TOPICS IN COMPLEX GEOMETRY: PROBLEM SET 1

Due Oct 3

1. Consider \mathbb{P}^{2} with coordinate charts $U_{0}=\left\{Z_{0} \neq 0\right\}, U_{1}=\left\{Z_{1} \neq 0\right\}$, $U_{2}=\left\{Z_{2} \neq 0\right\}$.

- On $U_{0} \cap U_{1}$, let

$$
\left(z^{1}, z^{2}\right)=\left(\frac{Z_{1}}{Z_{0}}, \frac{Z_{2}}{Z_{0}}\right), \quad\left(\tilde{z}^{1}, \tilde{z}^{2}\right)=\left(\frac{Z_{0}}{Z_{1}}, \frac{Z_{2}}{Z_{1}}\right) .
$$

Compute the change of coordinates $z=f(\tilde{z})$.

- Recall the tangent bundle has the transformation law $\tilde{X}^{p}=\frac{\partial z^{p}}{\partial z^{\ell}} X^{\ell}$. In other words, the transition matrix t_{10} on $U_{0} \cap U_{1}$ is $\frac{\partial \tilde{z}^{p}}{\partial z^{\ell}}$. Compute

$$
\frac{\partial \tilde{z}}{\partial z}=\left[\begin{array}{ll}
\frac{\partial \tilde{z}^{1}}{\partial z^{1}} & \frac{\partial \tilde{z}^{1}}{\partial z^{2}} \\
\frac{\partial \tilde{z}^{2}}{\partial z^{1}} & \frac{\partial \tilde{z}^{2}}{\partial z^{2}}
\end{array}\right]
$$

and compute $\operatorname{det} \frac{\partial \tilde{z}}{\partial z}$.

- Recall that $K_{X}=\left(\operatorname{det} T^{1,0} X\right)^{*}$. Compute the transition function t_{10} on $U_{0} \cap U_{1}$ for $K_{\mathbb{P}^{2}}$.
- Recall that the line bundle $\mathcal{O}(k) \rightarrow \mathbb{P}^{2}$ is defined by the transition functions $t_{i j}=\left(Z_{j} / Z_{i}\right)^{k}$. Denote the transition functions of $\mathcal{O}(-3)$ by $\tilde{t}_{i j}$. Match this with your previous computation of t_{10} on $K_{\mathbb{P}^{2}}$ to show

$$
\tilde{t}_{10}=-t_{10} .
$$

We see that the transition functions for these two bundles are off by a sign.

- Nevertheless, the bundles are isomorphic

$$
K_{\mathbb{P}^{2}} \cong \mathcal{O}(-3)
$$

To show this, compute t_{21} on $U_{1} \cap U_{2}$ and t_{20} on $U_{0} \cap U_{2}$. For example, to compute t_{20} on $U_{0} \cap U_{2}$ you can let

$$
\left(z^{1}, z^{2}\right)=\left(\frac{Z_{1}}{Z_{0}}, \frac{Z_{2}}{Z_{0}}\right), \quad\left(\tilde{z}^{1}, \tilde{z}^{2}\right)=\left(\frac{Z_{0}}{Z_{2}}, \frac{Z_{1}}{Z_{2}}\right) .
$$

and proceed as before. You should find

$$
\tilde{t}_{10}=-t_{10}, \quad \tilde{t}_{20}=t_{20}, \quad \tilde{t}_{21}=-t_{21} .
$$

To show these two bundles are isomorphic, construct an isomorphism $\left\{h_{i}\right.$: $\left.U_{i} \rightarrow \mathbb{C}^{*}\right\}$ such that

$$
h_{i}=\tilde{t}_{i j} h_{j} t_{i j}^{-1}
$$

This amounts to specifying h_{0}, h_{1}, h_{2}.

- In general, the formula is $K_{\mathbb{P}^{n}} \cong \mathcal{O}(-n-1)$ (no need to hand-in this calculation for general n).

2. Consider $\mathbb{C}^{2} \backslash\{0\}$ with holomorphic coordinates z, w. Compute

$$
i \partial \bar{\partial} \log |z|^{2}=0
$$

and

$$
\left(i \partial \bar{\partial} \log \left(|z|^{2}+|w|^{2}\right)\right)^{2}=0
$$

Remark: in general on $\mathbb{C}^{n} \backslash\{0\}$, the identity is $\left(i \partial \bar{\partial} \log \left(\sum_{i}\left|z_{i}\right|^{2}\right)\right)^{n}=0$. These formulas become more interesting when the origin is included. In this case the equation should be interpreted as a current and a Dirac delta charge is placed at the origin.

