
Differential Geometry I: Worksheet 2

• Problem: Let G be a Lie group with Lie algebra g. For g ∈ G, let Cg : G → G,
defined by

Cg(h) = ghg−1,

denote the conjugacy map.

Recall that a Lie group representation on a vector space V is a smooth map ρ :
G→ GL(V ) with the property that ρ(e) = In and ρ(g1g2) = ρ(g1)ρ(g2).

(a) Show that Ad : G → GL(g) defined by Adg(x) = (dCg)e(x) is a Lie group
representation.

(b) Show that in the case of G = GL(n,R), the adjoint representation is given by
matrix conjugation.

(c) For x ∈ g, let adx : g → g be defined by adx = d(Ad)e(x). For G = GL(n,R),
show that

adx(y) = [x, y] = xy − yx.

• Problem:

(a) Let σi denote the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

Consider the map Ad : SU(2)→ GL(isu(2))

Adg(x) = gxg−1.

Identify isu(2) with R3 by identifying the Pauli matrices σ1, σ2, σ3 with the standard
basis e1, e2, e3. Show that the map ϕ which maps g ∈ SU(2) to the matrix of Adg
in the basis σ1, σ2, σ3 is a homomorphism of Lie groups

ϕ : SU(2)→ SO(3).

As a first step, show that x1x2
x3

 ·
y1y2
y3

 =
1

2
Tr xy

where x = xiσi and y = yiσi.

(b) Show that the path [
e−iθ 0

0 eiθ

]
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in SU(2), corresponds under ϕ, to the pathcos 2θ − sin 2θ 0
sin 2θ cos 2θ 0

0 0 1


in SO(3). We see that a loop in SU(2) corresponds to two full rotations in SO(3).

(c) Compute the matrices Eα ∈M3×3(R) such that

dϕe(σα/2i) = Eα, α = 1, 2, 3.

Note: the entries of each Eα should only be either 0, 1, or -1.

(d) Denote an element g ∈ SU(2) by

g =

[
u −v̄
v ū

]
, u, v ∈ C, |u|2 + |v|2 = 1.

Compute the matrix ϕ(g) ∈ SO(3).

(e) Show that ϕ : SU(2) → SO(3) is a double cover. To do this, you can first
compute the kernel

kerϕ = {g ∈ SU(2) : ϕ(g) = I3×3},

and then deduce that ϕ is 2 : 1. Next, to show surjectivity of ϕ, you can use that
any open set of the identity in a Lie group generates the whole connected component
containing the identity.

• Problem: Let X be the vector field on

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}

defined by

X =

[
−y
x

]
.

Sketch this vector field and compute the coordinate expression for X using the
stereographic projection. Recall that these coordinates are setup such that

S1 = U ∪ Ũ ,

with U = S1\{N}, Ũ = S1\{S}, and

ϕ : U → R, u = ϕ(x, y) =
x

1− y
ϕ̃ : Ũ → R, ũ = ϕ̃(x, y) =

x

1 + y
.

The change of coordinates is ũ = 1/u. The problem is then to compute the local
expressions

X|U = X(u)
∂

∂u
, X|Ũ = X̃(ũ)

∂

∂ũ
.

Compute X|U , and then use X̃ = ∂ũ
∂u
X to compute X|Ũ .
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• Problem 2: Find a flow θt : T 2 → T 2 on T 2 corresponding to the vector field

X = a
∂

∂θ1
+ b

∂

∂θ2

where a, b are constants. Here T 2 = S1 × S1 and we write

S1 = {eiθ : 0 ≤ θ ≤ 2π}.

• Problem: Consider the family of maps

θ̂t =

1 0 0
0 cos t sin t
0 − sin t cos t

 : R3 → R3.

(a) Prove that θ̂t induces diffeomorphisms θt : S2 → S2. To show smoothness of
the maps, you can be brief. Smoothness follows immediately from the definition
expanded in the hemisphere coordinate charts such as

U = {x > 0} ∩ S2, ϕ(x, y, z) = (y, z)

and is routine to check.

