divided Frobenius map φn : FilnNygR̂Γcrys(A) → R̂Γcrys(A) which gives a fiber

sequence
Zp(n)(A) −→ FilnNygR̂Γcrys(A) φn−can−−−−−→ R̂Γcrys(A).

Proof. See [BMS19, § 8] for the case when A is a quasiregular semiperfect Fp-algebra. The
proposition follows by quasisyntomic descent. □

Let us define Fp(n)(A) := Zp(n)(A)/p. We show that Fp(n)(A) may be described purely in
terms of the animated Cartier theory from Section 2.

Proposition 3.6. Let A be quasisyntomic Fp-algebra. We have a natural fiber sequence

Fp(n)(A)[n]→ Z1LΩn
A

can−C−−−−→ LΩn
A, (3.1)

Proof. By animation, it is enough to prove the claim when A is a polynomial algebra. By [BMS19,
Prop. 8.21] and quasisyntomic descent, it follows that

Zp(n)(A)[n] ≃ RΓproét(Spec A, WΩn
Spec A,log),

where WΩn
Spec A,log := lim←−WrΩn

Spec A,log (see [BMS19, Prop. 8.4]). The claim now follows from
going modulo p, and using [Ill79, 2.1.20, 2.4.1.1, Thm. 2.4.2, Cor. 5.7.5]. □

Remark 3.7. Let R be a quasiregular semiperfect algebra. By [BMS19, Lem. 8.19], Zp(i)(R)
is discrete for i > 0. This may also be seen by reducing modulo p and using the sequence (3.1).
Further, Zp(0)(R) ∈ D[−1,0](Zp) and Zp(i)(S) = 0 for i < 0. Using Lemma 3.15, we see that the
filtration Filn TC(R) constructed in [BMS19] is simply given by τ≥2n−1TC(R).

Having discussed these basic properties, we now focus on the behavior of these invariants for the
pro-system of truncated polynomial rings.

Proposition 3.8. Let R be a perfect ring. Then lim←− dR(R[t]/tn) ≃ R[[t]](p) ⊕R[[t]](p)[−1] as an
R[[t]](p)-module.

Proof. Let n = pk. Then LR[t]/tn ≃ (tn/t2n)[1]⊕R[t]/tn as an R[t]/tn-module. Let In := (tn/t2n),
which is free of rank 1 as an R[t]/tn-module. For s ≥ 0, one has

∧sLR[t]/tn [−s] ≃ Γs(In)⊕ Γs−1(In)[−1].
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Now, we note that since R[t]/tn is liftable to Z/p2Z, along with a lift of the Frobenius, the conjugate
filtration on dR(R[t]/tn) splits [Bha12, Prop. 3.17]; this gives

dR(R[t]/tn) ≃ Γ∗(In)⊕ Γ∗(In)[−1].

Finally, note that the natural map R[t]/tpk+1 → R[t]/tpk induces the zero map Ipk+1 → Ipk . This
shows that the N-indexed objects dR(R[t]/tn) and (R[t]/tn)(p) ⊕ (R[t]/tn)(p)[−1] are isomorphic
as pro-objects. This yields the desired claim. □

Proposition 3.9. Let R be a perfect ring. Then Z1LΩi
R[t]/tn ≃ 0 as a pro-object for i ≥ 2.

Proof. First we prove that the natural map dR(R[t]/tn)→ d̂R(R[t]/tn) is a pro-isomorphism. To
this end, note that the pro-object d̂R(R[t]/tn) admits a complete descending filtration (induced by
the Hodge filtration) Fil∗Hodged̂R(R[t]/tn) whose graded pieces are described as

gr0d̂R(R[t]/tn) ≃ R[t]/tn, gr1d̂R(R[t]/tn) ≃ Ω1
R[t]/tn [−1], grid̂R(R[t]/tn) ≃ 0 for i > 1

as pro-objects. This implies that the pro-object d̂R(R[t]/tn) is pro-isomorphic to Ω∗
R[t]/tn , where

the latter denotes the classical de Rham complex. Now let n = pk. Then Ω∗
R[t]/tn , as an (R[t]/tn)(p)-

module is naturally isomorphic to

Ω∗
R[t] ⊗R[t](p) (R[t]/tn)(p).

Considering that R[t] lifts to Z/p2Z along with a lift of the Frobenius, we see that the pro-object
d̂R(R[t]/tn) ≃ (R[t]/tn)(p) ⊕ (R[t]/tn)(p)[−1] ≃ dR(R[t]/tn), where the latter isomorphism follows
from the proof of Proposition 3.8.

