DIFFERENTIAL GEOMETRY II: PROBLEM SET 2

Due Feb ${ }^{27}$

1. (Extra problem: not required to be submitted) Let (M, g) be a Riemannian manifold.
(a) Let $\left(U, x^{i}\right)$ and $\left(\tilde{U}, \tilde{x}^{i}\right)$ be two coordinate charts with non-empty overlap. In coordinates x^{i}, denote the metric by $g_{i j}$. In coordinates \tilde{x}^{i}, denote the metric by $\tilde{g}_{i j}$. Write down the relation between $g_{i j}$ and $\tilde{g}_{i j}$.
(b) Let $\Gamma_{i j}^{k}$ denote the Christoffel symbols in coordinates x^{i}. Let $\tilde{\Gamma}_{i j}^{k}$ denote the Christoffel symbols in coordinates \tilde{x}^{i}. Show that

$$
\tilde{\Gamma}_{i j}^{k}=\frac{\partial \tilde{x}^{k}}{\partial x^{p}} \Gamma_{r s}^{p} \frac{\partial x^{r}}{\partial \tilde{x}^{i}} \frac{\partial x^{s}}{\partial \tilde{x}^{j}}-\frac{\partial x^{r}}{\partial \tilde{x}^{i}} \frac{\partial x^{s}}{\partial \tilde{x}^{j}} \frac{\partial^{2} \tilde{x}^{k}}{\partial x^{r} x^{s}}
$$

We see that Christoffel symbols do not transform like a section of a vector bundle due to the additional second term.
(c) You can use this to show that the Levi-Civita connection is a welldefined connection. This means that if $V=V^{i} \partial_{i}$ is a vector field, then

$$
W_{k}^{i}:=\nabla_{k} V^{i}, \quad \nabla_{k} V^{i}=\frac{\partial}{\partial x^{k}} V^{i}+\Gamma_{k p}^{i} V^{p}
$$

defines a section $\nabla V:=W \in \Gamma\left(M, T M \otimes T^{*} M\right)$. For ∇V to define a section, it must satisfy

$$
\tilde{\nabla}_{\mu} \tilde{V}^{\nu}=\frac{\partial x^{a}}{\partial \tilde{x}^{\mu}} \frac{\partial \tilde{x}^{\nu}}{\partial x^{b}} \nabla_{a} V^{b}
$$

on overlaps of $\left(U, x^{i}\right)$ and $\left(\tilde{U}, \tilde{x}^{\mu}\right)$. Here

$$
\tilde{\nabla}_{\mu} \tilde{V}^{\nu}=\frac{\partial}{\partial \tilde{x}^{\mu}} \tilde{V}^{\nu}+\tilde{\Gamma}_{\mu \rho}^{\nu} \tilde{V}^{\rho}
$$

is the expression for the connection over the coordinate chart \tilde{U}, and

$$
\tilde{V}^{\mu}=\frac{\partial \tilde{x}^{\mu}}{\partial x^{i}} V^{i}
$$

is the representation of the vector field over the chart \tilde{U}.
2. (a) Compute the Riemann curvature, Ricci curvature, and scalar curvature of the Poincaré metric

$$
g_{i j}=\frac{1}{y^{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

on the upper half-plane $H=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$.
(b) Compute the Riemann curvature, Ricci curvature, and scalar curvature of \mathbb{S}^{2} with the metric induced by Euclidean space in spherical coordinates

$$
f(\theta, \varphi)=(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi) .
$$

3. Let (M, g) be a Riemannian manifold. Recall the local expression for the Laplacian on functions:

$$
\Delta f=g^{i j} \partial_{i} \partial_{j} f-g^{i j} \Gamma_{i j}^{k} \partial_{k} f
$$

Let $\left(U, x^{i}\right)$ be a local coordinate chart. Suppose $\Delta x^{i}=0$ for all i. Such coordinates are called harmonic coordinates, or the harmonic gauge condition. Fix i, j, let $g_{i j}=g\left(\partial_{x^{i}}, \partial_{x^{j}}\right)$, and view $g_{i j}(x)$ as a local function on U. Show that in these coordinates

$$
\Delta g_{i j}=-2 R_{i j}+\mathcal{O}(g, \partial g)
$$

This is why the Ricci tensor can be viewed as the "Laplacian of the metric". This expression was used by Choquet-Bruhat to apply PDE theory to the initial value problem in general relativity. This is also why the Ricci flow $\partial_{t} g=-2 \operatorname{Ric}(g)$ can be understood as a heat flow for the metric tensor. One way to prove this is to first show the Bochner formula