(b) Compute the vector field X associated to the flow θt and find the points where
X is zero. To describe X, use the description

TS2 = {(x, v) ∈ R3 × R3 : |x| = 1, x · v = 0},

instead of local coordinate descriptions. In other words, write your answer as

X =

V1(x, y, z)
V2(x, y, z)
V3(x, y, z)

 ,
and find the components Vi.

• Problem: Let X, Y , Z be the vector fields

X = z
∂

∂y
− y ∂

∂z
, Y = x

∂

∂z
− z ∂

∂x
, Z = y

∂

∂x
− x ∂

∂y
.

defined on R3.

(a) Show that the map (a, b, c) 7→ aX + bY + cZ injects R3 onto its image, which
is a subspace of the smooth vector fields on R3. Show that under this map, the
bracket of vector fields corresponds to the cross product on R3.

(b) Compute the flow θt of the vector field Y .
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• Problem: Let E ⊂ S1 × R2 be the set of points (eiθ, v1, v2) such that

(cos θ)v1 + (sin θ)v2 = v1

(sin θ)v1 − (cos θ)v2 = v2.

This space forms the Möbius bundle E → S1 with projection π(eiθ, v1, v2) = eiθ.
We will use the charts over S1 = U ∪ Ũ given by

U = {eiθ : θ ∈ (0, 2π)}, Ũ = {eiθ̃ : θ̃ ∈ (−π, π)}

with coordinates (U, θ) and (Ũ , θ̃).

(a) Show that when 0 < θ < 2π and (eiθ, v1, v2) ∈ E, we can write[
v1
v2

]
= r

[
cos(θ/2)
sin(θ/2)

]
with

r =
v2

sin(θ/2)
.

Similarly when −π < θ̃ < π and (eiθ, v1, v2) ∈ E, we can write[
v1
v2

]
= ρ

[
cos(θ̃/2)

sin(θ̃/2)

]
with

ρ =
v1

cos(θ̃/2)
.

(b) Give E the structure of a vector bundle over S1 by defining a trivialization
ϕ1 : π−1(U)→ (0, 2π)× R by(

eiθ, r

[
cos(θ/2)
sin(θ/2)

])
7→ (θ, r),

and a trivialization ϕ2 : π−1(Ũ)→ (−π, π)× R by(
eiθ̃, ρ

[
cos(θ̃/2)

sin(θ̃/2)

])
7→ (θ̃, ρ).

Compute the transition function τ12 : U ∩ Ũ → R∗.

(c) Consider the section σ ∈ Γ(E) defined by

σ(eiθ) = (eiθ, sin θ, 1− cos θ) ∈ E.

Write
σ|U = (θ, s(θ)), σ|Ũ = (θ̃, s̃(θ̃)),

(recall the notation σ|U = ϕ1 ◦ σ) and find the local smooth functions

s : (0, 2π)→ R, s̃ : (−π, π)→ R.

Verify the glueing relation s̃ = τ12s.
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• Problem: Recall that in a previous problem set, we covered RPn = (Rn+1\{0})/ ∼
by the open sets

Ui = {[x0, . . . , xn] : xi 6= 0},

and equipped each set with local coordinates. Let

L = {([x], w) ∈ RPn × Rn+1 : w ∈ [x]}.

Define the projection
π : L→ RPn

by π([x], w) = [x]. We can view L as a line bundle by trivializing L over Ui by
Ψi : π−1(Ui)→ Ui × R with

Ψi([x], w) = ([x], wi).

Here we write w = (w0, w1, . . . , wn). Compute the transition function τij : Ui∩Uj →
R∗.

• Problem: Let π : E → M be a vector bundle and let s : M → E be a section.
Show that

S = {s(p) : p ∈M}

is a submanifold of E which is diffeomorphic to M .
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