TOPICS IN COMPLEX GEOMETRY: PROBLEM SET 3

Due Nov 21

1. Let $(E, H) \to (X, \omega)$ be a holomorphic vector bundle with metric over a compact Kähler manifold. Recall that the curvature $F \in \Lambda^{1,1}(\operatorname{End} E)$ is given by $F = \overline{\partial}(\partial H H^{-1})$.

• (a) Show that $i \operatorname{Tr} F \in \Lambda^{1,1}(X, \mathbb{R})$ is given by

$$i \operatorname{Tr} F = -i \partial \overline{\partial} \log \det H.$$

Note that $d \operatorname{Tr} F = 0$.

• (b) Let \hat{H} be another metric with curvature \hat{F} . Show that

$$i \operatorname{Tr} F - i \operatorname{Tr} \dot{F} = i \partial \bar{\partial} \log f$$

where $f: X \to (0, \infty)$ is a well-defined function. Therefore

$$c_1(E) := \frac{1}{2\pi} [i \operatorname{Tr} F] \in H^2(X, \mathbb{R})$$

defines a de Rham cohomology class which is independent of the choice of metric H. (In fact, it defines a class in Bott-Chern cohomology, where the equivalence is up to the image of $i\partial\bar{\partial}$.)

• (c) Show that the pairing

$$c_1(E) \cdot [\omega]^{n-1} := \int_X c_1(E) \wedge \omega^{n-1} \in \mathbb{R}$$

produces a number which does not depend on the metric H or the choice of Kähler metric in the class $\omega \in [\omega] \in H^2(X, \mathbb{R}) \cap \Lambda^{1,1}$.

2. Let $D \subset X$ be a smooth analytic hypersurface in a compact complex manifold X. Let $\mathcal{O}(D) \to X$ be the associated line bundle and let $s \in H^0(X, \mathcal{O}(Y))$ be the defining global section vanishing along D. We will work through the proof of

$$c_1(\mathcal{O}(D)) \cdot [\chi] := \int_X c_1(\mathcal{O}(D)) \wedge \chi = \int_D \chi,$$

for any $\chi \in \Lambda^{n-1,n-1}(X)$ with $d\chi = 0$. This is sometimes written

$$c_1(\mathcal{O}(D)) = [D]$$

For readability, let's assume that the complex dimension is n = 2 so that X has two local coordinates (z^1, z^2) . The proof in higher dimensions is identical.

We start by covering D with open sets $U_{\alpha} \subset X$ such that

$$D \cap U = \{(z_1, z_2) : |z_1| < 1, \quad z_2 = 0\}.$$

A tubular neighborhood $D \subset D_{\varepsilon} \subset X$ is given by

$$D_{\varepsilon} \cap U = \{(z_1, z_2) : |z_1| < 1, |z_2| < \varepsilon\}.$$

Let h be an arbitrary metric on $\mathcal{O}(D)$ with curvature $iF_h \in \Lambda^{1,1}(X,\mathbb{R})$. Since F_h is a smooth differential form,

$$\frac{1}{2\pi} \int_X iF_h \wedge \chi = \lim_{\varepsilon \to 0} \frac{1}{2\pi} \int_{X \setminus D_\varepsilon} iF_h \wedge \chi.$$

• (a) Show that

$$iF_h = -i\partial\bar{\partial}\log|s|_h^2 \quad \text{on } X \setminus D_{\varepsilon}.$$

For this, recall that over the trivialization U, then by definition of the defining section we have $s_U(z) = z_2$, and by definition $|s|_h^2 = s_U \overline{s_U} h_U$ in this trivialization.

Computing $c_1(\mathcal{O}(D)) \cdot [\chi]$ then leads to the limit

$$c_1(\mathcal{O}(D)) \cdot [\chi] = \lim_{\varepsilon \to 0} \frac{-1}{2\pi} \int_{X \setminus D_\varepsilon} i \partial \bar{\partial} \log |s|_h^2 \wedge \chi,$$

and by Stokes's theorem

$$c_1(\mathcal{O}(D)) \cdot [\chi] = \lim_{\varepsilon \to 0} \frac{-i}{2\pi} \int_{\partial D_{\varepsilon}} \bar{\partial} \log |s|_h^2 \wedge \chi.$$

In a local chart,

$$\partial D_{\varepsilon} \cap U = \{ (z_1, z_2) : |z_1| < 1, \quad |z_2| = \varepsilon \},\$$

and so the integral we would like to compute splits into two pieces:

$$\lim_{\varepsilon \to 0} \frac{-i}{2\pi} \int_{\partial D_{\varepsilon} \cap U} \bar{\partial} \log h \wedge \chi + \lim_{\varepsilon \to 0} \frac{-i}{2\pi} \int_{\partial D_{\varepsilon} \cap U} \bar{\partial} \log |z_2|^2 \wedge \chi$$

You can parametrize integrals over $\partial D_{\varepsilon} \cap U$ by setting $z_2 = \varepsilon e^{2\pi i t}$ for $0 \le t \le 1$.

• (b) Show that

$$\lim_{\varepsilon \to 0} \frac{-i}{2\pi} \int_{\partial D_{\varepsilon} \cap U} \bar{\partial} \log h \wedge \chi = 0.$$

In fact $\lim_{\varepsilon \to 0} \int_{\partial D_{\varepsilon} \cap U} \eta = 0$ for any smooth 3-form η over U.

• (c) The non-zero contribution is picked up from the singular integrand

$$\frac{-i}{2\pi} \int_{\partial D_{\varepsilon} \cap U} \bar{\partial} \log |z_2|^2 \wedge \chi.$$

Write

$$\chi = \chi_{j\bar{k}} dz^j \wedge d\bar{z}^k$$

and show that this integral is given by

$$\frac{-i}{2\pi}\int_{\partial D_{\varepsilon}\cap U}\chi_{1\bar{1}}(z_1,z_2,\bar{z}_1,\bar{z}_2)\frac{d\bar{z}_2}{\bar{z}_2}\wedge dz^1\wedge d\bar{z}^1.$$

Set $z_2 = \varepsilon e^{2\pi i t}$ for $0 \le t \le 1$, send $\varepsilon \to 0$, and deduce

$$\lim_{\varepsilon \to 0} \frac{-i}{2\pi} \int_{\partial D_{\varepsilon} \cap U} \bar{\partial} \log |z_2|^2 \wedge \chi = \int_{\{|z_1| < 1\}} \chi_{1\bar{1}}(z_1, 0, \bar{z}_1, 0) dz^1 \wedge d\bar{z}^1$$

which is

$$\int_{D\cap U}\chi$$

as required.

3. Let $L_1, L_2 \to (X, \omega)$ be a pair of holomorphic line bundle over a compact Kähler manifold, equipped with metrics h_1, h_2 .

• (a) Equip $\tilde{L} = L_1 \otimes L_2$ with the metric $\tilde{h} = h_1 \otimes h_2$, and show that

$$F_{\tilde{h}} = F_{h_1} + F_{h_2}$$

which implies $c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2)$. Similarly, L^k has metric h^k and $F_{h^k} = kF_h$. Here the product in the notation L^k is the tensor product of line bundles.

• (b) Now let L be a positive line bundle so that there exists a metric h with $iF_h > 0$. Using the Kodaira vanishing theorem $H^q(X, L \otimes K_X) = 0$ for $q \ge 1$, deduce the following vanishing theorem: there exists $k_0 \gg 1$ such that for all $k \ge k_0$, then

$$H^q(X, L^k) = 0, \quad q \ge 1.$$

To do this, write $L^k = (L^k \otimes K_X^{-1}) \otimes K_X$.