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Abstract The main theme of these lectures is the study of Hermitian metrics in
non-Kähler complex geometry. We will specialize to a certain class of Hermitian
metrics which generalize Kähler Ricci-flat metrics to the non-Kähler setting. These
non-Kähler Calabi-Yau manifolds have their origins in theoretical physics, where
they were introduced in the works of C. Hull and A. Strominger. We will introduce
tools from geometric analysis, namely geometric flows, to study this non-Kähler
Calabi-Yau geometry. More specifically, we will discuss the Anomaly flow, which
is a version of the Ricci flow customized to this particular geometric setting. This
flow was introduced in joint works with Duong Phong and Xiangwen Zhang. Sec-
tion 1 contains a review of Hermitian metrics, connections, and curvature. Section
2 is dedicated to the geometry of Calabi-Yau manifolds equipped with a confor-
mally balanced metric. Section 3 introduces the Anomaly flow in the simplest case
of zero slope, where the flow can be understood as a deformation path connect-
ing non-Kähler to Kähler geometry. Section 4 concerns the Anomaly flow with α ′

corrections, which is motivated from theoretical physics and canonical metrics in
non-Kähler geometry.
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1 Review of Hermitian Geometry

We start by reviewing non-Kähler metrics in complex geometry. In particular, we
study unitary connections, torsion, and curvature associated to a Hermitian metric
ω .
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1.1 Hermitian metrics

Let X be a complex manifold of dimension n. The manifold X is covered by holo-
morphic charts Uµ equipped with local holomorphic coordinates (z1, . . . ,zn) such
that X =

⋃
µ Uµ . The complexified tangent bundle of X will be denoted T X , which

splits
T X = T 1,0X⊕T 0,1X .

Using local coordinates, a tangent vector in T 1,0X is a combination of{
∂

∂ z1 , · · · ,
∂

∂ zn

}
and a tangent vector in T 0,1X is a combination of{

∂

∂ z̄1 , · · · ,
∂

∂ z̄n

}
.

We will use the notation

∂k =
∂

∂ zk , ∂k̄ =
∂

∂ z̄k .

Next, we will use Ω p,q(X) to denote differential forms of (p,q) type. This means
that in local coordinates, Ω p,q(X) is generated by

dzi1 ∧·· ·∧dzip ∧dz̄ j1 ∧·· ·dz̄ jq .

We will use the following convention for the componentsΨj̄1··· j̄qi1···ip
of a differential

form Ψ ∈Ω p,q(X)

Ψ =
1

p!q! ∑Ψj̄1··· j̄qi1···ip
dzip ∧·· ·dzi1 ∧dz̄ jq ∧·· ·∧dz̄ j1 . (1)

The exterior derivative d decomposes into

d = ∂ + ∂̄ ,

where
∂ : Ω

p,q(X)→Ω
p+1,q(X), ∂̄ : Ω

p,q(X)→Ω
p,q+1(X),

are the Dolbeault operators. A Hermitian metric g on X is a smooth section
(T 1,0X)∗⊗ (T 0,1X)∗ such that in local coordinates

g = gk̄ j dz j⊗dz̄k, (2)

where gk̄ j is a positive-definite Hermitian matrix at each point.

gk̄ j > 0, gk̄ j = g j̄k.
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In (2) we use the summation convention, which will be used throughout these notes,
where we omit the summation sign for matching upper and lower indices. We use
the notation g jk̄ = (gk̄ j)

−1 for the inverse, meaning that

gik̄gk̄ j = δ
i
j.

We can identify the metric g with a Hermitian form ω ∈Ω 1,1(X ,R) via

ω = igk̄ j dz j ∧dz̄k.

The metric g induces a metric on differential forms Ω p,q(X), and we define the
Hodge star operator ? : Ω p,q(X)→Ω n−q,n−p(X) by requiring

α ∧?β̄ = g(α,β )
ωn

n!
.

for all α,β ∈Ω p,q(X).
A basic fact which will be often used in these notes is

Proposition 1. Let X be a compact complex manifold with Hermitian metric g and
∂X = /0. Let f ∈C∞(X ,R). If

g jk̄
∂ j∂k̄ f ≥ 0,

everywhere on X, then f is a constant function.

Proof. Let c denote the maximum value attained by f on X . The set

S = f−1(c)

is closed. We claim that S is also open. Indeed, let p ∈ S. Let B be a ball in a local
chart such that f attains a maximum in the center of B and satisfies g jk̄∂ j∂k̄ f ≥ 0 in
B. By the Hopf strong maximum principle (e.g. Theorem 2.7 in [65]), we must have
f ≡ c in B. This shows that S is open, and hence S = X . ut

A Hermitian metric ω is Kähler if

dω = 0.

Kähler manifolds are of fundamental importance as they lie at the crossroads of
both Riemannian geometry and algebraic geometry. In these notes, our goal is to
generalize the Kähler condition while still retaining enough structure to develop an
interesting theory.

There are many ways to generalize the Kähler condition. There is the notion of a
pluriclosed metric, which satisfies

i∂ ∂̄ω = 0.

There are also astheno-Kähler metrics [72], which satisfy
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i∂ ∂̄ω
n−2 = 0.

It was shown by Gauduchon [54] that every compact complex manifold admits a
Gauduchon metric, which satisfies

i∂ ∂̄ω
n−1 = 0.

More generally, Fu-Wang-Wu [44] introduced the notion of k-Gauduchon, for 1 ≤
k ≤ n−1, which is defined by the condition

i∂ ∂̄ω
k ∧ω

n−k−1 = 0.

All these notions generalize Kähler metrics in different ways. In these notes, we will
mostly focus on another notion: we say a Hermitian metric ω is balanced if

dω
n−1 = 0. (3)

The special properties of balanced metrics were noticed early in the study of Her-
mitian geometry, arising for examples in articles of P. Gauduchon [53]. Balanced
metrics were studied systematically by M.L. Michelsohn [83], and these metrics
were rediscovered in theoretical physics in the development of heterotic string the-
ory [68, 103, 76]. A main theme in Michelsohn’s work is that balanced metrics are in
some sense dual to the Kähler condition. For example, Kähler metrics are inherited
by the ambient space (via pullback) while balanced metrics can be pushed forward
[83].

Given a Hermitian metric ω , its torsion is defined by

T = i∂ω, T̄ =−i∂̄ω.

We see that a metric is Kähler if and only if its torsion vanishes. The components of
the torsion are given by

T =
1
2

Tk̄ jmdzm∧dz j ∧dz̄k, T̄ =
1
2

T̄k j̄m̄dz̄m∧dz̄ j ∧dzk.

Explicitly, we have

Tk̄ jm = ∂ jgk̄m−∂mgk̄ j, T̄k j̄m̄ = ∂ j̄gm̄k−∂m̄g j̄k. (4)

We can raise indices using the metric, and we will write T k
i j = gk ¯̀T ¯̀i j. We can also

contract indices, and we will use the notation

Tj = gik̄Tk̄i j.

We will also use the 1-form τ defined by

τ = Tkdzk.
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Taking norms, we have

|T |2 = gmn̄gk ¯̀g jīTīkmT̄j ¯̀n̄, |τ|
2 = gk ¯̀TkT̄ ¯̀.

1.2 Connections

Let E→ X be a complex vector bundle of rank r. The bundle E can be specified by
an open cover X =

⋃
µ Uµ together with transition matrices tµν : Uµ ∩Uν→GL(r,C)

satisfying
tµµ

α
β = δ

α
β ,

and
tµν

α
β tνρ

β
γ = tµρ

α
γ on Uµ ∩Uν ∩Uρ .

If all transition functions tµν are holomorphic, then E is a holomorphic bundle.
A section s ∈ Γ (X ,E) is given by local data (Uµ ,sµ

α), where

s = (sµ
1(zµ), · · · ,sµ

r(zµ)) on Uµ ,

and sµ : Uµ → Cr is a smooth map which transforms via

(sµ)
α = tµν

α
β sν

β

on Uµ ∩Uν . On a holomorphic bundle, we say s is holomorphic if the sµ are holo-
morphic.

Let us illustrate this notation by considering the example of the holomorphic
tangent bundle T 1,0X . Here the transition functions are

tµν
i
k =

∂ zµ
i

∂ zν
k ,

which are defined on the intersection of coordinate patches (Uµ ,zµ
i) and (Uν ,zν

i).
Sections of T 1,0X are vector fields V =V i∂i ∈ Γ (X ,T 1,0X), and on Uµ ∩Uν ,

Vµ
k =

∂ zµ
k

∂ zν
`
Vν

`.

Next, we recall that from a bundle E, we can induce bundles such as E∗, Ē, and
detE. If the bundle E has transition matrices tµν , then sections φ ∈ Γ (X ,E∗) are
given by data (Uµ ,φµ α) which transform according to

(φµ)α = tνµ
β

α φν β .

Similarly, sections s ∈ Γ (X , Ē) transform by
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sµ
ᾱ = tµν

α
β sν

β̄ ,

and sections ψ ∈Γ (X ,detE) are given by local functions ψµ : Uµ →C which trans-
form by

ψµ = (det tµν)ψν .

To differentiate sections of a vector bundle, we use a connection ∇. Connections
can be expressed locally as ∇ = d +Aµ , where Aµ are local matrix-valued 1-forms
(Aµ)i

α
β defined on Uµ . The local matrices (Aµ)i satisfy the transformation law

(Aµ)i = tµν (Aν)i tµν
−1− (∂itµν)tµν

−1. (5)

Here we omitted the indices for matrix multiplication. This transformation law is
designed such that for any section s ∈ Γ (X ,E), its derivative ∇is is again a section.
Explicitly, derivatives of s are given locally by

∇isα = ∂isα +Ai
α

β sβ , ∇īs
α = ∂īs

α +Aī
α

β sβ .

with the notation
∇i = ∇ ∂

∂ zi
, ∇ī = ∇ ∂

∂ z̄i
.

Given a connection on E, we can induce connections on E∗, Ē, detE, etc, by impos-
ing the product rule. For example, the product rule ∂k(sα φ α) = ∇ksα φ α + sα ∇kφ α

leads to the definition

∇kφα = ∂kφα −φβ Ak
β

α , ∇k̄φα = ∂k̄φα −φβ Ak̄
β

α

for sections φ ∈Γ (X ,E∗). Similarly, for a section u∈Γ (X , Ē), the induced connec-
tion is defined by

∇kuᾱ = ∂kuᾱ +Ak̄
α

β uβ̄ , ∇k̄uᾱ = ∂k̄uᾱ +Ak
α

β uβ̄ ,

and for a section ψ ∈ Γ (X ,detE∗), the induced connection is

∇iψ = ∂iψ−Ai
α

α ψ, ∇īψ = ∂īψ−Aī
α

α ψ. (6)

As a final example, the induced connection on Γ (X ,E∗⊗ Ē∗) is defined by

∇khᾱβ = ∂khᾱβ −Ak̄
γ

α hγ̄β −Ak
γ

β hᾱγ .

We now focus our attention on the holomorphic tangent bundle T 1,0X . Given a Her-
mitian metric ω = igk̄ jdz j ∧ dz̄k on X , we say a connection ∇ on T 1,0X is unitary
with respect to ω if

∇igk̄ j = 0.

On a Hermitian manifold (X ,ω), the Chern connection is the unique unitary con-
nection on T 1,0X such that Ak̄ = 0. The Chern connection acts on sections V ∈
Γ (X ,T 1,0X) by
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∇k(V i
∂i) = (∇kV i)∂i, ∇k̄(V

i
∂i) = (∇k̄V

i)∂i,

where
∇kV i = ∂kV i +Γ

i
k`V

`, ∇k̄V
i = ∂k̄V

i,

and
Γ

i
k` = gip̄

∂kgp̄`. (7)

Due to its simplicity, the Chern connection is best suited for most computations.
However, in non-Kähler geometry, there are other interesting connections on T 1,0X
to consider too. We start with the Levi-Civita connection, which acts on V ∈
Γ (X ,T X) by

∇
g
k(V

i
∂i +V ī

∂ī) = (∇g
kV i)∂i +(∇g

kV ī)∂ī,

where

∇
g
kV i = ∂kV i +Γ

i
k`V

`− T i
k`

2
V `− gi j̄

2
T̄k j̄ ¯̀V

¯̀
,

∇
g
k̄V i = ∂k̄V

i +
gim̄

2
T̄`k̄m̄V `,

and
∇

g
kV ī = ∇

g
k̄V i, ∇

g
k̄V ī = ∇

g
kV i.

To be clear, we note that here, and throughout these notes, Γ i
k` is reserved for the

expression (7), which is not the Christoffel symbol of the Levi-Civita connection.
This well-known connection from Riemannian geometry preserves the metric

∇gg = 0 and has zero torsion tensor ∇
g
XY −∇

g
Y X− [X ,Y ]. For Kähler metrics, T = 0

and we see that the Levi-Civita connection coincides with the Chern connection.
However, for general Hermitian metrics, the tensor Tk̄i j is nonzero and the Levi-

Civita connection does not preserve the decomposition T X = T 1,0X ⊕ T 0,1X . In
particular, it does not define a connection on the holomorphic bundle T 1,0X .

We can add a correction to ∇g to obtain a new connection which does preserve
T 1,0X . We define

∇
+ = ∇

g +
1
2

g−1H, H = i(∂̄ −∂ )ω.

The new connection acts on V ∈ Γ (X ,T 1,0X) by ∇
+
k (V

i∂i) = (∇+
k V i)∂i with com-

ponents
∇
+
k V i = ∂kV i +(Γ i

k`−T i
k`)V `, (8)

∇
+
k̄ V i = ∂k̄V

i +gim̄T̄`k̄m̄V `.

We will call this connection the Strominger-Bismut connection [10, 103]. It evi-
dently preserves T 1,0X , and a straightforward computation shows that

∇
+gk̄ j = 0,
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hence ∇+ is a unitary connection. Furthermore, ∇+ = ∇g+ 1
2 g−1H has the property

that its torsion 3-form

T (X ,Y,Z) = g(∇+
X Y −∇

+
Y X− [X ,Y ],Z)

is given by the skew-symmetric 3-form H.
Using the Chern connection ∇ and the Strominger-Bismut connection ∇+, we

can define a line of unitary connections which preserve the complex structure.