Since for i ≥ 2, we have d̂R(R[t]/tn) ≃ d̂R(R[t]/tn)/ FiliHodge, and the natural map dR(R[t]/tn)→
d̂R(R[t]/tn) is a pro-isomorphism, it now follows that the natural map

dR(R[t]/tn)→ dR(R[t]/tn)/ FiliHodge

is a pro-isomorphism. Further, note that the natural map

FiljconjdR(R[t]/tn)→ dR(R[t]/tn)
is a pro-isomorphism for j ≥ 1. Therefore, the natural map

FiliconjdR(R[t]/tn)→ dR(R[t]/tn)/ FiliHodge

is a pro-isomorphism for i ≥ 2. Thus the fiber, which is naturally isomorphic to Z1LΩi
R[t]/tn [−i], is

pro-zero for i ≥ 2. □

Proposition 3.10. Let R be a perfect ring. Then lim←−Zp(i)(R[t]/tn) = 0 for i > 1.

Proof. By derived p-completeness, it is enough to prove that lim←−Fp(i)(R[t]/tn) = 0 for i > 1. Now
the fiber sequence (see (3.1))

Fp(i)(R[t]/tn)[i]→ Z1LΩi
R[t]/tn

can−C−−−−→ LΩi
R[t]/tn

yields the desired vanishing since Z1LΩi
R[t]/tn and LΩi

R[t]/tn are both pro-zero for i > 1. □

Now we focus our attention to lim←−Zp(i)(R[t]/tn), where R is a quasiregular semiperfect algebra.
For this purpose, it will be convenient to work with Nygaard filtration on derived crystalline
cohomology.

Lemma 3.11. Let R be a quasiregular semiperfect ring. Then

lim←−Filiconj dR(R[t]/tn) ∈ D[−1,0](Zp).
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Proof. Note that dR(R[t]/tn) ≃ dR(R)⊗Fp
dR(Fp[t]/tn). By the proof of Proposition 3.8, Fil0conj dR(Fp[t]/tn) ≃

(Fp[t]/tn)(p) and Filiconj dR(Fp[t]/tn) ≃ (Fp[t]/tn)(p) ⊕ (Fp[t]/tn)(p)[−1] as n-indexed pro-objects
for each i ≥ 1. For fixed i, n, we have

Filiconj dR(R[t]/tn) ≃ colim
u+v≤i

Filuconj dR(R)⊗Fp Filvconj dR(Fp[t]/tn).

The above formula gives a natural map(
Fil∗conj dR(R)⊕ Fil∗−1

conj dR(R)[−1]
)
⊗Fp (Fp[t]/tn)(p) → Fil∗conj dR(R[t]/tn) (3.2)

To prove that this induces an isomorphism in the category of pro-objects, it is enough to prove
that the graded pieces are pro-isomorphic. To this end, let I := Ker(R♭ → R); then we have
LR/Fp

≃ I/I2[1]. One computes that in the pro-category, we have

L(R[t]/tn)/Fp
≃ (I/I2 ⊗R R[t]/tn)[1]⊕R[t]/tn.

Computing wedge powers, we see that (3.2) is indeed an isomorphism. Since ∧iLR/Fp
[−i] ≃ Γi

R(I/I2)
is discrete, Fil∗conj dR(R) is also discrete. The maps induced on π−1 on the left hand side of (3.2)
are surjections and therefore the proposition follows. □

Lemma 3.12. Let R be a quasiregular semiperfect ring. Then

lim←−FiliNyg R̂Γcrys(R[t]/tn) ∈ D[−1,0](Zp).

Proof. The left hand side is equipped with a complete descending filtration lim←−Fili+∗
Nyg R̂Γcrys(R[t]/tn),

where the graded pieces are computed by lim←−Fili+∗
conj dR(R[t]/tn). Therefore, the claim follows from

the above lemma. □

Lemma 3.13. Let R be a quasiregular semiperfect ring. Then

lim←− d̂R(R[t]/tn) ≃ lim←−
(

d̂R(R)⊗Fp (Fp[t]/tn)(p) ⊕ d̂R(R)⊗Fp (Fp[t]/tn)(p)[−1]
)

.

