DIFFERENTIAL GEOMETRY II: PROBLEM SET 3

Due March 17

1. Let $\mathbb{R}^{1,3}$ be the space $\mathbb{R}^{4}=\{(t, x, y, z)\}$ equipped with the metric

$$
d s^{2}=-d t^{2}+d x^{2}+d y^{2}+d z^{2}
$$

Let $P=\mathbb{R}^{3,1} \times U(1)$ be the trivial bundle. Show that the Yang-Mills equations together with the Bianchi identity

$$
\nabla^{\nu} F_{\mu \nu}=0, \quad d F=0,
$$

is equivalent to the Maxwell equations

$$
\begin{aligned}
& \nabla \cdot E=0, \quad \nabla \cdot B=0, \\
& \partial_{t} B+\nabla \times E=0, \quad \partial_{t} E-\nabla \times B=0,
\end{aligned}
$$

via the identification

$$
F_{\mu \nu}=i\left[\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right] .
$$

2. In this question, we will derive the $S U(2)$ Yang-Mills instanton of Belavin-Polyakov-Schwarz-Tyupkin.

First, let $g \in S U(2)$. Show that g can be identified with a point $\nu=$ $\left(\nu^{0}, \nu^{1}, \nu^{2}, \nu^{3}\right) \in \mathbb{S}^{3} \subset \mathbb{R}^{4}$ via

$$
g=\left(\nu^{0} I-\nu^{i} \tau_{i}\right),
$$

where

$$
\tau_{1}=\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right], \tau_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \tau_{3}=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] .
$$

Note the identities

$$
\tau_{i} \tau_{j}=-\tau_{j} \tau_{i}, \tau_{i}^{2}=-I, \tau_{i} \tau_{j}=-\varepsilon_{i j k} \tau_{k}
$$

Verify that the inverse of g is the quaternionic conjugate

$$
g^{-1}=\nu^{0} I+\nu^{i} \tau_{i} .
$$

We now construct a Yang-Mills connection over a rank 2 bundle over \mathbb{R}^{4}. Let

$$
r^{2}=\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}
$$

To define the connection, we first take a point $x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{4}$, then consider $x / r \in S^{3} \cong S U(2)$ and define

$$
A=f(r) g^{-1} d g, \quad g=\frac{1}{r}\left(x^{0} I-x^{i} \tau_{i}\right)
$$

for a radial function $f(r)$ to be determined. This is a reasonable radial ansatz, given that $g^{-1} d g$ restricted to $S U(2)$ is well-known as the MaurerCartan form and we are extending it radially to reach all of \mathbb{R}^{4}. Show that

$$
A=\frac{f(r)}{r^{2}} \alpha^{k} \tau_{k}
$$

where

$$
\alpha^{k}=x^{k} d x^{0}-x^{0} d x^{k}+x^{i} d x^{j} \varepsilon_{i j k}
$$

Using notation from class, we have

$$
d \alpha^{i}=-2 \omega_{-}^{i}, \quad \omega_{-}^{i}=d x^{0} d x^{i}-d x^{j} d x^{k}, \quad \star \omega_{-}^{i}=-\omega_{-}^{i}
$$

Compute the field strength $F=d A+A \wedge A$, and write it as the sum of an anti-self-dual part spanned by the ω_{-}^{i}, and another part spanned by $\left[d r^{2} \wedge \alpha^{k}\right] \tau_{k}$. This other part will vanish for the right choice of $f(r)$. To be precise, show that

$$
\star F=-F
$$

if and only if

$$
r f^{\prime}-2 f+2 f^{2}=0
$$

This differential equation has solution

$$
f(r)=\frac{r^{2}}{r^{2}+\lambda^{2}}
$$

where λ is a scale parameter. Take $\lambda=1$. Show that

$$
F=-\frac{2}{\left(r^{2}+1\right)^{2}} \omega_{-}^{k} \tau_{k}
$$

and compute the instanton charge

$$
Q=\frac{1}{8 \pi^{2}} \int_{\mathbb{R}^{4}} \operatorname{Tr} F \wedge F
$$