∇
(κ) = (1−κ)∇+κ∇

+,

where κ ∈R is a parameter. This family of connections is known as the Gauduchon
line [55]. We note that this line collapses to a point when ω is Kähler.

There are other connections which play a role in theoretical physics which do
not preserve the complex structure. One such example is the Hull connection [69,
75, 85], denoted by ∇− = ∇g − 1

2 g−1H. Explicitly, this connection acts on V ∈
Γ (X ,T X) by

∇
−
k V i = ∂kV i +Γ

i
k`V

`−gi j̄T̄k j̄ ¯̀V
¯̀
, (9)

∇
−
k̄ V i = ∂k̄V

i.

Although ∇− does not preserve T 1,0X , a direct computation shows that ∇−g = 0.
Most computations in these notes will be done using the Chern connection, and

from now on we reserve ∇ to denote the Chern connection. We will use superscripts
e.g. ∇+, to denote other connections.

Next, we review integration and adjoint operators in Hermitian geometry. The
first identity is the divergence theorem for Hermitian metrics.

Lemma 1. Let (X ,ω) be a closed Hermitian manifold. The divergence theorem for
the Chern connection ∇ is given by∫

X
∇iV i

ω
n =

∫
X

TiV i
ω

n, (10)

for any V ∈ Γ (X ,T 1,0X).

We see that the torsion components Ti play a role when integrating by parts. The
proof is similar to the Kähler case, and is omitted.

Next, we recall the L2 pairing of differential forms, given by 〈φ ,ψ〉=
∫

X g(φ ,ψ)ωn,
where g(φ ,ψ) is the induced metric on φ ,ψ ∈ Ω p,q(X). For example, for η ,β ∈
Ω 1,0(X), we define

〈η ,β 〉=
∫

X
g jk̄

η jβk ω
n,

and for α,χ ∈Ω 1,1(X),

〈α,χ〉=
∫

X
g jk̄g`m̄αk̄`χ j̄m ω

n.
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The adjoint operators ∂ † : Ω p,q(X)→ Ω p−1,q(X) and ∂̄ † : Ω p,q(X)→ Ω p,q−1(X)
are defined by the property

〈∂φ ,ψ〉= 〈φ ,∂ †
ψ〉, 〈∂̄ φ ,ψ〉= 〈φ , ∂̄ †

ψ〉.

We will also write d† = ∂ † + ∂̄ †. We will need an explicit expressions for these
adjoint operators in the following special case.

Lemma 2. Let (X ,ω) be a Hermitian manifold. The adjoint operators act on α ∈
Ω 1,1(X) by

(∂ †
α)k̄ =−gpq̄

∇q̄αk̄p +gpq̄T̄q̄αk̄p. (11)

(∂̄ †
α)k = gpq̄

∇pαq̄k−gpq̄Tpαq̄k. (12)

Proof. Let α ∈Ω 1,1(X) and β ∈Ω 0,1(X). The components of ∂β are

(∂β )k̄ j = ∇ jβk̄.

The inner product 〈α,∂β 〉= 〈∂ †α,β 〉 expands to∫
X

g jk̄gpq̄
αk̄p(∇qβ j̄)ω

n =
∫

X
g jk̄(∂ †

α)k̄β j̄ ω
n.

Applying the divergence theorem (10) to the left-hand side, we obtain (11). A simi-
lar computation leads to (12). ut

As a corollary, if we apply these identities to α = ω = igk̄ jdz j ∧dz̄k, we obtain

(∂ †
ω)k̄ = iT̄k̄, (∂̄ †

ω)k =−iTk. (13)

and
d†

ω = i(τ̄− τ).

1.3 Curvature

Let E → X be a complex vector bundle. The curvature of a connection ∇ = d +A
on E is a 2-form valued in the endomorphisms of E given by

F = dA+A∧A,

with components

F =
1
2

Fk j
α

β dz j ∧dzk +
1
2

Fk̄ j̄
α

β dz̄ j ∧dz̄k +Fk̄ j
α

β dz j ∧dz̄k.

The curvature form of the Chern connection of a Hermitian metric ω will be denoted
Rm. In this case, one can verify that the curvature form Rm is an endomorphism-
valued (1,1) form
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Rm = Rk̄ j
p

qdz j ∧dz̄k,

with components given by

Rk̄ j
p

q =−∂k̄Γ
p

jq =−∂k̄(g
ps̄

∂ jgs̄q).

We may write this as
Rm = ∂̄ (g−1

∂g), (14)

which holds in a holomorphic frame on T 1,0X . We note that in general, when using
unitary connections other than the Chern connection on T 1,0X , the curvature will
have (2,0) and (0,2) components as well.

We can raise and lower indices of the curvature tensor using the metric gk̄ j.

Rk̄ jm̄` = gm̄pRk̄ j
p
` =−∂k̄∂ jgm̄`+gsr̄

∂k̄gm̄s∂ jgr̄`. (15)

Lemma 3. The curvature of the Chern connection on (X ,ω) satisfies the following
Bianchi identities

Rk̄ jm̄` = Rm̄ jk̄`+∇ jT̄`m̄k̄,

Rk̄ jm̄` = Rk̄`m̄ j +∇k̄Tm̄` j.

Proof. For example, we compute using the definition (15) and obtain

Rk̄ jm̄`−Rm̄ jk̄` = −∂k̄∂ jgm̄`+gsr̄
∂k̄gm̄s∂ jgr̄`+∂m̄∂ jgk̄`−gsr̄

∂m̄gk̄s∂ jgr̄`

= ∂ j(∂m̄gk̄`−∂k̄gm̄`)−gsr̄
∂ jgr̄`(∂m̄gk̄s−∂k̄gm̄s)

= ∂ jT̄`m̄k̄−Γ
p

j` T̄pm̄k̄

= ∇ jT̄`m̄k̄.

The other identity is derived in a similar way. ut

There are four notions of Ricci curvature for the Chern connection in Hermitian
geometry, and we will use the notation

Rk̄ j = Rk̄ j
p

p, R̃k̄ j = Rp
pk̄ j, R′k̄ j = Rk̄p

p
j, R′′k̄ j = Rp

jk̄p.

From the Bianchi identity, we see that these notions of Ricci curvature are all dif-
ferent. We will call Rk̄ j the Chern-Ricci curvature, and it is also given by

Rk̄ j =−∂k̄∂ j logdetgp̄q.

The Chern-Ricci form represents the first Chern class [ i
2π

Ricω ] = c1(X) and is given
by

Ricω =−∂ ∂̄ logdetgp̄q = Rk̄ jdz j ∧dz̄k.

There are two notions of scalar curvature, denoted by

R = g`m̄g jk̄Rk̄ jm̄` = Rp
p

j
j, R′ = g jm̄g`k̄Rk̄ jm̄` = Rp

j
j
p.
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1.4 U(1) principal bundles

1.4.1 Definitions

We denote the group of complex numbers with length equal to 1 by U(1). A U(1)
principal bundle can be specified by an open cover X =

⋃
µ Uµ together with smooth

maps
gµν : Uµ ∩Uν →U(1),

such that
gµµ = 1, g−1

µν = gνµ ,

and
gµν gνρ = gµρ ,

on an non-empty overlap Uµ ∩Uν ∩Uρ . In this section, we review how a connection
on a line bundle defines a connection on a U(1) principal bundle.

Let L→ X be a smooth complex line bundle with data (Uµ ∩Uν , tµν), equipped
with a connection ∇A = d +A whose curvature is FA = dA. We also consider the
line bundle L′→ X given by the data

(Uµ ∩Uν ,eiτµν ),
tµν

|tµν |
= eiτµν .

To compactify the fibers, we equip L with a metric h, which is locally given by
(Uµ ,hµ) where hµ are positive functions which transforms as

hµ =
1
|tµν |2

hν .

The metric h provides an isomorphism of the line bundles L and L′, where the con-
nection d +A on L becomes the connection d +A′ given by

A′ = A− 1
2

d logh,

on L′. It can be checked that this expression satisfies the transformation law for a
connection (5), which in this case becomes

A′µ = A′ν − idτµν . (16)

Thus we have induced a connection d +A′ on L′ with curvature

dA′ = FA. (17)

Let π : P→ X be the U(1) bundle determined by the data (Uµ ∩Uν ,eiτµν ). Locally,
points in P are given by (zµ ,eiψµ ) with projection π(zµ ,eiψµ ) = zµ , where the coor-
dinates eiψµ on the fiber transform via
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eiψµ = eiτµν eiψν .

In other words, on Uµ ∩Uν , there holds

ψµ = ψβ + τµν +2πk, (18)

for an integer k. Combining this with the transformation law for the connection (16),
it follows that

θ = dψµ − iA′µ (19)

is a global 1-form on the total space of the bundle π : P→ X . We call θ the con-
nection 1-form of the U(1) bundle P. Furthermore, by (17), its exterior derivative
is

dθ =−iFA.

The connection 1-form θ splits the tangent space T P of P into vertical and hori-
zontal directions. For the vertical direction, we note that by (18), the expression ∂

∂ψ

transforms as a global vector field on π : P→ X . We define the vertical subbundle
V by

V = kerπ∗ = span
{

∂

∂ψ

}
.

The horizontal space is given by H = kerθ . The tangent bundle of P splits as

T P =V ⊕H,

and π∗|H : H→ T X is isomorphism.

1.4.2 Non-Kähler manifolds constructed from principal bundles

Connections on U(1) principal bundles can be used to construct non-Kähler com-
plex manifolds. This idea was first used by Calabi-Eckmann [15], and later gener-
alized by Goldstein-Prokushkin [58]. In this section, we will construct the Calabi-
Eckmann manifolds.

Our first example will use P1 as the base manifold. We cover P1 by the open sets

U0 = {[Z0,Z1] : Z0 6= 0}, U1 = {[Z0,Z1] : Z1 6= 0},

and define coordinates ζ = Z1
Z0

on U0 and ξ = Z0
Z1

on U1. The line bundle L =

O(−1)→ P1 equips the covering {U0,U1} with the transition function

t01 : U0∩U1→ C∗, t01 =
Z0

Z1
.

This data defines a U(1) principal bundle π : P→ P1 by the same covering P1 =
U0∪U1 and transition function
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Z0

Z1

|Z1|
|Z0|

: U0∩U1→ S1.

In the trivialisation U0× S1, we use coordinates (ζ ,eiψ0), and in the trivialisation
U1×S1, we use coordinates (ξ ,eiψ1). On the overlap,

eiψ0 =
ξ

|ξ |
eiψ1 .

In fact, the space P is diffeomorphic to the sphere S3. If we write

S3 = {(z0,z1) ∈ C2 : |z0|2 + |z1|2 = 1},

then a diffeomorphism is given by F : S3→ P, where

F(z0,z1) =

(
[z0,z1],

z0

|z0|

)
∈U0×S1, z0 6= 0,

F(0,z1) = ([0,1],z1) ∈U1×S1.

The inverse of F is given by

F−1(ζ ,eiψ0) =
1√

1+ |ζ |2
(eiψ0 ,ζ eiψ0), (ζ ,eiψ0) ∈U0×S1,

F−1([0,1],eiψ1) = (0,eiψ1), ([0,1],eiψ1) ∈U1×S1.

Next, we define a connection on P.
A metric on L =O(−1) is defined by two positive functions h0 : U0→ (0,∞) and

h1 : U1→ (0,∞) satisfying h0 =
h1
|t01|2

. We will take

h0 = 1+ |ζ |2, h1 = 1+ |ξ |2.

The Chern connection of (L,h) is ∇ = d+A with A = ∂ logh. As explained in (19),
a connection on L defines a connection 1-form θ on P given by

θ = dψ− iA′,

which satisfies
dθ =−idA′ =−i∂̄ ∂ logh := ωFS. (20)

Next, we add a trivial fiber S1 = {eiφ} to our space, and consider the manifold

M1,0 = P×S1 ' S3×S1.

Using the connection θ , we split the tangent bundle

T M1,0 = H⊕
〈

∂

∂ψ

〉
⊕
〈

∂

∂φ

〉
.
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We can define an almost complex structure J on M1,0 by identifying H with T P1

and using the standard complex structure on ∂ψ and ∂φ . To be precise, if j is the
complex structure on P1, then

J = (π∗|H j)⊕ I, I
∂

∂ψ
=

∂

∂φ
, I

∂

∂φ
=− ∂

∂ψ
.

The space T 1,0M1,0 is spanned by pullbacks of T 1,0P1 and

∂

∂ψ
− i

∂

∂φ
.

To show J is integrable, we can apply the Newlander-Nirenberg theorem. If z de-
notes a local holomorphic coordinate on P1, then (1,0)-forms on M1,0 are locally
generated by

{π∗dz,θ + idφ}.

We note that θ + idφ is a (1,0) form since it sends ∂ψ + i∂φ to zero and H = kerθ .
For local functions f1, f2, then by (20) we compute

d[ f1dz+ f2(θ + idφ)] = d f1∧dz+d f2∧ (θ + idφ)+ f2ωFS. (21)

It follows that for any η ∈ Ω 1,0(M1,0), then (dη)2,0 = 0. By the Newlander-
Nirenberg theorem, we conclude that M1,0 is a complex manifold.

The complex surface M1,0 is known as the Hopf surface. Since it is topologically
S3× S1, we see that the second Betti number of M1,0 is zero. Therefore M1,0 is a
non-Kähler complex surface.

This same construction can be applied to the manifold M1,1 = P×P, which is
a product of two copies of the U(1) principal bundle P over P1. Then M1,1 is a
complex manifold of complex dimension 3, which is a fibration over P1×P1.

π : M1,1→ P1×P1.

Since M1,1 ' S3× S3, this construction defines a non-Kähler complex structure on
S3×S3.

In fact, the threefold M1,1 does not even admit a balanced metric [83]. Suppose
ω is a positive (1,1) form on M1,1 such that dω2 = 0. Let D be a divisor on the base
P1×P1. Since ∫

π∗(D)
ω

2 > 0,

it follows that the class [ω2] ∈ H4(M1,1,R) is non-trivial. This is a contradiction,
since H4(S3×S3,R) = 0.

