Differential Topology: Homework 1

Due Date: September 20

• Problem 1: Let $\alpha \in \Omega^1(\mathbb{R}^2)$ be a smooth 1-form defined on all of \mathbb{R}^2 . Further suppose that

$$\alpha = f(\theta) \, d\theta \quad \text{on } \mathbb{R}^2 \setminus \{0\}$$

using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$. Show that $\alpha \equiv 0$.

• Problem 2: Consider the 1-form defined on $\mathbb{R}^2 \setminus \{0\}$ given by

$$\omega = -\frac{y\,dx}{x^2 + y^2} + \frac{x\,dy}{x^2 + y^2}.$$

Show that ω is closed but not exact.

• **Problem 3:** Let ω be the 1-form from the previous problem, defined now on

$$U = \mathbb{R}^2 \setminus \{x = 0\}.$$

Write down an explicit function $f: U \to \mathbb{R}$ such that $\omega = df$. Hint: consider $\arctan(u)$.

Problem 4: Consider P² = C³/ ~ and denote points by [Z₀, Z₁, Z₂] ∈ P². Consider the coordinate charts

$$\mathbb{P}^2 = U_0 \cup U_1 \cup U_2$$

where $U_i = \{Z_i \neq 0\}$. On $U_0 \cap U_1$, let

$$(z^1, z^2) = \left(\frac{Z_1}{Z_0}, \frac{Z_2}{Z_0}\right), \quad (\tilde{z}^1, \tilde{z}^2) = \left(\frac{Z_0}{Z_1}, \frac{Z_2}{Z_1}\right).$$

Compute the change of coordinates $z = f(\tilde{z})$ and verify that the change of coordinates is holomorphic.

• **Problem 5:** The Fubini-Study metric ω on \mathbb{P}^2 is given by

$$\omega = i\partial\bar{\partial}\log(1+|z^1|^2+|z^2|^2)$$

over each coordinate chart (U_i, z) . Show that $\omega \in \Omega^{1,1}(\mathbb{P}^2)$ is well-defined on the overlap of two coordinate systems (for example $U_0 \cap U_1$). Next, write

$$\omega = ig_{j\bar{k}} \, dz^j \wedge d\bar{z}^k,$$

and compute the matrix $g_{j\bar{k}}$. Show that $g_{j\bar{k}}$ is positive definite: recall this means that

$$g_{j\bar{k}}\xi^j\xi^k \ge 0$$

for all $\xi \in \mathbb{C}^n$ with equality if and only if $\xi = 0$.