Proof. It follows that d̂R(R[t]/tn) may be computed by completing d̂R(R)⊗Fp
d̂R(Fp[t]/tn) with

respect to the Day convolution filtration induced from the Hodge filtration Fil∗Hodge d̂R(R) and
Fil∗Hodge d̂R(Fp[t]/tn). However, as an N-indexed pro-object, FiliHodge d̂R(Fp[t]/tn) = 0 for i ≥ 2
(see Proposition 3.9); therefore, one may ignore the completion step in order to compute the inverse
limit, i.e., lim←− d̂R(R[t]/tn) ≃ lim←−

(
d̂R(R)⊗Fp

d̂R(Fp[t]/tn)
)

. This yields the desired statement. □

Proposition 3.14. Let R be a quasiregular semiperfect ring. Then
lim←−Zp(i)(R[t]/tn) ∈ D[−1,0](Zp).

Proof. When i = 0, one may check the claim by reducing modulo p and using the Artin–Schreier
sequence. For i = 1, we argue as follows: note that for any quasisyntomic Fp-algebra S, we have
Zp(1)(S)[1] ≃ RΓét(S,Gm)∧p . This implies that we have a fiber sequence∏

(r,p)=1

W (S)→ lim←−
n

Zp(1)(R[t]/tn)[1]→ Zp(1)(R)[1].

Since R is quasiregular semiperfect, Zp(1)(R) is discrete, which gives the claim.
Let us now suppose that i > 1. Since we have a fiber sequence of derived p-complete objects

lim←−Zp(i)(R[t]/tn)→ lim←−FiliNyg R̂Γcrys(R[t]/tn) φi−ι−−−→ lim←− R̂Γcrys(R[t]/tn),

it would be enough to prove that the map φi − ι : lim←−FiliNyg R̂Γcrys(R[t]/tn)/p→ lim←− R̂Γcrys(R[t]/tn)/p
induces a surjection on π−1. Note that the composition

Fili+1
Nyg R̂Γcrys(R[t]/tn)→ FiliNyg R̂Γcrys(R[t]/tn) φi−ι−−−→ R̂Γcrys(R[t]/tn)/p ≃ d̂R(R[t]/tn)
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is homotopic to the canonical map ι and the latter factors as
Fili+1

Nyg R̂Γcrys(R[t]/tn)→ Fili+1
Hodge d̂R(R[t]/tn)→ d̂R(R[t]/tn). (3.3)

Since we have a fiber sequence
FiliNyg R̂Γcrys(R[t]/tn) p−→ Fili+1

Nyg R̂Γcrys(R[t]/tn)→ Fili+1
Hodge d̂R(R[t]/tn),

it follows from Lemma 3.12 that the map lim←−Fili+1
Nyg R̂Γcrys(R[t]/tn)→ lim←−Fili+1

Hodge d̂R(R[t]/tn) is a
surjection on π−1. Therefore, the image under π−1 of the composite map lim←−Fili+1

Nyg R̂Γcrys(R[t]/tn)→
lim←− d̂R(R[t]/tn) coming from (3.3) is the same as image of π−1 induced by the map

α : lim←−Fili+1
Hodge d̂R(R[t]/tn)→ lim←− d̂R(R[t]/tn).

On the other hand, note that the composition

Fili−1
Nyg R̂Γcrys(R[t]/tn) p−→ FiliNyg R̂Γcrys(R[t]/tn) φi−ι−−−→ R̂Γcrys(R[t]/tn)/p

is homotopic to φi−1. Furthermore, since i > 0, the map φi−1 : Fili−1
Nyg R̂Γcrys(R[t]/tn)→ R̂Γcrys(R[t]/tn)/p

factors as
Fili−1

Nyg R̂Γcrys(R[t]/tn)→ gri−1
Nyg R̂Γcrys(R[t]/tn)→ R̂Γcrys(R[t]/tn)/p.

Passing to inverse limits over n, we see that the map Fili−1
Nyg R̂Γcrys(R[t]/tn)→ gri−1

Nyg R̂Γcrys(R[t]/tn)
induces surjection on π−1. Therefore, the image of the map induced on π−1 by the composite map
lim←−Fili−1

Nyg R̂Γcrys(R[t]/tn)→ lim←− R̂Γcrys(R[t]/tn)/p is the same as the image of the map induced on
π−1 by lim←− gri−1

Nyg R̂Γcrys(R[t]/tn)→ lim←− R̂Γcrys(R[t]/tn)/p. The latter map identifies with the map

β : lim←−Fili−1
conj dR(R[t]/tn)→ lim←− d̂R(R[t]/tn).

It would be enough to prove that image of π−1(α) and π−1(β) generates π−1(lim←− d̂R(R[t]/tn))
under addition. Note that there is a natural map

lim←−FiliHodge d̂R(R)⊗Fp
Fil1Hodge d̂R(Fp[t]/tn)→ lim←−Fili+1

Hodge d̂R(R[t]/tn).