$$
\Delta\langle\nabla f, \nabla h\rangle=2\left\langle\nabla^{2} f, \nabla^{2} h\right\rangle+\langle\nabla f, \nabla \Delta h\rangle+\langle\nabla \Delta f, \nabla h\rangle+2 R^{p q} \partial_{q} f \partial_{p} h .
$$

and then apply it to $f=x^{i}, h=x^{j}$.
4. Let G be a Lie group with identity I. Denote for $g \in G$, denote the left action by

$$
L_{g}: G \rightarrow G, \quad L_{g} h=g h .
$$

Given a basis $\left.e_{1}\right|_{I}, \ldots,\left.e_{n}\right|_{I} \in T_{I} G$, we obtain a global frame of vector fields $\left.\left(L_{g}\right)_{*} e_{1}\right|_{I},\left.\ldots\left(L_{g}\right)_{*} e_{n}\right|_{I}$, which we denote by e_{1}, \ldots, e_{n} for simplicity. The structure constants of this frame are given by

$$
\left[e_{i}, e_{j}\right]=c^{k}{ }_{i j} e_{k}
$$

In terms of the structure constants, the Jacobi identity $[V,[W, X]]+[W,[X, V]]+$ $[X,[V, W]]=0$ is

$$
c^{p}{ }_{i r} c^{q}{ }_{j k}+c^{p}{ }_{k r} c^{q}{ }_{i j}+c^{p}{ }_{j r} c^{q}{ }_{k i}=0
$$

for all indices p, q, i, r, j, k.
(a) Show that

$$
d e^{k}=\frac{1}{2} c^{k}{ }_{i j} e^{j} \wedge e^{i},
$$

where $\left\{e^{i}\right\}$ is the dual frame to $\left\{e_{i}\right\}$.
(b) We define a metric on the Lie group G by

$$
g\left(e_{i}, e_{j}\right)=\delta_{i j}
$$

Recall that the Levi-Civita connection ∇ is defined by

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)+g(Z,[X, Y]) \\
& +g(Y,[Z, X])+g(X,[Z, Y]) .
\end{aligned}
$$

Compute the connection coefficients $A_{i}{ }^{k}{ }_{j}$, defined by

$$
\nabla_{e_{i}} e_{j}=A_{i}{ }^{k}{ }_{j} e_{k} .
$$

The connection form is $A=A_{i}{ }^{k}{ }_{j} e^{i}$.
(c) Further suppose that G is such that the structure constants are totally skew-symmetric. This means that in addition to the usual antisymmetry $c^{k}{ }_{i j}=-c^{k}{ }_{j i}$, we also have

$$
c^{k}{ }_{i j}=-c^{i}{ }_{k j} .
$$

Compute the components $F_{i j}{ }^{p}{ }_{q}$ of the curvature form $F=d A+A \wedge A$.

$$
F=\frac{1}{2} F_{i j}{ }^{p}{ }_{q} e^{i} \wedge e^{j} .
$$

Use the Jacobi identity to simplify your answer.
(d) The Lie group $S O(3)$ admits a global frame of vector fields $\left\{e_{i}\right\}_{i=1}^{3}$ which satisfies

$$
\left[e_{i}, e_{j}\right]=\varepsilon_{i j k} e_{k},
$$

where $\varepsilon_{i j k}$ is the Levi-Civita symbol. Show that $S O(3)$ admits an Einstein metric. This is a metric which satisfies the curvature condition

$$
R_{i j}=\lambda g_{i j},
$$

where λ is a constant.
5. (Extra problem: not required to be submitted)

A Schwarzschild black hole of mass $M>0$ is the space $\mathbb{R} \times(0, \infty) \times \mathbb{S}^{2}$ equipped with the metric

$$
g=-\left(1-\frac{2 M}{r}\right) d t \otimes d t+\frac{1}{1-\frac{2 M}{r}} d r \otimes d r+r^{2}\left(\sin ^{2} \varphi d \theta \otimes d \theta+d \varphi \otimes d \varphi\right)
$$

Here $(t, r,(\theta, \varphi)) \in \mathbb{R} \times(0, \infty) \times \mathbb{S}^{2}$ with (θ, φ) spherical coordinates on \mathbb{S}^{2} : $0 \leq \varphi \leq \pi$ and $0 \leq \theta \leq 2 \pi$.
(a) Compute the Riemann curvature tensor $R^{\rho}{ }_{\mu \gamma \nu}$.
(b) Compute the Ricci tensor $R_{\mu \nu}$.
(c) Show that

$$
|R m|^{2}=R^{\mu \nu \rho \sigma} R_{\mu \nu \rho \sigma} \sim \frac{M^{2}}{r^{6}} .
$$

Conclude that the black hole has a singularity at $r=0$.