The construction described above readily generalizes to Mp,q = S2p+1× S2q+1,
giving fibrations

π : Mp,q→ Pp×Pq.
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These non-Kähler complex manifolds were discovered in [15] and are now named
Calabi-Eckmann manifolds. A variant of this construction will be revisited in §2.3.4
to produce T 2 fibrations over Calabi-Yau surfaces [58], and these manifolds will
play a role as a class of solutions to the Hull-Strominger system [45, 46].

2 Calabi-Yau Manifolds with Torsion

Let X be a compact complex manifold of complex dimension n. We assume now
and henceforth in these notes that n ≥ 3. Suppose X admits a nowhere vanishing
holomorphic (n,0) form Ω . Given a Hermitian metric ω = igk̄ jdz j ∧dz̄k, the norm
of Ω is defined by

‖Ω‖2
ω

ωn

n!
= in

2
Ω ∧ Ω̄ . (22)

Using a local coordinate representation Ω = Ω(z)dz1∧·· ·∧dzn, this norm is

‖Ω‖2
ω = Ω(z)Ω(z)(detgk̄ j)

−1.

A Hermitian metric ω on (X ,Ω) is said to be conformally balanced if it satisfies

d(‖Ω‖ω ω
n−1) = 0. (23)

We see that the Hermitian metric χ = ‖Ω‖1/(n−1)
ω ω is balanced in the sense of

Michelsohn [83]. We will call (X ,Ω ,ω) a Calabi-Yau manifold with torsion.
Though Kähler manifolds provide a class of examples, Calabi-Yau manifolds

with torsion need not admit a Kähler metric. We shall see that Calabi-Yau manifolds
with torsion, though non-Kähler, still retain interesting structure. The geometry of
Hermitian manifolds satisfying condition (23) belongs somewhere between Kähler
geometry and the general theory of non-Kähler complex manifold described in §1.
We note that there are other proposed generalizations of non-Kähler Calabi-Yau
manifolds in the literature; see e.g. [60, 75, 105].

It was shown by Li-Yau [76] that condition (23) is equivalent to certain SU(n)
structures arising in heterotic string theory [68, 69, 103, 85, 71, 56]. In this section,
we will explore the geometric implications of this condition.

2.1 Curvature and holonomy

2.1.1 Holonomy

From the point of view of differential geometry, Calabi-Yau manifolds with torsion
can be understood by imposing a holonomy constraint. While Kähler Calabi-Yau
manifolds are characterized by the Levi-Civita connection having holonomy con-
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tained in SU(n), here we consider the holonomy of the Strominger-Bismut connec-
tion ∇+ instead.

Lemma 4. [83] Let (X ,ω) be a Hermitian manifold equipped with a nowhere van-
ishing holomorphic (n,0) form Ω . Define χ = ‖Ω‖1/(n−1)

ω ω . Then

d†
χ χ = i(∂ log‖Ω‖ω − τ)− i(∂̄ log‖Ω‖ω − τ̄).

Here τ is the torsion 1-form of ω , and d†
χ is the L2 adjoint with respect to χ .

Proof. The torsion 1-form of χ is given by

T χ

j = ‖Ω‖−1/(n−1)
ω gik̄

[
∂i(‖Ω‖1/(n−1)

ω gk̄ j)−∂ j(‖Ω‖1/(n−1)
ω gk̄i)

]
.

Simplifying this expression give

T χ

j = Tj−∂ j log‖Ω‖ω ,

where Tj is the torsion of ω . We apply the identity (13) for the adjoint ∂
†
χ of χ . ut

Next, we intepret the conformally balanced condition in terms of a torsion con-
straint. This relationship between T and log‖Ω‖ω will have a recurring role as the
key identity in the subsequent computations.

Proposition 2. [83] Let (X ,ω) be a Hermitian manifold equipped with a nowhere
vanishing holomorphic (n,0) form Ω . The conformally balanced condition (23) is
equivalent to the torsion constraint

Tj = ∂ j log‖Ω‖ω , T̄ j̄ = ∂ j̄ log‖Ω‖ω .

Proof. Expanding the conformally balanced condition gives

0 = ∂ log‖Ω‖ω ∧ω
n−1 +(n−1)∂ω ∧ω

n−2.

A computation shows the following identity

(n−1)∂ω ∧ω
n−2 =−τ ∧ω

n−1.

Therefore
∂ log‖Ω‖ω ∧ω

n−1 = τ ∧ω
n−1.

It follows that τ = ∂ log‖Ω‖ω . ut

Our first application of the torsion constraint will be to construct parallel sections
of the canonical bundle.

Lemma 5. [50] Let (X ,ω) be a Hermitian manifold with a nowhere vanishing holo-
morphic (n,0) form Ω . Suppose (X ,ω,Ω) satisfies the conformally balanced con-
dition (23). Then ψ = ‖Ω‖−1

ω Ω satisfies
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∇
+

ψ = 0.

Thus ψ ∈Γ (X ,KX ) is nowhere vanishing and parallel with respect to the Strominger-
Bismut connection ∇+.

Proof. By (8) and (6), the induced connection ∇+ on ψ is given by

∇
+
i ψ = ∂iψ− (Γ α

iα −T α
iα)ψ, ∇

+
ī ψ = ∂īψ−gkm̄T̄kīm̄ψ. (24)

The unbarred derivative is

∇
+
i ψ =−∂i log‖Ω‖ω ψ +‖Ω‖−1

ω ∂iΩ −Γ
α

iα ψ−Tiψ.

We note that

2∂i log‖Ω‖ω =
∂iΩ

Ω
−gpq̄

∂igq̄p =
∂iΩ

Ω
−Γ

α
iα .

and therefore
∇
+
i ψ = (∂i log‖Ω‖ω −Ti)ψ.

By (24), we also have

∇
+
ī ψ = (−∂ī log‖Ω‖ω + T̄ī)ψ.

If (X ,ω,Ω) is conformally balanced, we may use Proposition 2 and substitute the
torsion constraint Ti = ∂i log‖Ω‖ω to conclude ∇+ψ = 0. ut

Theorem 1. [50] Let (X ,ω) be a compact Hermitian manifold with nowhere van-
ishing holomorphic (n,0) form Ω . Then (X ,ω,Ω) satisfies the conformally bal-
anced condition (23) if and only if there exists ψ ∈ Γ (X ,KX ) which is nowhere
vanishing and parallel with respect to the Strominger-Bismut connection ∇+.

Proof. The previous lemma constructs a nowhere vanishing parallel section if
(X ,ω,Ω) is conformally balanced. On the other hand, suppose there exists a
nowhere vanishing section ψ ∈ Γ (X ,KX ) such that

∇
+

ψ = 0.

We will follow the proof given in lecture notes of Garcia-Fernandez [50]. Write

ψ = e− f
Ω ,

for a complex function f . Since ∇+gk̄ j = 0, the norm of ψ is constant. Let us assume
that ‖ψ‖ω = 1. Then

1 = e− f− f̄ ‖Ω‖2
ω ,

and
f + f̄ = 2log‖Ω‖ω .

By the formula (24), we obtain



20 Contents

0 = ∇
+
i ψ = (−∂i f −Ti +2∂i log‖Ω‖ω)ψ,

0 = ∇
+
ī ψ = (−∂ī f + T̄ī f )ψ. (25)

We know that the real part Re f is log‖Ω‖ω , and we will now show that the imagi-
nary part Im f is constant. For this, we use (25) to compute

∂i( f − f̄ ) = 2(∂i log‖Ω‖ω −Ti),

∂ī( f − f̄ ) = −2(∂ī log‖Ω‖ω − T̄ī).

By Lemma 4,
id( f − f̄ ) = 2d†

χ χ,

for χ = ‖Ω‖1/(n−1)
ω χ . Therefore

d†
χ d( f − f̄ ) = 0,

hence 〈d( f − f̄ ),d( f − f̄ )〉χ = 0 and Im f is constant. Since Re f = log‖Ω‖ω , it
follows that

d f = d log‖Ω‖ω

and (25) implies the torsion constraint

∂ log‖Ω‖ω = τ.

By Proposition 2, (X ,ω,Ω) is conformally balanced. ut

As a consequence of the existence of parallel sections, we obtain the following
interpretation of the conformally balanced condition in terms of a holonomy con-
straint.

Corollary 1. [103, 76] A compact Hermitian manifold with trivial canonical bundle
(X ,ω,Ω) satisfies the conformally balanced condition (23) if and only if

Hol(∇+)⊆ SU(n).

2.1.2 Curvature

Next, we study the structure of the curvature tensor of Calabi-Yau manifolds with
torsion. We start with the curvature of the Bismut connection. By the definition (8),
we can write ∇+ = d +A with

A j
p

q = Γ
p

iq −T p
jq, A j̄

p
q = gpk̄T̄q j̄k̄.

From this expression, we may compute Rm+ = dA + A ∧ A. The components
(TrRm+)αβ = R+

αβ

γ
γ are

(TrRm+)k j = ∂ jTk−∂kTj, (TrRm+)k̄ j̄ =−(∂ j̄T̄k̄−∂k̄T̄ j̄), (26)
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(TrRm+)k̄ j =−∂k̄Tj−∂ jT̄k̄ +∂ j∂k̄ log‖Ω‖2
ω . (27)

The following characterization is due to Fino and Grantcharov, which indicates
that conformally balanced metrics can be viewed as non-Kähler analogs of Kähler
Ricci-flat metrics.

Theorem 2. [39] Let (X ,ω) be a compact Hermitian manifold with nowhere van-
ishing holomorphic (n,0) form Ω . Then (X ,ω,Ω) is conformally balanced if and
only if

TrRm+ = 0.

Proof. From (26) and (27), we see that manifolds satisfying the torsion constraint
in Proposition 2 satisfy TrRm+ = 0. For the other direction, we note that by Lemma
4, we can write

TrRm+ = idd†
χ χ,

for χ = ‖Ω‖1/(n−1)
ω ω . It follows that if TrRm+ = 0, then 〈d†

χ χ,d†
χ χ〉χ = 0 and

hence d†
χ χ = 0. By Lemma 4, we conclude ∂ log‖Ω‖ω = τ and hence (X ,ω,Ω) is

conformally balanced. ut
For most subsequent computations, we will be using the Chern connection ∇,

so we now turn to curvature of the Chern connection. This tensor satisfies certain
useful identities on Calabi-Yau manifolds with torsion that we will now describe.

Proposition 3. The Chern-Ricci curvature of a conformally balanced metric (X ,ω,Ω)
satisfies

Rk̄ j = 2∇k̄Tj.

Proof. The Chern-Ricci curvature is given by

Rk̄ j = ∂ j∂k̄ log‖Ω‖2
ω .

Applying the torsion constraint (Proposition 2) gives the result. ut
As a consequence, we obtain the following identities between Ricci curvatures

of the Chern connection.

Proposition 4. [91] A conformally balanced metric (X ,ω,Ω) satisfies

R′k̄ j = R′′k̄ j =
1
2

Rk̄ j,

R′ =
1
2

R, R = g jk̄
∂ j∂k̄ log‖Ω‖2

ω .

Proof. By the Bianchi identity (Lemma 3),

R′k̄ j = gpq̄Rk̄pq̄ j = gpq̄(Rk̄ jq̄p +∇k̄Tq̄ jp) = Rk̄ j−∇k̄Tj.

Applying the previous proposition gives R′k̄ j =
1
2 Rk̄ j. The identity for R′′k̄ j is derived

similarly. Taking the trace gives the relation between the scalar curvatures R and R′.
ut
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From the divergence theorem (10), we note in passing that the total scalar curva-
ture of the Chern connection of a Calabi-Yau manifold with torsion is positive. In
fact, ∫

X
Rω

n =
∫

X
(2|τ|2)ω

n.

We conclude this section with the remark that in Strominger’s work [103], the
condition d(‖Ω‖ω ωn−1) = 0 appeared in another form. The reformulation of this
condition in terms of balanced metrics is due to Li and Yau [76].

Theorem 3. [76] Let (X ,ω) be a Hermitian manifold with nowhere vanishing holo-
morphic (n,0) form Ω . The conformally balanced condition d(‖Ω‖ω ωn−1) = 0 is
equivalent to the equation

d†
ω = i(∂̄ −∂ ) log‖Ω‖ω .

Proof. This follows from combining d†ω = i(τ̄ − τ) (13) with ∂ log‖Ω‖ω = τ

(Proposition 2). ut

2.2 Rigidity theorems

We note in this section some conditions under which a Calabi-Yau manifold with
torsion is actually Kähler. We start with a result of Ivanov-Papadopoulos [71]. The
proof given here follows the computation of [91].

Theorem 4. [71] Let (X ,ω,Ω) be a compact Calabi-Yau manifold with torsion, so
that d(‖Ω‖ω ωn−1) = 0. Suppose

i∂ ∂̄ω = 0.

Then ω is a Kähler metric.

Proof. We start by computing i∂ ∂̄ω . Its components are

i∂ ∂̄ω =
1
4
(i∂ ∂̄ω)ī j̄k` dz`∧dzk ∧dz̄ j ∧dz̄i,

given explicitly by

(i∂ ∂̄ω)ī j̄k` = ∂`∂ j̄gīk−∂`∂īg j̄k +∂k∂īg j̄`−∂k∂ j̄gī`.

Using the definition of the curvature tensor (15) and the torsion (4), we find

(i∂ ∂̄ω)ī j̄k` =−Rīk j̄`+R j̄kī`−R j̄`īk +Rī` j̄k−gsr̄Tr̄`kT̄sī j̄. (28)

Setting this expression to zero and contracting the indices, we see that pluriclosed
metrics satisfy
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0 = g` j̄gkī(i∂ ∂̄ω)ī j̄k` = 2R′−2R+ |T |2.

Applying Proposition 4, we see that if we further assume that ω is conformally
balanced, then

g jk̄
∂ j∂k̄ log‖Ω‖2

ω = |T |2 ≥ 0.

The maximum principle for elliptic equations (Proposition 1) implies that log‖Ω‖2
ω

must be constant, and hence |T |2 = 0. ut

Next, we state the result of Fino-Tomassini [41], which builds on work of
Matsuo-Takahashi [81]. We follow here the computation given in [95].

Theorem 5. [41, 81] Let (X ,Ω ,ω) be a compact Calabi-Yau manifold with torsion
of dimension n≥ 3, so that d(‖Ω‖ω ωn−1) = 0. Suppose

i∂ ∂̄ω
n−2 = 0.

