DIFFERENTIAL GEOMETRY II: PROBLEM SET 1

Due Feb 6

1. Let
$$\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$$
, where \sim is the equivalence relation

 $(x_0,\ldots,x_n)\sim(y_0,\ldots,y_n)$

 $\mathbf{i}\mathbf{f}$

$$(x_0,\ldots,x_n)=(\lambda y_0,\ldots,\lambda y_n)$$

for some $\lambda \in \mathbb{R} \setminus \{0\}$. The equivalence class of a point $x = (x_0, \ldots, x_n)$ will be denoted

$$[x_0,\ldots,x_n],$$

with square brackets. We can cover \mathbb{RP}^n by the open sets

$$U_i = \{ [x_0, \dots, x_n] : x^i \neq 0 \}.$$

Recall that \mathbb{RP}^n is a manifold with coordinates on U_i given by

$$(u^1,\ldots,u^n) = \left(\frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_n}{x_i}\right)$$

The tautological line bundle $L \to \mathbb{RP}^n$ is

$$L = \{([x], w) \in \mathbb{RP}^n \times \mathbb{R}^{n+1} : w \in [x]\}.$$

Define the bundle projection $\pi: L \to \mathbb{RP}^n$ by $\pi([x], w) = [x]$.

We can view L as a line bundle by trivializing L over U_i . A local generator for the fibers over U_i is given by

$$e^{U_i}([x]) = \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, 1, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

so that any $w \in L|_{[x]}$ can be written on U_i as $w = \lambda e^{U_i}([x])$ for $\lambda \in \mathbb{R}$. In the notation from class, here e^{U_i} is the local frame and λ is the local component in that frame.

(a) Compute the transition function c_{ij} on $U_i \cap U_j$.

(b) Show that the linear functions x_0, x_1, \ldots, x_n on \mathbb{R}^{n+1} , and more generally,

$$s = \sum_{k} a_k x_k, \ a_i \in \mathbb{R}$$

define sections of the dual bundle L^* . To do this, from s we obtain local functions $s_i : U_i \to \mathbb{R}$ on U_i by setting $s_i = s/x_i$ (write these local functions in u^i coordinates), and show that s transforms on $U_i \cap U_j$ by

$$s_i = c_{ij}^* s_j,$$

where c_{ij}^* are the transition functions of (L^*, U_i) .

2.

(a) Let $E \to M$ and $\tilde{E} \to M$ be two vector bundles. Suppose E and \tilde{E} can be trivialized by the same cover $M = \bigcup U_{\alpha}$. Denote the transition functions by

$$c_{\mu\nu}: U_{\mu} \cap U_{\nu} \to GL(k, \mathbb{R}), \quad \tilde{c}_{\mu\nu}: U_{\mu} \cap U_{\nu} \to GL(k, \mathbb{R})$$

Show that E is isomorphic to \tilde{E} if and only if there exists local functions $h_{\mu}: U_{\mu} \to GL(k, \mathbb{R})$ such that

$$\tilde{c}_{\mu\nu} = h_{\mu}c_{\mu\nu}h_{\nu}^{-1},$$

on $U_{\mu} \cap U_{\nu}$.

(b) Show that a line bundle $L \to M$ is isomorphic to the trivial bundle $\mathbb{R} \times M$ if and only if it admits a nowhere vanishing section.

3. Let $E \to M$ be a vector bundle with trivializing cover $M = \bigcup U_{\mu}$ and transition functions $c_{\mu\nu}: U_{\mu} \cap U_{\nu} \to GL(r, \mathbb{R})$. Recall that E is orientable if it is isomorphic to a bundle with trivializations satisfying det $c_{\mu\nu} > 0$. The determinant bundle associated to E, denoted det E, is a line bundle over M with the same trivialization $M = \bigcup U_{\mu}$ and transition functions det $c_{\mu\nu}$.

(a) Let M^n be an orientable manifold with Riemannian metric g_{ij} . Show that

$$\mathrm{dVol}_g = \sqrt{\det g_{ij}}$$

defines a nowhere vanishing section of det T^*M . This section is sometimes written

$$\mathrm{dVol}_g = \sqrt{\det g_{ij}} \, dx^1 \wedge \dots \wedge dx^n,$$

since det $T^*M = \Omega^n(M)$.

(b) Show that a vector bundle $E \to M$ is orientable if and only if det E is isomorphic to the trivial bundle $M \times \mathbb{R}$.