Composing with α, we get a map lim←−FiliHodge d̂R(R)⊗Fp
Fil1Hodge d̂R(Fp[t]/tn)→ lim←− d̂R(R[t]/tn).

Note that by Lemma 3.13, we have an isomorphism π−1(lim←− d̂R(R[t]/tn)) ≃ d̂R(R)[[s]]. It follows
that under the latter isomorphism, the image of π−1(α) contains all elements of the form

∑
i xis

i,
where xi ∈ FiliHodge d̂R(R) and image of π−1(β) contains all elements of the form

∑
i yis

i, where
yi ∈ Fili−2

conj dR(R) (see (3.2)). For i > 1, we have

Fili−2
conj dR(R) + FiliHodge d̂R(R) = d̂R(R),

which finishes the proof. □

Lemma 3.15. Let us suppose that a spectrum S admits a descending complete and exhaustive
Z-indexed filtration Fil∗ S such that the graded pieces grn S ∈ Sp[2n,2n−1]. Then there is a natural
isomorphism Filn S ≃ τ≥2n−1S.

Proof. Let us fix an integer n. Let us choose another integer j ≥ 2n−1. By the description of graded
pieces, it follows that πj(Filn S) = πj(Filn−1 S) = . . . . Therefore, πj(Filn S) ≃ πj(S), since the
filtration is exhaustive. By completeness of the filtration, we have Filn S ≃ lim←−k∈N Filn S/ Filn+k S

By the description of the graded pieces, it follows that if j < 2n− 1, then πj(Filn S/ Filn+k) ≃ 0.
Moreover, using the fiber sequence

grn+k S → Filn S/ Filn+k+1 S → Filn S/ Filn+k S,

we see that the maps π2n−1(Filn S/ Filn+k+1)→ π2n−1(Filn S/ Filn+k) are surjections for k ≥ 1. By
using Milnor sequences, it follows that πj(Filn S) = 0 for j < 2n− 1. Since we have a natural map
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Filn S[−2n+1]→ S[−2n+1], and Filn S[−2n+1] is connective, we obtain a map Filn S → τ≥2n−1S.
Since we know that this map induces isomorphism on all homotopy groups, we obtain the desired
claim. □

Now we can summarize the observations in this section in the following manner: let S be a
quasisyntomic Fp-algebra. Let us define

Fil∗ lim←−
k

TC(S[t]/tk) := lim←−
k

Fil∗BMSTC(S[t]/tk).

It follows that the graded pieces of this filtration are computed as
grn lim←−

k

TC(S[t]/tk) ≃ lim←−
k

Zp(n)(S[t]/tk)[2n].

It also follows that Fil∗ lim←−k
TC(S[t]/tk) is a complete exhaustive filtration and the functor deter-

mined by S 7→ Fil∗ lim←−k
TC(S[t]/tk) is a quasisyntomic sheaf of spectra. The proposition below

gives a concrete description of this filtration for quasiregular semiperfect algebras.

Proposition 3.16. Let R be a quasiregular semiperfect algebra. Then

Filn lim←−
k

TC(R[t]/tk) ≃ τ≥2n−1 lim←−
k

TC(R[t]/tk).

Proof. Follows from the above description of the graded pieces along with Proposition 3.14 and
Lemma 3.15. □

Remark 3.17. Let us point out that certain computations of topological cyclic homology of R[t]/tk

where R is a perfect(oid) ring appeared in [Sul23] and [Rig22] (cf. [Mat22, Thm. 10.4]).

4. Proof of the main result

In this section, we will enhance Hesselholt’s isomorphism (1.1) with the motivic filtrations studied
above. We recall some notations first. Let S be a quasisyntomic Fp-algebra. Let Fil∗ TR(S) be the
filtration constructed before Corollary 2.30. Let Fil∗ TC(S[t]/tk) and Fil∗ TC(S) be the motivic
filtrations as constructed by Bhatt–Morrow–Scholze.

Proposition 4.1. Let S be a quasisyntomic Fp-algebra. Then we have a natural isomorphism

(Fil∗−1 TR(S))[1] ≃ lim←−
k

fib
(
Fil∗ TC(S[t]/tk)→ Fil∗ TC(S)

)
.

Proof. Let R be a quasiregular semiperfect algebra. Using Hesselholt’s result (1.1), we obtain a
natural fiber sequence

lim←−
k

TC(R[t]/tk)→ TC(R)→ TR(R)[2].