Then ω is a Kähler metric.

Proof. We assume that n≥ 4, since the statement follows from the previous theorem
when n = 3. Expanding derivatives,

i∂ ∂̄ω
n−2 = (n−2)i∂ ∂̄ω ∧ω

n−3 + i(n−2)(n−3)T ∧ T̄ ∧ω
n−4.

We will wedge this expression with ω to obtain an equation on top forms. For this,
we use the general identities

Φ ∧ω
n−2 =

1
2n(n−1)

{
gi j̄gk ¯̀

Φ ¯̀ j̄ki

}
ω

n, (29)

and

Ψ ∧ω
n−3 =− i

6n(n−1)(n−2)

{
gi j̄gk ¯̀gmn̄

Ψn̄ ¯̀ j̄mki

}
ω

n, (30)

for any Φ ∈Ω 2,2(X ,R) and Ψ ∈Ω 3,3(X ,R), where we use the component conven-
tion (1). Applying these identities gives

ω ∧ i∂ ∂̄ω
n−2

=

[
(n−2)

2n(n−1)
gi j̄gk ¯̀

(i∂ ∂̄ω) ¯̀ j̄ki +
(n−3)

6n(n−1)
gi j̄gk ¯̀gmn̄(T ∧ T̄ )n̄ ¯̀ j̄mki

]
ω

n. (31)

Symmetrizing the components of the torsion tensor T , we see that

(T ∧ T̄ )n̄ ¯̀ j̄mki = T j̄miT̄kn̄ ¯̀+T ¯̀miT̄k j̄n̄ +Tn̄miT̄k ¯̀ j̄ +T j̄kmT̄in̄ ¯̀+T ¯̀kmT̄i j̄n̄

+Tn̄kmT̄i ¯̀ j̄ +T j̄ikT̄mn̄ ¯̀+T ¯̀ikT̄m j̄n̄ +Tn̄ikT̄m ¯̀ j̄. (32)

Setting (31) to zero and substituting the expression (28) for i∂ ∂̄ω and (32) for T ∧ T̄ ,
we obtain the following identity
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0 =
(n−2)

2n(n−1)
(2R′−2R+ |T |2)+ (n−3)

6n(n−1)
(6|τ|2−3|T |2),

satisfied by any astheno-Kähler metric ω . We now use the conformally balanced
condition by applying Proposition 4, which gives 2R′− 2R = −g jk̄∂ j∂k̄ log‖Ω‖ω .
Simplifying, we obtain

(n−2)g jk̄
∂ j∂k̄ log‖Ω‖ω = |T |2 +2(n−3)|τ|2 ≥ 0.

By the maximum principle for elliptic equations (Proposition 1) we must have
|T |2 +2(n−3)|τ|2 = 0. Hence |T |2 = 0 and ω is Kähler. ut

There are more theorems of this nature; for other conditions on balanced metrics
which imply that it is Kähler, see [37, 78, 79].

A folklore conjecture in the field (e.g. [42]) speculates that if a Calabi-Yau with
torsion (X ,Ω ,ω) admits another metric ω2 which is pluriclosed, then X must be a
Kähler. If ω2 is instead assumed to be astheno-Kähler, then X need not be Kähler
[40, 74].

2.3 Examples

2.3.1 Kähler Calabi-Yau

We have already seen that conformally balanced metrics generalize Kähler Ricci-
flat metrics, since they are characterized by vanishing of the Ricci curvature of ∇+,
and ∇+ coincides with the Levi-Civita connection for Kähler metrics. We note here
a simple direct proof that Kähler Ricci-flat metrics are conformally balanced.

Let (X ,Ω) be a Kähler Calabi-Yau manifold. By Yau’s theorem [119], there ex-
ists a Kähler metric ω with zero Ricci curvature. In this case, ‖Ω‖ω is constant,
since

i∂ ∂̄ log‖Ω‖2
ω = i∂ ∂̄ logΩ(z)Ω(z)− i∂ ∂̄ logdetgk̄ j = 0,

and hence g jk̄∂ j∂k̄ log‖Ω‖2
ω = 0. By the maximum principle, ‖Ω‖ω is constant.

Since ω is Kähler, we have dωn−1 = 0, and hence d(‖Ω‖ω ωn−1) = 0.

2.3.2 Complex Lie Groups

Next, we study invariant metrics on complex Lie groups, which provide a class
of natural non-Kähler metrics. Let G be a complex Lie group. Choose a positive
definite inner product on the Lie algebra g, and let e1, . . . ,en ∈ g be an orthonormal
frame of left-invariant holomorphic vector fields on G. The structure constants of
the Lie algebra g in this basis will be denoted
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[ea,eb] = cd
abed .

Taking the dual frame e1, . . . ,en, we may define a left-invariant metric ω by

ω = i∑
a

ea∧ ēa.

We note that this metric cannot be Kähler unless G is trivial. Indeed, taking the
exterior derivative gives

∂ea =
1
2

ca
bded ∧ eb. (33)

Therefore
i∂̄ω =

1
2

ca
bd ea∧ ēd ∧ ēb,

i∂ ∂̄ω =
1
4

ca
bdca

rs es∧ er ∧ ēd ∧ ēb, (34)

so this invariant metric is not Kähler or pluriclosed in general. We take the Calabi-
Yau form to be

Ω = e1∧·· ·∧ en.

which is a nowhere vanishing holomorphic (n,0) form. Using (22), we see that

‖Ω‖ω = 1.

Checking whether ω is conformally balanced reduces to verifying that dωn−1 = 0.
This implies a condition of the structure constants, which does not hold for arbitrary
Lie groups, but still admits plenty of examples. We say that G is unimodular if its
structure constants satisfy

∑
p

cp
pa = 0.

This condition is well-defined on G and does not depend on the choice of frame. It
was noted by Abbena and Grassi [1] that dωn−1 = 0 if and only if G is unimodular.
Indeed, from (33) we see that T a

bd = ca
bd . Hence G is unimodular if and only if

Tj = 0, which holds if and only if ω is conformally balanced by Proposition 2.
Thus unimodular complex Lie groups admit left invariant conformally balanced

metrics. An explicit example is given by SL(2,C). To obtain a compact threefold,
we may quotient out by a discrete group and let X = SL(2,C)/Λ .

We claim that X does not admit a Kähler metric. For this, we use the fact that
SL(2,C) admits a basis ea such that ca

bd = εabd the Levi-Civita symbol. Let ω =
iδba ea∧ ēb, and compute

(ω2)b̄d̄rs = 2(δd̄sδb̄r−δd̄rδb̄s).

In dimension 3, we have the contracted epsilon identity

εarsεabd = δrbδsd−δrdδbs. (35)
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Therefore, by (34),
(i∂ ∂̄ω)b̄d̄rs = δdsδbr−δdrδbs.

We see that ω2 and i∂ ∂̄ω are proportional to each other.

i∂ ∂̄ω =
1
2

ω
2. (36)

This in particular illustrates another difference with Kähler geometry, where ω2

always represents a non-zero cohomology class. Now suppose X admits a Kähler
metric χ . Then

0 =
∫

X
i∂ ∂̄ω ∧χ =

1
2

∫
X

ω
2∧χ (37)

which is a contradiction since ω2∧χ > 0.
For more examples of complex Lie groups, Fei-Yau ([36], Proposition 3.7) clas-

sify complex unimodular Lie algebras of dimension 3 and study the Hull-Strominger
system in each case. A theorem of H.-C. Wang [117] states that the only compact
parallelizable manifolds admitting Kahler metrics are the complex tori.

2.3.3 Iwasawa manifold

We consider the action of a,b,c ∈ Z[i] on C3 given by

(x,y,z) 7→ (x+a,y+ c,z+ āy+b). (38)

Let X be the quotient of C3 under this action. The manifold X is an example of an
Iwasawa manifold. We have a projection

π : X → T 4 = C/Λ ×C/Λ , π(x,y,z) = (x,y).

Here Λ is the lattice generated by 1, i. The fibers are isomorphic to tori π−1(x,y) =
T 2. Hence M is a torus fibration over T 4. The form

Ω = dz∧dx∧dy,

is defined on X , and is holomorphic nowhere vanishing. We define

θ = dz− x̄dy.

This form on C3 is invariant under the action (38), and is thus well-defined on X .
Consider the family of metrics

ωu = eu
ω̂ + iθ ∧ θ̄ , ω̂ = idx∧dx̄+ idy∧dȳ,

where u : T 4→R is an arbitrary function on the base T 4. A computation shows that
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‖Ω‖ωu = e−u,

and
d(‖Ω‖ωuω

2
u ) = 0.

Thus (X ,ωu,Ω) is conformally balanced. However, X does not admit a Kähler met-
ric. Let ω0 be metric with u = 0. Direct computation gives

i∂ ∂̄ω0 =
ω̂2

2
.

We can rule out the existence of a Kähler metric χ by considering
∫

X i∂ ∂̄ω0∧ χ as
in the previous section, see (37).

2.3.4 Goldstein-Prokushkin fibrations

In this section, we describe a construction of Goldstein-Prokushkin [58] which uti-
lizes U(1) principal bundles to generalize the previous example. Let (S, ω̂,Ω) be
a Kähler Calabi-Yau surface equipped with two (1,1) form ω1,ω2 ∈ 2πH2(S,Z),
which are anti-self-dual with respect to ω̂ .

?ω1 =−ω1, ?ω2 =−ω2.

There exists line bundles L1,L2 over S with connections A1,A2 whose curvature
iFA1 , iFA2 is equal to ω1,ω2. As detailed in §1.4, the line bundles L1,L2 can be com-
pactified to form S1 principal bundles P1 → S, P2 → S equipped with connection
1-forms θ1,θ2 satisfying

dθi =−ωi.

Let X denote the total space of the S1×S1 principal bundle π : X → S whose fibers
are the product of the fibers of P1,P2. Locally, points of X are given by (z,eiψ1 ,eiψ2).
As we discussed in §1.4, we have the global vector fields

∂

∂ψ1
,

∂

∂ψ2
,

which span the vertical space V = kerπ∗, and satisfy

θ1

(
∂

∂ψ1

)
= 1, θ2

(
∂

∂ψ2

)
= 1.

The horizontal space is given by

H = kerθ1∩kerθ2,

and the tangent space admits the decomposition
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T X = H⊕V.

Furthermore
π?|H : H→ T S

is an isomorphism. It follows that the complex structure jS on S induces an almost
complex structure on H. We define on X the almost complex structure

J = (π∗|H jS)⊕ I, I
∂

∂ψ1
=

∂

∂ψ2
, I

∂

∂ψ2
=− ∂

∂ψ1
.

We define the 1-form
θ =−θ1− iθ2.

Since θ |H = 0 and θ(∂ψ1 + i∂ψ2) = 0, we see that θ(V ) = 0 for any V ∈ T 0,1X . Thus
θ is a (1,0) form. Furthermore,

dθ = π
∗(ω1 + iω2).

Similarly to our discussion of equation (21) in §1.4.2, we can use that (1,0) forms
are locally generated by {π∗dz1,π∗dz2,θ} to apply the Newlander-Nirenberg the-
orem and establish that J integrable. Thus X is a compact complex manifold of
dimension 3.

In fact, X is a Calabi-Yau manifold with torsion. Let

Ω = θ ∧π
∗
ΩS,

which is a nowhere vanishing (3,0) form. The form Ω is holomorphic since dΩ = 0.

For u ∈C∞(S,R), we consider the family of metrics

ωu = π
∗(eu

ω̂)+ iθ ∧ θ̄ .

These metrics will be revisited, as they form the Fu-Yau ansatz of solutions to the
Hull-Strominger system [45]. We compute

iΩ ∧ Ω̄ = iθ ∧ θ̄ ∧π
∗(ΩS∧ΩS) = iθ ∧ θ̄ ∧π

∗
(
‖ΩS‖2

ω̂

ω̂2

2

)
,

ω
2
u = π

∗(e2u
ω̂

2)+2π
∗(eu

ω̂)∧ iθ ∧ θ̄ , ω
3
u = 3π

∗(e2u
ω̂

2)∧ iθ ∧ θ̄ .

Since (S, ω̂) is Kähler Ricci-flat, then ‖ΩS‖ω̂ is constant, which we may normalize
such that

‖Ω‖ωu = e−u. (39)

We can now compute
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d(‖Ω‖ωuω
2
u ) = d(π∗(eu

ω̂
2)+2π

∗
ω̂ ∧ iθ ∧ θ̄)

= 2π
∗
ω̂ ∧ iπ∗(ω1 + iω2)∧ θ̄ −2π

∗
ω̂ ∧ iθ ∧π

∗(ω1− iω2)

= 0,

since
ω̂ ∧ω1 = ω̂ ∧ω2 = 0,

as ω1,ω2 are anti-self-dual. Thus (X ,ωu,Ω) is Calabi-Yau with torsion. In fact, X
is non-Kähler unless ω1 = ω2 = 0. To see this, we compute

i∂ ∂̄ω0 =−∂̄ θ ∧∂ θ̄ =−(π∗ω1 + iπ∗ω2)(π
∗
ω1− iπ∗ω2) =−π

∗(ω2
1 +ω

2
2 ).

Since ω1,ω2 are anti-self-dual,

i∂ ∂̄ω0 = π
∗(ω1∧?ω1 +ω2∧?ω2).

If X admits a Kähler metric χ , then

0 =
∫

X
i∂ ∂̄ω0∧χ =

∫
X

π
∗(ω1∧?ω1 +ω2∧?ω2)∧χ,

which is strictly positive unless ‖ω1‖2
ω̂
= ‖ω2‖2

ω̂
= 0.

2.3.5 Fei twistor space

As our last example, we outline a construction of T. Fei [30, 31] which general-
izes earlier constructions of Calabi [14] and Gray [61]. The example will be a T 4

fibration over a Riemann surface.
We first describe the base of the fibration. Let (Σ ,ϕ) be a Riemann surface

equipped with a nonconstant holomorphic map ϕ : Σ→P1 satisfying ϕ∗O(2) =KΣ .
This condition is known to imply that the genus of Σ must be at least three. As a
concrete example, we may take Σ to be a minimal surface in T 3 with ϕ being the
Gauss map [34]. By the work of Meeks [82] and Traizet [110], there exists minimal
surfaces of genus g≥ 3 in T 3.

