DIFFERENTIAL GEOMETRY II: PROBLEM SET 1

Due Feb 6

1. Let $\mathbb{R}^{P}=\left(\mathbb{R}^{n+1} \backslash\{0\}\right) / \sim$, where \sim is the equivalence relation

$$
\left(x_{0}, \ldots, x_{n}\right) \sim\left(y_{0}, \ldots, y_{n}\right)
$$

if

$$
\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda y_{0}, \ldots, \lambda y_{n}\right)
$$

for some $\lambda \in \mathbb{R} \backslash\{0\}$. The equivalence class of a point $x=\left(x_{0}, \ldots, x_{n}\right)$ will be denoted

$$
\left[x_{0}, \ldots, x_{n}\right]
$$

with square brackets. We can cover $\mathbb{R} \mathbb{P}^{n}$ by the open sets

$$
U_{i}=\left\{\left[x_{0}, \ldots, x_{n}\right]: x^{i} \neq 0\right\}
$$

Recall that $\mathbb{R P}^{n}$ is a manifold with coordinates on U_{i} given by

$$
\left(u^{1}, \ldots, u^{n}\right)=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)
$$

The tautological line bundle $L \rightarrow \mathbb{R P}^{n}$ is

$$
L=\left\{([x], w) \in \mathbb{R}^{n} \times \mathbb{R}^{n+1}: w \in[x]\right\}
$$

Define the bundle projection $\pi: L \rightarrow \mathbb{R P}^{n}$ by $\pi([x], w)=[x]$.
We can view L as a line bundle by trivializing L over U_{i}. A local generator for the fibers over U_{i} is given by

$$
e^{U_{i}}([x])=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, 1, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)
$$

so that any $\left.w \in L\right|_{[x]}$ can be written on U_{i} as $w=\lambda e^{U_{i}}([x])$ for $\lambda \in \mathbb{R}$. In the notation from class, here $e^{U_{i}}$ is the local frame and λ is the local component in that frame.
(a) Compute the transition function $c_{i j}$ on $U_{i} \cap U_{j}$.
(b) Show that the linear functions $x_{0}, x_{1}, \ldots, x_{n}$ on \mathbb{R}^{n+1}, and more generally,

$$
s=\sum_{k} a_{k} x_{k}, \quad a_{i} \in \mathbb{R}
$$

define sections of the dual bundle L^{*}. To do this, from s we obtain local functions $s_{i}: U_{i} \rightarrow \mathbb{R}$ on U_{i} by setting $s_{i}=s / x_{i}$ (write these local functions in u^{i} coordinates), and show that s transforms on $U_{i} \cap U_{j}$ by

$$
s_{i}=c_{i j}^{*} s_{j}
$$

where $c_{i j}^{*}$ are the transition functions of $\left(L^{*}, U_{i}\right)$.
2.
(a) Let $E \rightarrow M$ and $\tilde{E} \rightarrow M$ be two vector bundles. Suppose E and \tilde{E} can be trivialized by the same cover $M=\bigcup U_{\alpha}$. Denote the transition functions by

$$
c_{\mu \nu}: U_{\mu} \cap U_{\nu} \rightarrow G L(k, \mathbb{R}), \quad \tilde{c}_{\mu \nu}: U_{\mu} \cap U_{\nu} \rightarrow G L(k, \mathbb{R}) .
$$

Show that E is isomorphic to \tilde{E} if and only if there exists local functions $h_{\mu}: U_{\mu} \rightarrow G L(k, \mathbb{R})$ such that

$$
\tilde{c}_{\mu \nu}=h_{\mu} c_{\mu \nu} h_{\nu}^{-1},
$$

on $U_{\mu} \cap U_{\nu}$.
(b) Show that a line bundle $L \rightarrow M$ is isomorphic to the trivial bundle $\mathbb{R} \times M$ if and only if it admits a nowhere vanishing section.
3. Let $E \rightarrow M$ be a vector bundle with trivializing cover $M=\bigcup U_{\mu}$ and transition functions $c_{\mu \nu}: U_{\mu} \cap U_{\nu} \rightarrow G L(r, \mathbb{R})$. Recall that E is orientable if it is isomorphic to a bundle with trivializations satisfying $\operatorname{det} c_{\mu \nu}>0$. The determinant bundle associated to E, denoted $\operatorname{det} E$, is a line bundle over M with the same trivialization $M=\bigcup U_{\mu}$ and transition functions $\operatorname{det} c_{\mu \nu}$.
(a) Let M^{n} be an orientable manifold with Riemannian metric $g_{i j}$. Show that

$$
\mathrm{dVol}_{g}=\sqrt{\operatorname{det} g_{i j}}
$$

defines a nowhere vanishing section of $\operatorname{det} T^{*} M$. This section is sometimes written

$$
\mathrm{dVol}_{g}=\sqrt{\operatorname{det} g_{i j}} d x^{1} \wedge \cdots \wedge d x^{n}
$$

since $\operatorname{det} T^{*} M=\Omega^{n}(M)$.
(b) Show that a vector bundle $E \rightarrow M$ is orientable if and only if $\operatorname{det} E$ is isomorphic to the trivial bundle $M \times \mathbb{R}$.

