Differential Topology: Homework 3

Due Date: October 25

• Problem 1:

(a) Let $T^3 = S^1 \times S^1 \times S^1$ and equip T^3 with oriented coordinates. Compute the Poincaré dual of $S \subset T^3$, where

$$
S = \{ (e^{i\theta}, e^{2i\theta}, e^{-i\theta}) : 0 \le \theta \le 2\pi \} \subseteq T^3.
$$

To compute dim $H^i(T^3)$, you may use the Künneth formula

$$
H^k(M \times N) = \bigoplus_{p+q=k} H^p(M) \otimes H^q(N),
$$

which we have not yet proved in-class.

(b) Compute the Poincaré dual of $\mathbb{CP}^1 \subset \mathbb{CP}^3$ embedded as

$$
S = \{ [Z_0, Z_1, 0, 0] \in \mathbb{CP}^3 \}.
$$

Recall that the cohomology of \mathbb{CP}^n is

$$
H^k(\mathbb{CP}^n; \mathbb{R}) = \begin{cases} \mathbb{R}, & \text{if } k = 0, 2, 4, \dots, 2n, \\ 0, & \text{otherwise.} \end{cases}
$$

and you can write your answer in terms of the Fubini-Study form $\omega_{FS} \in \Omega^{1,1}(\mathbb{CP}^n)$ which satisfies $\int_{\mathbb{C}\mathbb{P}^n} \omega_{FS}^n = 1$.

• Problem 2: Show that the direct sum of two copies of the Möbius bundle M is isomorphic to a trivial bundle. To do this, you may use the cover $S^1 = U_1 \cup U_2$ with

$$
U_1 = \{ e^{i\theta} : \theta \in (0, 2\pi) \}, \quad U_2 = \{ e^{i\tilde{\theta}} : \tilde{\theta} \in (-\pi, \pi) \}
$$

with change of coordinates

$$
\tilde{\theta} = \begin{cases} \theta, & \text{if } 0 < \theta < \pi \\ \theta - 2\pi, & \text{if } \pi < \theta < 2\pi. \end{cases}
$$

The bundle $M \to S^1$ is defined by the data $(U_1 \cap U_2, g_{12})$ with

$$
g_{12} = \begin{cases} 1, & \text{if } 0 < \theta < \pi \\ -1, & \text{if } \pi < \theta < 2\pi. \end{cases}
$$

To show $M \oplus M \to S^1$ is the trivial bundle, find

$$
\lambda_{\alpha}: U_{\alpha} \to GL(2,\mathbb{R})
$$

such that on $U_1 \cap U_2$ there holds

$$
I_{2\times 2} = \lambda_1 g_{12} \lambda_2^{-1}.
$$

Hint: the λ_{α} will be of the form

$$
\begin{bmatrix}\n\cos\psi & -\sin\psi \\
\sin\psi & \cos\psi\n\end{bmatrix},
$$

where $\psi(\theta)$ on U_1 and $\psi(\tilde{\theta})$ on U_2 .

• Problem 3: Let $E \to M$ be a vector bundle of rank k. A metric on E is a section $h \in \Gamma(E^* \otimes E^*)$ that restricts to each fiber as a symmetric positive-definite quadratic form. Concretely, let $M = \bigcup_{\alpha} U_{\alpha}$ be a trivialization of the bundle E with transition functions $g_{\alpha\beta}: U_{\alpha}\cap U_{\beta}\to GL(k,\mathbb{R})$ satisfying

$$
g_{\alpha\beta} = g_{\alpha\mu} g_{\mu\beta}.
$$

A metric is given by a collection $\{h_{\alpha}\}\$

$$
h_{\alpha}: U_{\alpha} \to GL(k, \mathbb{R})
$$

such that the matrices h_{α} are symmetric and positive definite and on overlaps the relation

$$
h_{\alpha} = (g_{\alpha\beta}^{-1})^T h_{\beta} g_{\alpha\beta}^{-1},
$$

holds.

(a) Show that if $s, u \in \Gamma(E)$ (so that e.g. $u_{\alpha} = g_{\alpha\beta}u_{\beta}$), then

$$
\langle u, s \rangle_h = u_\alpha^T h_\alpha s_\alpha
$$

is independent of the choice of trivialization U_{α} .

(b) Show that any bundle admits a metric. To do this, let ρ_{α} be a partition of unity subordinate to $\{U_{\alpha}\}\$. Define

$$
h_{\alpha} = \sum_{\mu} \rho_{\mu} g_{\mu\alpha}^{T} g_{\mu\alpha}.
$$

and show that this defines a metric.

(c) Show that if $E \to M$ is equipped with a metric h, then E is isomorphic to a bundle with transition functions in $O(k)$. Recall that different transition functions $\check{g}_{\alpha\beta}$ define an isomorphic bundle if there exists local matrices

$$
\lambda_{\alpha}: U_{\alpha} \to GL(k, \mathbb{R})
$$

such that on overlaps

$$
\check{g}_{\alpha\beta} = \lambda_{\alpha} g_{\alpha\beta} \lambda_{\beta}^{-1}.
$$

To find the suitable λ_{α} , equip E with a metric and decompose the local positivedefinite matrices as $h_{\alpha} = \lambda_{\alpha}^{T} \lambda_{\alpha}$. We see that a metric reduces the structure group of E from $GL(k)$ to $O(k)$.

(d) Let $L \to M$ be an orientable line bundle (rank 1). Prove that L is isomorphic to the trivial bundle.