Using stereographic coordinates, we may write ϕ = (α,β ,γ) with (α,β ,γ) ∈
S2 ⊆R3. Fixing the Fubini-Study metric ωFS on P1, we pullback via ϕ an orthonor-
mal basis of sections of O(2) to obtain 1-forms µ1, µ2, µ3. We then equip Σ with
the metric

ω̂ = iµ1∧ µ̄1 + iµ2∧ µ̄2 + iµ3∧ µ̄3.

This metric has Gauss curvature κ given by

κω̂ =−ϕ
∗
ωFS,

hence κ ≤ 0 and κ vanishes at branch points of ϕ .
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We now describe the fibers. Let (T 4,g) be the 4-torus with flat metric, which
we will view as a hyperkähler manifold with complex structures I, J, K satisfying
IJ = K and I2 = J2 = K2 = −1, and corresponding Kähler metrics ωI , ωJ , ωK . At
each z ∈ Σ , we use the map ϕ = (α,β ,γ) to equip T 4 with the complex structure

αI +βJ+ γK.

If jΣ denotes the complex structure on Σ , we may form the product X = Σ×T 4 and
equip it with the complex structure

J0 = jΣ ⊕ (αI +βJ+ γK).

This complex structure is integrable, thus X is a compact complex manifold of di-
mension 3. In fact, X has trivial canonical bundle, and we can give an explicit ex-
pression for a nowhere vanishing holomorphic (3,0) form

Ω = µ1∧ωI +µ2∧ωJ +µ3∧ωK .

Let
ω
′ = αωI +βωJ + γωK

be the Kähler metric corresponding to the complex structure αI +βJ + γK on T 4.
The Fei ansatz ω f on X is the following family of conformally balanced metrics.

Proposition 5. [30, 31] Given any f ∈C∞(Σ ,R), the Hermitian metric given by

ω f = e2 f
ω̂ + e f

ω
′,

is conformally balanced. Furthermore, ‖Ω‖ω f = e−2 f .

Thus X is Calabi-Yau with torsion, and in fact, it is non-Kähler.

2.3.6 Other examples

We have now discussed many examples of Calabi-Yau manifolds with balanced
metrics, many of which were already listed in the pioneering work of Michelsohn
[83]. There are also example which will not be studied in these notes. For example,
there is the construction of Fu-Li-Yau [47] on connected sums of S3× S3. There
are parallelizable examples on nilmanifolds and solvmanifolds [113, 86, 37, 39,
114, 115]. Non-compact examples are constructed in [48, 32, 38]. There are also
examples from the physics literature, e.g. [8, 9, 23, 66, 80].
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3 Anomaly Flow with Zero Slope

In this section, we will discuss a geometric flow which preserves the geometry de-
scribed in §2. The material in this section can be found in joint work with Duong H.
Phong and Xiangwen Zhang [88, 91, 95].

A central problem in complex geometry is to detect when a given complex man-
ifold admits a Kähler metric. We would like to study this question on Calabi-Yau
manifolds with torsion. Motivated by §2.2, we will deform conformally balanced
metrics towards astheno-Kähler (i∂ ∂̄ωn−2 = 0).

Together with D.H. Phong and X.-W. Zhang [95], we introduce the flow

d
dt

(‖Ω‖ω ω
n−1) = i∂ ∂̄ω

n−2,

d(‖Ω‖ω(0)ω(0)n−1) = 0. (40)

We call this evolution equation the Anomaly flow with zero slope. The name comes
from an extension of the flow which adds higher order correction terms proportional
to a parameter α ′, which is used to study the Hull-Strominger system and the cancel-
lation of anomalies in theoretical physics. We will discuss the Anomaly flow when
α ′ terms are included in §4.

The first thing to note is that the conformally balanced property is preserved by
the flow

d(‖Ω‖ω(t)ω(t)n−1) = 0,

which follows from taking the exterior derivative of (40). In fact, the balanced class
of the initial metric

[‖Ω‖ω(0)ω(0)n−1] ∈ Hn−1,n−1
BC (X ,R)

is also preserved, since

d
dt
[‖Ω‖ω ω

n−1] = [i∂ ∂̄ω
n−2] = 0. (41)

Here Hn−1,n−1
BC (X) is the Bott-Chern cohomology of X , given by

Hn−1,n−1
BC (X) =

{α ∈Ω n−1,n−1(X) : dα = 0}
{i∂ ∂̄β : β ∈Ω n−2,n−2(X)}

.

Stationary points ω∞ of the flow satisfy both

d(‖Ω‖ω∞
ω

n−1
∞ ) = 0, i∂ ∂̄ω

n−2
∞ = 0,

hence by Theorem 5, they are Kähler. The Anomaly flow with zero slope thus de-
forms balanced metrics to a Kähler metric in a given balanced class.
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3.1 Evolution of the metric

The first question to ask about the flow (40) is whether it exists for a short-time, and
if so, we would like an explicit expression for the evolution equation of the metric
ω = igk̄ jdz j ∧dz̄k.

We begin by deriving the evolution of the determinant of the metric.

Lemma 6. Suppose ω(t) = igk̄ jdz j ∧dz̄k satisfies the evolution equation

d
dt
(‖Ω‖ω ω

n−1) =Ψ(t), (42)

for Ψ(t) ∈Ω n−1,n−1(X ,R). Then the norm of Ω evolves by

d
dt
‖Ω‖ω =− n

(n−2)
Ψ ∧ω

ωn ,

which follows from the identity

Tr ω̇ =
2n

(n−2)‖Ω‖ω

Ψ ∧ω

ωn .

From now on, traces will always be taken with respect to the evolving metric ω .
Explicitly,

Trα = i−1g jk̄
αk̄ j,

for a (1,1) form α = αk̄ jdz j ∧dz̄k.

Proof. Using the well-known formula

δ detgk̄ j = (detgk̄ j)g
jk̄(δg)k̄ j,

we differentiate

d
dt
‖Ω‖ω =

d
dt
(ΩΩ̄)1/2(detg)−1/2 =−1

2
‖Ω‖ω Tr ω̇.

Expanding (42), we obtain(
d
dt
‖Ω‖ω

)
ω

n−1 +(n−1)‖Ω‖ω ω̇ ∧ω
n−2 =Ψ .

Substituting the variation of ‖Ω‖ω gives

−1
2
‖Ω‖ω(Tr ω̇)ωn−1 +(n−1)‖Ω‖ω ω̇ ∧ω

n−2 =Ψ . (43)

Next, we wedge this equation with ω to obtain the following equation of top forms.
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−1
2
‖Ω‖ω(Tr ω̇)ωn +(n−1)‖Ω‖ω

(Tr ω̇)

n
ω

n =Ψ ∧ω.

From this equation we can solve for Tr ω̇ . ut

Lemma 7. Suppose ω(t) satisfies

d
dt
(‖Ω‖ω ω

n−1) =Ψ(t),

for Ψ(t) ∈Ω n−1,n−1(X ,R). Then the metric evolves by

∂tω =

[
n

(n−2)‖Ω‖ω

Ψ ∧ω

ωn

]
ω− 1

(n−1)!‖Ω‖ω

?Ψ .

Proof. To extract ∂tω , we will apply the Hodge star operator ? with respect to ω to
the expanded equation (43).

− (n−1)!
2
‖Ω‖ω(Tr ω̇)ω +(n−1)!‖Ω‖ω(−∂tω +(Tr ω̇)ω) = ?Ψ

Here we used the identities ?ωn−1 = (n−1)!ω and

[?(α ∧ω
n−2)]q̄p =−(n−2)!αq̄p + i(n−2)!(Trα)gq̄p, (44)

for any α ∈Ω 1,1(X). This last identity can be found in e.g. [70, 91]. Therefore

∂tω =
1
2
(Tr ω̇)ω− 1

(n−1)!‖Ω‖ω

?Ψ .

Substituting the previous lemma gives the desired expression. ut

For the Anomaly flow with zero slope, the form Ψ is given by

Ψ = i∂ ∂̄ω
n−2 = (n−2)i∂ ∂̄ω ∧ω

n−3 + i(n−2)(n−3)T ∧ T̄ ∧ω
n−4. (45)

To obtain an explicit expression for the evolution of the metric, we must expand the
torsion terms.

Theorem 6. [95] Suppose ω(t) solves the Anomaly flow

d
dt
(‖Ω‖ω ω

n−1) = i∂ ∂̄ (ωn−2), d(‖Ω‖ω(0)ω(0)n−1) = 0.

If n = 3, then the metric evolves via

∂tgk̄ j =
1

2‖Ω‖ω

[
− R̃k̄ j +gm ¯̀gsr̄Tr̄m jT̄s ¯̀k̄

]
,

and if n≥ 4, then
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∂tgk̄ j =
1

(n−1)‖Ω‖ω

[
− R̃k̄ j +

1
2(n−2)

(|T |2−2|τ|2)gk̄ j

−1
2

gqp̄gsr̄Tk̄qsT̄j p̄r̄ +gsr̄(Tk̄ jsT̄r̄ +TsT̄jk̄r̄)+TjT̄k̄

]
. (46)

The metric evolution can be compared with other flows in Hermitian geometry,
e.g. [101, 102, 108, 116, 120]. The expression when n = 3 is similar to the metric
evolution in the Streets-Tian pluriclosed flow [101], though they differ by the pres-
ence of the determinant of the metric ‖Ω‖ω . We note that the Anomaly flow is a flow
of balanced metrics while the pluriclosed flow is a flow of pluriclosed metrics, so
these flows exist in different realms of Hermitian geometry. Such torsion-type terms
appearing in (46) also appear in other Ricci flows preserving other types of geome-
try, such as for example the metric evolution in the G2 Laplacian flow [73, 12].

Proof. We will derive the expression assuming that n≥ 4, as the case n = 3 is easier
and follows a similar argument. We use the notation

TrΦ = i−2gpq̄g jk̄
Φk̄ jq̄p, TrΨ = i−3g jk̄gpq̄gsr̄

Ψr̄sq̄pk̄ j,

for Φ ∈Ω 2,2(X) and Ψ ∈Ω 3,3(X). We begin by computing

(? i∂ ∂̄ω
n−2)q̄p

= (n−2)[?(i∂ ∂̄ω ∧ω
n−3)]q̄p + i(n−2)(n−3)[?(T ∧ T̄ ∧ω

n−4)]q̄p

= i(n−2)!gsr̄(i∂ ∂̄ω)r̄sq̄p + i
(n−2)!

2
(Tr i∂ ∂̄ω)gq̄p

+i
(n−2)!

2
gi j̄gsr̄(T ∧ T̄ )r̄s j̄iq̄p−

(n−2)!
6

(TrT ∧ T̄ )gq̄p. (47)

This follows from (45) and the following identities for the Hodge star operator

[?(Φ ∧ω
n−3)]q̄p = i(n−3)!gsr̄

Φr̄sq̄p + i
(n−3)!

2
(TrΦ)gq̄p,

[?(Ψ ∧ω
n−4)]q̄p =

(n−4)!
2

gi j̄gsr̄
Ψr̄s j̄iq̄p + i

(n−4)!
6

(TrΨ)gq̄p, (48)

which hold for any Φ ∈Ω 2,2(X ,R) and Ψ ∈Ω 3,3(X ,R). For a proof of these Hodge
star identities, see [95].

Next, we compute using (29) and (30),

i∂ ∂̄ωn−2∧ω

ωn = (n−2)
i∂ ∂̄ω ∧ωn−2

ωn + i(n−2)(n−3)
T ∧ T̄ ∧ωn−3

ωn

=
(n−2)

2n(n−1)
Tr(i∂ ∂̄ω)+

i(n−3)
6n(n−1)

Tr(T ∧ T̄ ). (49)

We now substitute (47) and (49) into Lemma 7. The Tr(i∂ ∂̄ω) terms cancel exactly,
and we are left with
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∂tgq̄p = − 1
(n−1)‖Ω‖ω

gsr̄(i∂ ∂̄ω)r̄sq̄p−
1

2(n−1)‖Ω‖ω

gi j̄gsr̄(T ∧ T̄ )r̄s j̄iq̄p

− i
6(n−1)(n−2)‖Ω‖ω

Tr(T ∧ T̄ )gq̄p. (50)

By identity (28), we have

gsr̄(i∂ ∂̄ω)r̄q̄sp =−R̃q̄p +R′q̄p−Rq̄p +R′′pq̄−gsr̄gnm̄Tm̄psT̄nr̄q̄.

We now use that the evolving metrics are conformally balanced. In this case, by
Proposition 4, we have

gsr̄(i∂ ∂̄ω)r̄sq̄p = R̃q̄p−gsr̄gnm̄Tm̄spT̄nr̄q̄. (51)

Substituting (51) and (32) into (50) and expanding the torsion terms gives the ex-
plicit expression for ∂tgq̄p. ut

As a consequence of Theorem 6, the Anomaly flow with zero slope exists for a
short-time from any initial metric. Indeed, from (15) we have

R̃m̄` =−g jk̄
∂ j∂k̄gm̄`+g jk̄gsr̄

∂k̄gm̄s∂ jgr̄`, (52)

and so R̃m̄`(g) is an elliptic operator in g. There is a slight subtlety, which is that the
proof of Theorem 6 only shows that the Anomaly flow with zero slope is parabolic
when restricted to variations in the space of conformally balanced metrics. One way
to resolve this issue is by using the Hamilton-Nash-Moser [64] implicit function
theorem, and we refer to [89, 95] for details.

Corollary 2. [95] Let ω0 be a conformally balanced Hermitian metric. There exists
an ε > 0 such that Anomaly flow with zero slope admits a unique solution on [0,ε)
with ω(0) = ω0.

3.2 Non-Kähler examples

We outline here some simple examples to illustrate possible behaviors of the flow.

3.2.1 Iwasawa manifold

Let π : X → T 4 be the Iwasawa manifold considered in §2.3.3 with ansatz ωu =
euω̂ + iθ ∧ θ̄ , where

ω̂ = idx∧dx̄+ idy∧dȳ, θ = dz− x̄dy,

and u(x,y) is a smooth function u : T 4 → R. We will show that this ansatz is pre-
served by the Anomaly flow. We previously computed that ‖Ω‖ωu = e−u, and so
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‖Ω‖ωuω
2
u = eu

ω̂
2 +2iω̂ ∧θ ∧ θ̄ .