By Corollary 2.31 and Remark 3.7, we obtain a fiber sequence
τ≥2n−1 lim←−

k

TC(R[t]/tk)→ τ≥2n−1TC(R)→ (τ≥2n−2TR(R))[2].

Using Corollary 2.31 and Proposition 3.16, this implies that we have a fiber sequence
Filn lim←−

k

TC(R[t]/tk)→ Filn TC(R)→ Filn−1 TR(R)[2].

Applying quasisyntomic descent produces a natural isomorphism
(Filn−1 TR(S))[1] ≃ lim←−

k

fib
(
Filn TC(S[t]/tk)→ Filn TC(S)

)
;

this finishes the proof. □
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Proposition 4.2. Let S be a quasisyntomic Fp-algebra. Then we have a natural isomorphism∏
(u,p)=1

LWΩn−1
S ≃ fib

(
lim←−

k

Zp(n)(S[t]/tk)[n]→ Zp(n)(S)[n]
)

.

Proof. By passing to the graded pieces in the filtered isomorphism in Proposition 4.1, we obtain a
natural isomorphism∏

(u,p)=1

LWΩn−1
S [n− 1][1] ≃ fib

(
lim←−

k

Zp(n)(S[t]/tk)[2n]→ Zp(n)(S)[2n]
)

,

which gives the desired result. □

Construction 4.3 (Frobenius and Verschiebung). Let S be a quasisyntomic Fp-algebra. Let

C(Zp(n)[n]S) := fib
(

lim←−
k

Zp(n)(S[t]/tk)[n]→ Zp(n)(S)[n]
)

,

which we regard as curves on Zp(n)[n]. Let m ≥ 0 be an integer. The assignment t 7→ tm determines
an endomorphism Vm : C(Zp(n)[n]S)→ C(Zp(n)[n]S), which we call the m-th Verschiebung. We
will now construct the m-th Frobenius maps. Let us first assume that S is quasiregular semiperfect.
We will construct a “transfer endomorphism”

Φm : lim←−
k

Zp(n)(S[t]/tk)→ lim←−
k

Zp(n)(S[t]/tk) (4.1)

To do so, one notes that there are transfer maps TC(S[t]/tkm)→ TC(S[t]/tk) induced by the map
S[t]/tk → S[t]/tkm determined by t 7→ tm. This induces a map

Φ̃m : lim←−
k

TC(S[t]/tk)→ lim←−
k

TC(S[t]/tk).

Now, using the assumption that S is quasiregular semiperfect, Proposition 3.16, and passing to
graded pieces produces the desired transfer map (4.2) on the p-adic Tate twists. By quasisyntomic
descent, for any quasisyntomic Fp-algebra, we obtain a “transfer map”

Φm : lim←−
k

Zp(n)(S[t]/tk)→ lim←−
k

Zp(n)(S[t]/tk). (4.2)

The latter induces an endomorphism
Fm : C(Zp(n)[n]S)→ C(Zp(n)[n]S),

that we call the m-th Frobenius.

Remark 4.4. Note that the Frobenius and Verschiebung operators on TR(S) induce the operators
Fm and Vm on the left hand side of Proposition 4.2 as well. Using [McC23, Rmk. 2.4.6], it follows
that Proposition 4.2 is compatible with the Fm and Vm defined on both sides.

Construction 4.5 (p-typicalization). Let S be a quasisyntomic Fp-algebra. Using Construction 4.3,
we obtain natural maps ηm : fib(Fm) → C(Zp(n)[n]S), which maybe viewed as an object of
D(Zp)/C(Zp(n)[n]S). We define

D(Zp(n)[n]S) :=
∏

(m,p)=1,m>1

ηm ∈ D(Zp)/C(Zp(n)[n]S),

where the product is taken in D(Zp)/C(Zp(n)[n]S). Naively, one may think of D(Zp(n)[n]S) as
“
⋂

(m,p)=1,m>1 fib(Fm)”, where the latter should be suitably interpreted as above. By analogy with
the classical situation, we will call D(Zp(n)[n]S) the p-typical curves on Zp(n)[n] over S. Note that
D(Zp(n)[n]S) is naturally equipped with the operators F := Fp and V := Vp.
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Corollary 4.6. Let S be a quasisyntomic Fp-algebra. Then we have a natural isomorphism
LWΩn−1

S ≃ D(Zp(n)[n]S),
which is compatible with the F and V defined on both sides.

Proof. This follows from Proposition 4.2, the previous discussion and the description of the Frobenius
on TR(S) following [Hes96, Prop. 3.3.1]. □
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