Differential Topology: Homework 2

Due Date: October 11

- Problem 1: Let $Sⁿ$ be the *n*-sphere. Use the Mayer-Vietoris sequence and induction to compute $H^i(S^n)$ for all $0 \leq i \leq n$.
- Problem 2: Let $\mathbb{CP}^n = \mathbb{C}^{n+1}/\sim$ be complex projective space. We will denote points by $[Z_0, Z_1, \ldots, Z_n]$.

(a) Compute $H^i(\mathbb{CP}^1)$ for $0 \leq i \leq 2$. You can use the Mayer-Vietoris sequence with respect to the open cover

$$
\mathbb{CP}^1=U\cup V
$$

where $U = \{Z_0 \neq 0\}$ and $V = \mathbb{CP}^1 \setminus \{p\}$ with $p = [1, 0]$.

(b) Compute $H^i(\mathbb{CP}^2)$ for $0 \leq i \leq 4$. You can use the Mayer-Vietoris sequence with respect to the open cover

$$
\mathbb{CP}^2=U\cup V
$$

where $U = \{Z_0 \neq 0\}$ and $V = \mathbb{CP}^2 \setminus \{p\}$ with $p = [1, 0, 0].$

You may use that $F: V \times [0, 1] \rightarrow V$ given by

$$
F([Z_0, Z_1, Z_2], t) = [tZ_0, Z_1, Z_2]
$$

gives a retraction from V to $\mathbb{CP}^1 \subset \mathbb{CP}^2$ where

$$
\mathbb{CP}^1 = \{ [0, Z_1, Z_2] \in \mathbb{CP}^2 \}.
$$

Continuing on with this method, you can compute the cohomology $H^*(\mathbb{CP}^n)$, but there is no need to hand-in the write-up for general \mathbb{CP}^n .

- Problem 3: Compute the de Rham cohomology of $\Sigma_q \backslash \{p_1, p_2, \ldots, p_k\}$, where Σ_q is a genus g compact orientable surface, and $p_1, p_2, \ldots, p_k \in \Sigma_q$ are k distinct points. You may use directly that $\chi(\Sigma_g) = 2 - 2g$.
- Problem 4: Consider a short exact sequence

$$
0 \to A \to B \to C \to 0
$$

of differential complexes where the arrows are chain maps. Let $H^{i}(A)$, $H^{i}(B)$, $H^{i}(C)$ be the respective cohomology groups, and suppose these H^{i} are all finite dimensional and zero for all $i \geq N$ for some integer N. Let $\chi(A)$, $\chi(B)$, $\chi(C)$ be the respective Euler characteristics, e.g.

$$
\chi(A) = \sum_{i=0}^{N} (-1)^{i} \dim H^{i}(A).
$$

Show that

$$
\chi(B) = \chi(A) + \chi(C).
$$