Furthermore,

i∂ ∂̄ωu = i∂ ∂̄eu∧ ω̂ +
ω̂2

2
.

The Anomaly flow with zero slope ∂t(‖Ω‖ω ω2) = i∂ ∂̄ω reduces to

∂teu =
1
2
(∆ω̂ eu +1). (53)

The flow exists for all time by linear parabolic theory. The functional defined by

M(ω(t)) =
∫

X
‖Ω‖ω(t) ω(t)3,

satisfies in this case

d
dt

M(t) =
d
dt

∫
X

3eu
ω̂

2∧ iθ ∧ θ̄

= 3
∫

X
i∂ ∂̄ (eu

ω̂ ∧ iθ ∧ θ̄)+
3
2

∫
X

ω̂
2∧ iθ ∧ θ̄

=
1
2

∫
X
(ω̂ + iθ ∧ θ̄)3 > 0.

It follows that M(t)→ ∞ linearly as t → ∞. The functional M(ω) is sometimes
called the dilaton functional, and was introduced in [52] to develop a variational
formulation of the Hull-Strominger system.

Since (53) is a linear parabolic equation and
∫

eu→∞ as t→∞, we also have that
eu → ∞ everywhere on T 4 as t → ∞. The geometric statement is that ‖Ω‖ωu → 0
everywhere on the base T 4. The flow cannot converge in this case since the Iwasawa
manifold does not admit a Kähler metric.

3.2.2 Compact quotients of SL(2,C)

Next, we study quotients of SL(2,C) by a lattice Λ as described in §2.3.2. Let {ea}
be a left-invariant basis of holomorphic vector fields with [ea,eb] = εabded . We will
study the ansatz

ω = ρω̂, ω̂ = iea∧ ēa,

where ρ > 0 is a constant. This ansatz was used by Fei-Yau to solve the Hull-
Strominger system on complex Lie groups [36].

As computed in (36),

i∂ ∂̄ω = ρ
ω̂2

2
.

Next, we compute using the definition of the norm (22) and obtain
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‖Ω‖ω = ρ
−3/2.

Thus
‖Ω‖ω ω

2 = (ρ−3/2
ρ

2)ω̂2.

Using the ansatz ω = ρω̂ on X = SL(2,C)/Λ , the Anomaly flow with zero slope
becomes the ODE

d
dt
(ρ1/2) =

1
2

ρ,

whose solution is given by

ρ(t) =
1

(ρ(0)−1/2− t
2 )

2 .

We see that the flow develops a singularity as ρ → ∞ in finite time. In particular,
there exists T < ∞ such that ‖Ω‖ω → 0 as t → T . The flow cannot converge since
X does not admit a Kähler metric.

3.3 Kähler manifolds

The previous two examples illustrate how the Anomaly flow can develop singular-
ities on non-Kähler manifolds. If the manifold is already known to admit a Kähler
metric, the flow should detect it. Since there are many different Kähler metrics on
a given Kähler manifold, the flow must select a single one in the limit. We will ex-
plain this mechanism in this section and explain how the flow may provide insight
in studying the relation between the Kähler cone and the balanced cone.

Let X be a compact complex manifold with Kähler metric χ̂ = iχ̂k̄ jdz j ∧dz̄k and
nowhere vanishing holomorphic (n,0) form Ω . We will start the Anomaly flow with
zero slope with the initial data

‖Ω‖ω(0)ω(0)n−1 = χ̂
n−1. (54)

This equation determines the initial metric ω(0), which is manifestly conformally
balanced and is explicitly given by the following lemma.

Lemma 8. Let χ ∈Ω 1,1(X ,R) be a Hermitian metric and Ω ∈Ω n,0(X) be nowhere
vanishing. The equation

‖Ω‖ω ω
n−1 = χ

n−1 (55)

admits a unique Hermitian metric solution ω given by

ω = ‖Ω‖−2/(n−2)
χ χ.

Proof. We let
ω = ‖Ω‖−1/(n−1)

ω χ, (56)
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and so we only need to solve for the determinant. Taking the determinant of both
sides of (55) and raising to the power of −1

(n−1) gives

‖Ω‖−n/(n−1)
ω (detω)−1 = (det χ)−1.

Recall that ‖Ω‖2
ω = ΩΩ̄(detω)−1. Multiplying both sides by ΩΩ̄ , we obtain

‖Ω‖2
ω‖Ω‖

−n/(n−1)
ω = ‖Ω‖2

χ .

Therefore
‖Ω‖1/(n−1)

ω = ‖Ω‖2/(n−2)
χ , (57)

and the existence result follows from (56). For uniqueness, suppose ω and ω̃ solve
(55). Then (57) determines ‖Ω‖ω = ‖Ω‖ω̃ and so ω̃n−1 = ωn−1, from which it
follows [83] that ω = ω̃ . ut

We claim that the solution to the Anomaly flow with zero slope and initial data
(54) is given by

‖Ω‖ω(t)ω(t)n−1 = χ(t)n, (58)

where
χ = χ̂ + i∂ ∂̄ϕ > 0,

and the scalar potential ϕ satisfies

ϕ̇ = e− f (χ̂ + i∂ ∂̄ϕ)n

χ̂n , ϕ(x,0) = 0,

(we use the notation ϕ̇ = ∂tϕ), with

e− f =
1

(n−1)‖Ω‖2
χ̂

.

Indeed, the ansatz (58) solves the equation of the flow. To see this, we compute

d
dt
‖Ω‖ω ω

n−1 = (n−1)χ̇ ∧χ
n−2

= (n−1)i∂ ∂̄ ϕ̇ ∧χ
n−2.

The equation for ϕ̇ can be rearranged as

ϕ̇ =
1

(n−1)‖Ω‖2
χ

.

Therefore
d
dt
‖Ω‖ω ω

n−1 = i∂ ∂̄ (‖Ω‖−2
χ )∧χ

n−2.

On the other hand, by Lemma 8, we have
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i∂ ∂̄ω
n−2 = i∂ ∂̄ (‖Ω‖−2

χ χ
n−2)

= i∂ ∂̄ (‖Ω‖−2
χ )∧χ

n−2.

It follows that the ansatz (58) satisfies

d
dt
‖Ω‖ω ω

n−1 = i∂ ∂̄ω
n−2.

By uniqueness of solutions, the ansatz (58) is preserved by the Anomaly flow with
zero slope. To summarize our discussion, we state the following result.

Theorem 7. [95] Let X be a compact complex manifold of dimension n with a
nowhere vanishing holomorphic (n,0) form Ω . Suppose X admits a Kähler metric
χ̂ . Then the Anomaly flow d

dt ‖Ω‖ω ωn−1 = i∂ ∂̄ωn−2 with initial metric satisfying

‖Ω‖ω(0)ω(0)n−1 = χ̂
n−1 (59)

reduces to the following scalar flow of potentials

ϕ̇ = e− f det(χ̂k̄ j +ϕk̄ j)

det χ̂k̄ j
, ϕ(x,0) = 0, (60)

with the positivity condition χ̂ + i∂ ∂̄ϕ > 0, where e f = (n−1)‖Ω‖2
χ̂

. The evolving
metric in the Anomaly flow is given by

ω(t) = ‖Ω‖−2/(n−2)
χ(t) χ(t), χ(t) = χ̂ + i∂ ∂̄ϕ. (61)

The Monge-Ampère flow (60) arising here shares similarities with the Kähler-
Ricci flow and the MA−1 flow. The Kähler-Ricci flow was introduced by Cao [17]
and has since been an area of active research in Kähler geometry (e.g. [18, 24, 63,
97, 98, 99, 100, 111, 112]). The MA−1 flow was recently introduced by Collins-
Hisamoto-Takahashi [21], and is expected to produce optimal degenerations on
Fano manifolds which do not admit Kähler-Einstein metrics.

Unlike the Kähler-Ricci flow, the logarithm does not appear in the speed of evo-
lution ϕ̇ , and unlike the MA−1 flow, the determinant of χ appears in the numera-
tor instead of the denominator. For general parabolic equations, changes in speed
can have major implications in the analysis, see [33] for a recent example of this
phenomenon in Kähler geometry. Though the analysis of (60) does differ from the
Kähler-Ricci flow and MA−1 flow, in [95] we show that a smooth solution to the
flow exists for all time t.

In contrast to the previous examples in section §3.2, in this case we can easily
show that ‖Ω‖ω stays bounded above and below along the flow. Differentiating
(60),

∂t ϕ̇ = e− f
{det χk̄ j

det χ̂k̄ j

}
χ

jk̄
∂ j∂k̄ϕ̇.
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This is a linear parabolic equation for ϕ̇ . It follows from the maximum principle for
parabolic equations (e.g. Proposition 1.7 in [100]) that

inf
X

ϕ̇(x,0)≤ ϕ̇(x, t)≤ sup
X

ϕ̇(x,0).

Since ϕ(x,0) = 0, we have

inf
X

e− f ≤ ϕ̇(x, t)≤ sup
X

e− f .

By (60), we have

e f inf
X

e− f ≤
det χk̄ j

det χ̂k̄ j
≤ e f sup

X
e− f .

By (57),

‖Ω‖ω(t) = ‖Ω‖
2(n−1)/(n−2)
χ = ‖Ω‖2(n−1)/(n−2)

χ̂

(
det χ̂

det χ

)(n−1)/(n−2)

.

Therefore
C−1 ≤ ‖Ω‖ω(t) ≤C,

along the flow, where C > 0 only depends on ‖Ω‖χ̂ and n. The degeneration of
‖Ω‖ω exhibited for non-Kähler examples in §3.2 does not occur in this case.

Estimating ‖Ω‖ω(t) is only the first step in the study of the flow. From here,
we can use a priori estimates and techniques from fully nonlinear PDE to establish
long-time existence and convergence. We refer to [95] for full details. The result is

Theorem 8. [95] Let X be a compact complex manifold of dimension n with a
nowhere vanishing holomorphic (n,0) form Ω . Suppose X admits a Kähler metric
χ̂ . Then the Anomaly flow d

dt ‖Ω‖ω ωn−1 = i∂ ∂̄ωn−2 with initial metric satisfying

‖Ω‖ω(0)ω(0)n−1 = χ̂
n−1

exists for all time, and smoothly converges to a Kähler metric ω∞.

In fact, ω∞ is given explicitly by

ω∞ = ‖Ω‖−2/(n−2)
χ∞

χ∞,

where χ∞ is the unique Kähler Ricci-flat metric in the cohomology class [χ̂], and

‖Ω‖2
χ∞

=
n!
[χ̂]n

∫
X

in
2
Ω ∧ Ω̄ .

To conclude this section, we note that we cannot expect the Anomaly flow on Kähler
manifolds to converge starting from an arbitrary metric. This is due to the relation-
ship between the Kähler cone and the balanced cone. Indeed, an initial conformally
balanced metric determines a balanced class
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[‖Ω‖ω(0)ω(0)n−1] ∈ Hn−1,n−1
BC (X),

and the evolving metric ω(t) remains in this class (41). Stationary points of the flow
are Kähler metrics, so convergence of the flow would produce a Kähler metric in
the balanced class of the initial metric. However, there exists Kähler manifolds with
balanced classes which do not admit any Kähler metric [49, 106]. Understanding
which balanced classes come from Kähler classes is an interesting problem in Her-
mitian geometry [49], and we hope that future work studying the Anomaly flow and
its singularities will provide insight.

4 Anomaly Flow with α ′ Corrections

We will now restrict our attention to Calabi-Yau threefolds. In this section, we mod-
ify the Anomaly flow (40) by adding α ′ correction terms. The parameter α ∈R will
be referred to as the slope parameter.

Let X be a compact complex manifold of dimension n = 3. Suppose X admits a
nowhere vanishing holomorphic (3,0) form Ω . We first study the case of threefolds
with vanishing second Chern class, so we assume that c1(X) = c2(X) = 0. Consider
the flow

d
dt

(‖Ω‖ω ω
2) = i∂ ∂̄ω− α ′

4
TrRm∧Rm, (62)

d(‖Ω‖ω(0)ω(0)n−1) = 0.

Recall that we use the notation Rm for the endorphism-valued (1,1) form which
is the curvature of the Chern connection of ω . When α ′ = 0 and n = 3, this flow
becomes (40) from §3. Stationary points ω∞ satisfy

α ′

4
TrRm∧Rm = i∂ ∂̄ω∞, d(‖Ω‖ω∞

ω
2
∞) = 0,

which can be viewed as a sort of non-Kähler analog of the Kähler-Einstein equation

TrRm = λω, dω = 0.

More generally, if c2(X) 6= 0, we can add a cancellation term Φ ∈ Ω 2,2(X ,R) with
[Φ ] = c2(X), and consider the flow

d
dt

(‖Ω‖ω ω
2) = i∂ ∂̄ω− α ′

4
(TrRm∧Rm−Φ(t)), (63)

d(‖Ω‖ω(0)ω(0)2) = 0.
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Flows of type (63) are called Anomaly flows, as introduced in joint work with
Duong Phong and Xiangwen Zhang [88, 91]. The motivation for studying this evo-
lution equation comes from theoretical physics, which we describe next.

4.1 Hull-Strominger system

Our motivation for adding the α ′ correction terms comes from heterotic string the-
ory. The Hull-Strominger system [68, 103] is the following system of equations on
a Calabi-Yau threefold

F ∧ω
2 = 0, F0,2 = F2,0 = 0, (64)

i∂ ∂̄ω− α ′

4
(TrRm∧Rm−TrF ∧F) = 0, (65)

d(‖Ω‖ω ω
2) = 0. (66)

The system is a coupled equation for a Hermitian meric ω on X and a metric h on
a given holomorphic vector bundle E → X . Here Rm, F are the curvature forms of
unitary connections of ω , h, viewed as endomorphism valued 2-forms.

Equation (64) is the Hermitian-Yang-Mills equation, which admits solutions as
long as E is stable of degree zero with respect to ω by the Donaldson-Uhlenbeck-
Yau theorem [29, 118] (see [77, 13] for its extension to the Hermitian setting).
Equation (65) is the Green-Schwarz anomaly cancellation equation from theoret-
ical physics [62]. All together, the system was introduced by Hull and Strominger
as a model for the heterotic string admitting non-zero torsion, generalizing the equa-
tion proposed by Candelas-Horowitz-Strominger-Witten [16] where the threefold is
required to be Kähler with Ricci-flat metric.

For example, Kähler Calabi-Yau threefolds provide solutions to the Hull-Strominger
system. In this case, we take the gauge bundle E to be the tangent bundle E = T 1,0X ,
and h = ω to be Kähler Ricci-flat. Then (64) and (65) hold automatically, and by the
argument in §2.3.1, we see that ω is conformally balanced.

Going beyond Kähler geometry, there are many diverse examples of solutions us-
ing various gauge bundles E. The first solutions in the mathematics literature were
obtained by Li and Yau [76] by perturbing the Kähler solutions, and the first solu-
tions on non-Kähler manifolds were obtained by Fu and Yau [45]. Since then, there
have been constructions of parallelizable examples [38, 38, 36, 86, 59], solutions on
Kähler manifolds for arbitrary admissible gauge bundles [2, 3], solutions on fibra-
tions over a Riemann surface [34], and non-compact examples [48, 32, 66].

The Hull-Strominger system is interesting from the point of view of canonical
metrics on non-Kähler Calabi-Yau threefolds, as it is a curvature constraint (65)
combined with a closedness condition (66). There are also other proposed optimal
metrics in non-Kähler complex geometry: e.g. constant Chern scalar curvature [6],
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vanishing Chern-Ricci curvature [107, 109, 104], Chern-Ricci flat balanced [32],
just to name a few.

As a system of partial differential equations, the Hull-Strominger system is fully
nonlinear. It can be viewed as an analog of the σ2 equation, but as a full system for
the metric tensor gk̄ j. There has been much progress in the study of scalar σk-type
equations in complex geometry e.g. [11, 22, 25, 26, 27, 28, 67, 89], but very little is
known about PDE systems which are nonlinear in second derivatives.

To study the Hull-Strominger system, it was proposed in [88] to use the Anomaly
flow with Φ = TrF ∧F coupled to the Donaldson heat flow [29].

h−1
∂th =−Λω F,

d
dt

(‖Ω‖ω ω
2) = i∂ ∂̄ω− α ′

4
(TrRm∧Rm−TrF ∧F),

d(‖Ω‖ω(0)ω(0)2) = 0.

Stationary points solve the Hull-Strominger system. The Anomaly flow, when re-
stricted to certain ansatzes, provides new nonlinear equations arising naturally from
geometry and physics. We will describe some of these new equations in the follow-
ing sections.

4.2 Evolution of the metric

We now derive the evolution of the metric tensor ω = igk̄ jdz j ∧ dz̄k under the
Anomaly flow (63). The argument given here is similar to the one from §3.1. We
write

d
dt
(‖Ω‖ω ω

2) =Ψ ,

with

Ψ =

[
i∂ ∂̄ω− α ′

4
(TrRm∧Rm−Φ)

]
.

By Lemma 6, we already know that the trace of the evolution of the metric is given
by

Tr ω̇ =
6

‖Ω‖ω

Ψ ∧ω

ω3 ,

which combined with identity (29) is

Tr ω̇ =
1

2‖Ω‖ω

TrΨ . (67)

As in (43), we expand the flow to the following expression

−1
2
(Tr ω̇)ω2 +2ω̇ ∧ω− 1

‖Ω‖ω

Ψ = 0. (68)
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We apply the Hodge star operator ? with respect to ω to both sides of the equation.
By identities (44), (48), and ?ω2 = 2ω , the components of the resulting (1,1) form
are given by

0 = ?

[
− 1

2
(Tr ω̇)ω2 +2ω̇ ∧ω− 1

‖Ω‖ω

Ψ

]
k̄ j

= −2i∂tgk̄ j + i(Tr ω̇)gk̄ j−
1

‖Ω‖ω

[
−igsr̄

Ψr̄k̄s j +
i
2
(TrΨ)gk̄ j

]
. (69)

Substituting the expression for Tr ω̇ (67) into (69), we see that the TrΨ terms cancel
and the evolution of the metric is

d
dt

gk̄ j =
1

2‖Ω‖ω

gsr̄
Ψr̄k̄s j.

From here, we can derive an explicit expression for the evolution of the metric.

Theorem 9. [91] Suppose ω(t) solves the Anomaly flow (63). Then the metric
evolves by

d
dt

gk̄ j =
1

2‖Ω‖ω

[
− R̃k̄ j +gsr̄gnm̄Tm̄s jT̄nr̄k̄−

α ′

4
gsr̄(R[k̄s

α
β Rr̄ j]

β
α −Φr̄k̄s j)

]
, (70)

where [, ] denotes antisymmetrization in both barred and unbarred indices.

Proof. We have already established

d
dt

gk̄ j =
1

2‖Ω‖ω

[
−gsr̄(i∂ ∂̄ω)r̄sk̄ j−

α ′

4
gsr̄(TrRm∧Rm−Φ)r̄k̄s j

]
.

By (51), we have an expression for gsr̄(i∂ ∂̄ω)r̄k̄s j in terms of Ricci curvature and
torsion. This gives the desired expression. ut

We note that (70) is a fully nonlinear system, as it is quadratic in the curvature.
For other geometric flows which are quadratic in the curvature, see e.g. [43, 57, 84].
Since the flow is fully nonlinear, we cannot expect short-time existence for arbitrary
initial data. However, from (70), we see that the right-hand side is parabolic if the
α ′ correction terms are small. The full details are provided in [88].

Theorem 10. [88] Let ω0 be a conformally balanced Hermitian metric on X satis-
fying |α ′Rm|< 1

2 . Then there exists T > 0 such that the Anomaly flow (63) admits a
unique solution ω(t) on [0,T ) with ω(0) = ω0.

Given any metric gk̄ j, we can find λ � 1 so that λgk̄ j satisfies |α ′Rm| � 1.
This is simply because Rm(λg) = Rm(g) (with Rm defined as in (14)). Thus to
guarantee short-time existence starting from a given metric, we can rescale the size
of the manifold, or choose a small value for α ′. For several examples [35, 92], the
condition |α ′Rm| � 1 is preserved along the flow, which suggests that it is a natural
condition.
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4.3 Anomaly flow with Fu-Yau ansatz

4.3.1 Scalar reduction

In this section, we return to the construction of Goldstein-Prokushkin described in
§2.3.4. We first recall the setup.

The base of the fibration (S, ω̂,ΩS) is a Calabi-Yau surface with Kähler Ricci-
flat metric ω̂ and nowhere vanishing holomorphic (2,0) form ΩS. Let ω1,ω2 ∈
2πH2(S,Z) be anti-self-dual (1,1) forms. Using this data, Goldstein and Prokushkin
[58] constructed a T 2 fibration π : X → S which is non-Kähler but admits confor-
mally balanced metrics. Their construction builds on earlier ideas of Calabi and
Eckmann [15], which we discussed in detail in §1.4.2.

We recall that the connections of the U(1) principal bundles forming the S1 fibers
of X define θ ∈Ω 1,0(X) satisfying

∂θ = 0, ∂̄ θ = ω1 + iω2.

Furthermore,
Ω = ΩS∧θ

is a nowhere vanishing holomorphic (3,0) form on X , and the family of metrics

ωu = eu
ω̂ + iθ ∧ θ̄ , (71)

is conformally balanced for any u : S→ R. These metrics were used by Fu and Yau
[45, 46] to solve the Hull-Strominger system on the threefold X .

In this section, we will start the Anomaly flow with a metric of this form, and
check whether the ansatz is preserved. For this, we compute (see (39))

‖Ω‖ωu = e−u, ‖Ω‖ωuω
2
u = eu

ω̂
2 +2ω̂ ∧ iθ ∧ θ̄ , (72)

and
i∂ ∂̄ωu = i∂ ∂̄eu∧ ω̂− ∂̄ θ ∧∂ θ̄ = i∂ ∂̄eu∧ ω̂− (ω2

1 +ω
2
2 ). (73)

Next, we must compute the curvature terms. This calculation was done by Fu and
Yau in [45].

Theorem 11. [45] The curvature of the Chern connection of ωu satisfies

TrRm(ωu)∧Rm(ωu) = TrRm(ω̂)∧Rm(ω̂)+2∂ ∂̄u∧∂ ∂̄u+4i∂ ∂̄ (e−u
ρ),

where ρ ∈Ω 1,1(S,R) is given by ρ = ρk̄ j dz j ∧dz̄k with

ρk̄ j =
i
2

ĝpq̄(ω1− iω2)q̄ j(ω1 + iω2)k̄p. (74)

Proof. We work in a local coordinate chart. Since ∂̄ (ω1 + iω2) = 0, there are local
functions ϕ1, ϕ2 such that
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∂̄ (ϕidzi) = ω1 + iω2, (75)

where z1,z2 are local holomorphic coordinates on the base S . Define

θ0 = θ −ϕ1dz1−ϕ2dz2.

Then {dz1,dz2,θ0} is a local holomorphic frame of Ω 1,0(X). The metric can be
written as

ωu = (euĝk̄ j +ϕkϕ j)idz j ∧dz̄k

+ϕk iθ0∧dz̄k +ϕk idzk ∧θ0 + iθ0∧θ0.

Let B = (ϕ1,ϕ2). Then the metric in this local frame is given by

g =

[
(euĝ+B∗B) B∗

B 1

]
.

Its inverse is

g−1 =

[
e−uĝ−1 −e−uĝ−1B∗

−e−uBĝ−1 1+ e−uBĝ−1B∗

]
.

The curvature in this frame is Rm = ∂̄g−1∂g. Computing at a point p ∈ X , we may
assume that p = 0 and B(0) = 0. The curvature at p is then

Rm =

[
R1̄1 R1̄2
R2̄1 R2̄2

]
,

with

R1̄1 = ∂̄ ∂u · I + R̂m− e−uĝ−1
∂B∗∧ ∂̄B

R2̄1 =−∂̄B∧∂u− ∂̄Bĝ−1
∂ ĝ+ ∂̄ ∂B

R1̄2 = ∂̄ (e−uĝ−1
∂B∗)

R2̄2 =−e−u
∂̄Bĝ−1

∂B∗.

We must compute

TrRm∧Rm = TrR1̄1R1̄1 +TrR1̄2R2̄1 +TrR2̄1R1̄2 +TrR2̄2R2̄2.

Expanding this out, we obtain the following expression.

TrRm∧Rm

= 2(∂̄ ∂u)2 +Tr R̂m2
+ e−2uTr(ĝ−1

∂B∗∂̄Bĝ−1
∂B∗∂̄B)

+2∂ ∂̄uTr R̂m−2e−u
∂̄ ∂uTr ĝ−1

∂B∗∂̄B−2e−uTr(R̂mĝ−1
∂B∗∂̄B)

−2Tr(∂̄ (e−uĝ−1
∂B∗)∂̄B∂u)−2Tr(∂̄ (e−uĝ−1

∂B∗)∂̄Bĝ−1
∂ ĝ)

+2Tr(∂̄ (e−uĝ−1
∂B∗)∂̄ ∂B)+ e−2u

∂̄Bĝ−1
∂B∗∂̄Bg−1

∂B∗.
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Using the identities

−2Tr ∂̄ (e−uĝ−1
∂B∗)∂̄Bĝ−1

∂ ĝ = −2∂̄Tr(e−uĝ−1
∂B∗∂̄Bĝ−1

∂ ĝ)

+2Tr(e−uĝ−1
∂B∗∂̄BR̂m),

and

−2e−u
∂̄ ∂uTr(ĝ−1

∂B∗∂̄B) = −2∂̄Tr(e−uĝ−1
∂B∗∂̄B∂u)

+2Tr ∂̄ (e−uĝ−1
∂B∗)(∂̄B∂u),

as well as Tr R̂m = 0, we cancel a few terms and are left with

TrRm∧Rm = 2(∂̄ ∂u)2 +TrR̂m2−2∂̄Tr(e−uĝ−1
∂B∗∂̄Bĝ−1

∂ ĝ)

−2∂̄Tr(e−uĝ−1
∂B∗∂̄B∂u)+2∂̄Tr(e−uĝ−1

∂B∗∂̄ ∂B).

Using ∂ ĝ−1 =−ĝ−1 ∂ ĝ ĝ−1, this expression simplifies to

TrRm∧Rm = 2(∂̄ ∂u)2 +Tr R̂m∧ R̂m+2∂̄ ∂Tr(e−uĝ−1
∂B∗∧ ∂̄B).

We have by definition

∂B∗∧ ∂̄B =

(
∂iϕ1∂k̄ϕ1 ∂iϕ1∂k̄ϕ2
∂iϕ2∂k̄ϕ1 ∂iϕ2∂k̄ϕ1

)
dzi∧dz̄k.

Using (75), we obtain (74). ut

We now add a gauge bundle to the system. Let ES be a stable vector bundle of
degree zero over the base Kähler surface (S, ω̂). By the Donaldson-Uhlenbeck-Yau
theorem [29, 118], we may equip ES with a metric HS satisfying

F(HS)∧ ω̂ = 0.

On the threefold, we consider the bundle E = π∗ES → X with metric H = π∗HS.
This metric is Hermitian-Yang-Mills with respect to the Fu-Yau ansatz ωu, since

F(H)∧ω
2
u = 0

for any u ∈C∞(S,R).
Putting together everything computed so far, we have

i∂ ∂̄ωu−
α ′

4
(TrRm(ωu)∧Rm(ωu)−TrF(H)∧F(H))

= i∂ ∂̄ (eu
ω̂−α

′e−u
ρ)− α ′

2
(∂ ∂̄u)∧ (∂ ∂̄u)+µ, (76)

where µ ∈Ω 2,2(S,R) is given by
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µ =
α ′

4
(TrF(HS)∧F(HS)−TrRm(ω̂)∧Rm(ω̂))− (ω2

1 +ω
2
2 ).

Combining (72) and (76), we see that the Anomaly flow reduces to the following
scalar fully nonlinear PDE on the base manifold S.

d
dt

eu
ω̂

2 = i∂ ∂̄ (eu
ω̂−α

′e−u
ρ)+

α ′

2
(i∂ ∂̄u)2 +µ. (77)

This evolution equation can also be written as

d
dt

eu =
1
2

[
∆ω̂ eu−α

′ i∂ ∂̄ (e−uρ)

ω̂2/2!
+α

′
σ̂2(i∂ ∂̄u)+

µ

ω̂2/2!

]
.

Here σ̂2(i∂ ∂̄u) = (i∂ ∂̄u)2ω̂−2 is the determinant of the complex Hessian of u with
respect to ω̂ .

By standard parabolic theory, this equation admits a short-time solution as long
as

ω
′ = eu

ω̂ +α
′e−u

ρ +
α ′

2
i∂ ∂̄u > 0.

4.3.2 Stationary points

For stationary points of (77) to exist, integrating both sides shows that we require∫
S

µ = 0,

which is the cohomological constraint

α ′

4

∫
S
[TrRm(ω̂)∧Rm(ω̂)−TrF(HS)∧F(HS)] =

∫
S
[|ω1|2 + |ω2|2]

ω̂2

2!
.

It is possible to construct data (S,ES,ω1,ω2,α
′) satisfying this condition. Indeed,

since we assume c1(S) = c1(ES) = 0, the constraint is

α ′

4
[c2(S)− c2(ES)] =

∫
S

[∣∣∣ω1

2π

∣∣∣2
ω̂

+
∣∣∣ω2

2π

∣∣∣2
ω̂

]
ω̂2

2
.

Note that when seeking solutions to the Hull-Strominger system, after rescaling
ωu 7→ λωu in (65) we can assume that α ′

4 ∈ Z. Explicit examples are exhibited in
[45, 46]; when α ′ > 0, we may take S to be a K3 surface and use the theory of stable
bundles over K3 surfaces to construct ES, and when α ′ < 0 we may take S to be
either a torus T 4 or a K3 surface.

The main theorem of Fu-Yau guarantees the existence of smooth solutions to the
Hull-Strominger system when the cohomological condition

∫
S µ = 0 is satisfied.
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Theorem 12. [45, 46] Let (S, ω̂) be a Kähler surface, α ′ ∈ R, ρ ∈ Ω 1,1(S,R),
and µ ∈ Ω 2,2(S,R). Suppose µ satisfies the condition

∫
S µ = 0. Then there exists

a smooth function u : S→ R solving

0 = i∂ ∂̄ (eu
ω̂−α

′e−u
ρ)+

α ′

2
(i∂ ∂̄u)2 +µ,

such that ω ′ = euω̂ +α ′e−uρ + α ′
2 i∂ ∂̄u > 0.

For further work relating to the Fu-Yau solutions, we refer to [19, 20, 51, 75, 87,
89, 90, 94].

4.3.3 Long-time existence

The first observation in the Anomaly flow with Fu-Yau ansatz is the following con-
served quantity.

Lemma 9. Let ω(t) = eu(t)ω̂ + iθ ∧ θ̄ be a solution to the Anomaly flow with the
cohomology condition

∫
S µ = 0 satisfied. Then the conservation law

d
dt

∫
X
‖Ω‖ω ω

3 = 0,

holds along the flow.

Proof. In the case of the Fu-Yau ansatz ω = euω̂ + iθ ∧ θ̄ , by (72) we have∫
X
‖Ω‖ω ω

3 =
∫

X
3eu

ω̂
2∧ iθ ∧ θ̄ .

Using
∫

S µ = 0, from (77) we see that

d
dt

∫
S

eu
ω̂

2 = 0

is a conserved quantity. ut

Together with D.H. Phong and X.-W. Zhang, we prove the following result.

Theorem 13. [92] There exists L0 � 1 depending only on (S, ω̂), µ , ρ , α ′ with
the following property. Suppose

∫
S µ = 0. Start the Anomaly flow on the fibration

π : X → S with initial data

ω(0) = Lω̂ + iθ ∧ θ̄ ,

for any constant L≥ L0. Then the flow exists for all time, and converges to a solution
to the Hull-Strominger system.



50 Contents

For initial data with small L, we suspect that the flow will develop singularities.
We will discuss in §4.4.1 an example of the Anomaly flow over Riemann surfaces
where this behavior is observed.

Different choices of L correspond to different balanced classes of the stationary
point. We know that the balanced class [‖Ω‖ω ω2] ∈ H4(X ,R) is preserved by the
Anomaly flow, and in this case

[‖Ω‖ω ω
2] = [eu

ω̂
2]+2[ω̂ ∧ iθ ∧ θ̄ ].

The class [euω̂2] ∈H4(S,R) is a top cohomology class on the Kähler surface S, and
is therefore parametrized by the integrals∫

S
eu

ω̂
2 ∈ R.

Therefore the choice of
∫

S euω̂2 in the initial data is related to the choice of balanced
class of the evolving metric.

As an aside, we note that in general, the conservation of the balanced class
[‖Ω‖ω ω2] ∈ H2,2

BC (X) along the Anomaly flow should lead to conserved quantities,
which may also be useful when studying the flow beyond the Fu-Yau ansatz. The
Bott-Chern cohomology of complex manifolds differs in general from the de Rham
cohomology, and we refer to [5, 4, 7] for recent progress on computing Bott-Chern
cohomology.

4.4 Nonlinear blow-up

In this section, we briefly describe a few more examples and illustrate some of the
nonlinear phenonema which can occur.

4.4.1 Fibrations over Riemann surfaces

We return to the construction of fibrations p : X→ Σ over a Riemann surface (Σ , ω̂)
of genus g≥ 3 described in §2.3.5. We recall that these were non-Kähler threefolds,
and the Fei ansatz metrics

ω f = e2 f
ω̂ + e f

ω
′,

are conformally balanced for any smooth function f : Σ → R.
It is not immediately clear that this family of metrics will be preserved by the

Anomaly flow. It turns out that this is indeed the case, and the flow reduces to a sin-
gle scalar parabolic PDE for f on the base Σ of the fibration. The key computation
in [31, 34] gives the identity
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i∂ ∂̄ω f −
α ′

4
TrRm(ω f )∧Rm(ω f ) = (i∂ ∂̄u−κuω̂)∧ω

′,

where

u = e f +
α ′

2
κe− f .

and κ ≤ 0 is the Gauss curvature of the background metric ω̂ . Since

‖Ω‖ω f ω
2
f = 2volT 4 +2e f

ω̂ ∧ω
′,

we can factor out ω ′ in the formulation of the Anomaly flow as (2,2) forms, and the
flow reduces to

∂te f =
1
2

[
ĝzz̄

∂z∂z̄

(
e f +

α ′

2
κe− f

)
−κ

(
e f +

α ′

2
κe− f

)]
, (78)

on the Riemann surface (Σ , ω̂). The flow admits a short-time solution as long as

e f − α ′

2
κe− f > 0,

which is automatic if α ′ > 0. In [35], together with T. Fei and Z. Huang, we study
the asymptotics of the flow.

Theorem 14. [35] There exists L0� 1 depending on (Σ , ω̂) and α ′ with the follow-
ing property. Start Anomaly flow with initial data

ω(0) = L2
ω̂ +Lω

′,

for any constant L≥ L0. Then the flow exists for all time and

ω f
1
3!
∫

X ‖Ω‖ω f ω3
f
→ p∗ωΣ ,

where ωΣ = q2
1ω̂ is a smooth metric on Σ , and q1 > 0 is the first eigenfunction of

the operator −∆ω̂ +2κ .

In the above theorem, we have long-time existence, but unlike Theorem 13,
‖Ω‖ω f → 0 as t → ∞. This can be understood by the fact that there are no sta-
tionary points in the large radius regime e f � 1. We note that the result in [35] is
more general than the one stated above; the asymptotic behavior holds if the initial
data satisfies u(x,0)≥ 0.

For initial data with small L, finite-time blow-up can occur. Indeed, following
[35], we consider the case when α ′ > 0. If

L2 <
8α ′π2(g−1)2

‖κ‖L∞(Σ)Vol(Σ , ω̂)2 , (79)
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then the flow encounters a singularity in finite time. To see this, we compute using
the evolution equation (78), and use that κ ≤ 0 and that the Laplacian integrates to
zero.

d
dt

∫
Σ

e f
ω̂ =

1
2

∫
Σ

|κ|e f
ω̂− α ′

4

∫
Σ

κ
2e− f

ω̂.

By the Cauchy-Schwarz inequality and the Gauss-Bonnet theorem,

(4π(g−1))2 =

(∫
Σ

|κ|ω̂
)2

≤
(∫

Σ

e f
ω̂

)(∫
Σ

κ
2e− f

ω̂

)
.

Therefore

d
dt

[∫
Σ

e f
ω̂

]
≤
‖κ‖L∞(Σ)

2

[∫
Σ

e f
ω̂

]
− α ′

4
(4π(g−1))2

[∫
Σ

e f
ω̂

]−1

.

The ODE for A(t) =
∫

e f is then

d
dt

A2 ≤ ‖κ‖L∞ A2−8α
′
π

2(g−1)2,

which can be rearranged as

d
dt

(
(‖κ‖L∞ A2−8α

′
π

2(g−1)2)e−‖κ‖∞ t
)
≤ 0.

Therefore

‖κ‖L∞A(t)2

≤ 8α
′
π

2(g−1)2−
[

8α
′
π

2(g−1)2−‖κ‖L∞Vol(Σ)2L2
]

exp(‖κ‖L∞ t),

and we see that the flow must terminate in finite time if (79) holds. In fact, ‖Ω‖ω f →
∞ in finite time.

4.4.2 Lie groups

For our final example, we will study the Anomaly flow using unitary connections
beyond the Chern connection. Let X be a complex Lie group of dimension n = 3,
and let {e1,e2,e3} be a frame of holomorphic vector fields. Let {e1,e2,e3} be the
dual frame of holomorphic (1,0) forms. Denote the structure constants by

[ea,eb] = cd
abed .

Consider the Hermitian metric

ω̂ = i∑
a

ea∧ ēa.
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A section of T 1,0X can be expressed as V = V aea. By definition (8), Strominger-
Bismut connection ∇+ of ω̂ acts in the frame {ea} by

∇
+
b V a = ∇

C
bV a−T a

bcV c, ∇
+
b̄ V a = ∇

C
b̄V a + T̄cb̄āV c,

where we now denote the Chern connection by ∇C for clarity. Since gāb = δab in
this frame, ∇C = d. Furthermore,

T = i∂ω =−1
2

ca
bded ∧ eb∧ ēa.

Therefore
∇
+
b V a = ∂bV a + ca

bdV d , ∇
+
b̄ V a = ∂b̄V a− cd

baV d .

Along the Gauduchon line ∇(κ) = (1−κ)∇C +κ∇+, we have

∇
(κ)
b V a = ∂bV a +A(κ)

b
a

cV c, ∇
(κ)

b̄ V a = ∂b̄V a +A(κ)
b̄

a
cV c,

with
A(κ)

b
a

d = κ ca
bd , A(κ)

b̄
a

d =−κ cd
ba.

The curvature form is defined by Rm = dA+A∧A. More specifically,

Rm =
1
2

Rk j
a

b e j ∧ ek +
1
2

Rk̄ j̄
a

b ē j ∧ ēk +Rk̄ j
a

b e j ∧ ēk,

where the components are

Rk j
a

b = ∂e j Ak
a

b−∂ek A j
a

b− cr
jkAr

a
b +A j

a
cAk

c
b−Ak

a
cA j

c
b,

Rk̄ j̄
a

b = ∂ē j Ak̄
a

b−∂ēk A j̄
a

b− cr
jkAr̄

a
b +A j̄

a
cAk̄

c
b−Ak̄

a
cA j̄

c
b,

Rk̄ j
a

b = ∂e j Ak̄
a

b−∂ēk A j
a

b +A j
a

cAk̄
c

b−Ak̄
a

cA j
c

b.

Using the expression for the connection A(κ) on the Gauduchon line, the components
are explicitly

Rk j
p

q =−κcr
jkcp

rq +κ
2cp

jrcr
kq−κ

2cp
krcr

jq,

Rk̄ j̄
p

q = κcr
jkcqrp +κ

2cr jpcq
kr−κ

2cr
kpcq jr,

Rk̄ j
p

q = κ
2(−cp

jrcq
kr + cr

kpcr
jq).

The surprising computation of Fei-Yau [36] shows that TrRm∧Rm is actually a
(2,2) form, and its (2,2) part is given by

(TrRm∧Rm)k̄ ¯̀i j = 2κ
2(2κ−1)cr

k`csrpcq
i jcs

qp.

We refer to [36] for the full calculation.
We now specialize to the Lie group SL(2,C) with structure constants ci

jk = εi jk
the Levi-Civita symbol. Let Ω = e1 ∧ e2 ∧ e3. We also fix κ = 1 for simplicity, so
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that we only consider the Strominger-Bismut connection ∇+. In this case, by two
applications of the contracted epsilon identity (35), we derive

(TrRm+∧Rm+)k̄ ¯̀i j = 2cr
k`cq

i j [csrpcs
qp ]

= 2cr
k`cq

i j [2δrq]

= 4(δkiδ` j−δk jδ`i).

Since ω̂ = iδikek ∧ ēi, we have

(TrRm+∧Rm+)k̄ ¯̀i j = 2(ω̂2)k̄ ¯̀i j.

By (36), we know i∂ ∂̄ ω̂ is also proportional to ω̂2.

i∂ ∂̄ ω̂ =
1
2

ω̂
2.

By scaling the metric ω̂ , we see that the diagonal ansatz

ω(t) = λ
2(t)ω̂,

is preserved by the Anomaly flow

d
dt
(‖Ω‖ω ω

2) = i∂ ∂̄ω− α ′

4
TrRm+∧Rm+,

and becomes the ODE
d
dt

λ =
1
2
(λ 2−α

′).

In the large radius regime, if we start with

ω(0) = Lω̂

where L� 1, then ‖Ω‖ω(t)→ 0 in finite-time. Outside of this region, the behavior
is sensitive to initial data and sign of α ′. For example, if α ′ > 0, then for small initial
λ , we may have that ‖Ω‖ω(t)→ ∞ in finite-time.
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