
Data Compression using the SVD
The singular value decomposition (SVD) can be used for compressing data in a matrix. In

this example, we will take a digital photo and do a lossy compression based on the SVD.

Ideally, we should get a new image which is not visibly different from the original but

requires less stored data to reconstruct.

Digital photo as a numpy array

We start by loading a digital photo and storing it as an array .

The image used for this demonstration is 400 pixels tall and 600 pixels wide, so here

is a matrix where each entry is a 3D array representing the RGB channel

values for one pixel in the image.

(400, 600, 3)

We can select one of the pixels and check its colour. The three values (between 0 and

255) represent the amount of red, green and blue in the colour of that pixel.

In [1]: import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [4, 6]

X

In [2]: X = plt.imread('photo.jpg').astype(np.uint8)
plt.imshow(X)
plt.axis('off')
plt.show()

X

400 × 600

In [3]: print(X.shape)

[79 151 233]

Using the SVD to compress data

Let be the SVD of an matrix . We can also write this as the sum

where is the rank of . The singular values are in decreasing order, so

the first term with will be the most significant, while terms with smaller singular

values will not contribute as much to the matrix . This allows us to compress the data

in an efficient way, since we can choose to leave out the least significant terms in the

sum above.

We get a rank approximation of by replacing all singular values after with zero,

For the matrix we only need to store the first columns of matrices and , as well

as the singular values . The total number of stored values is therefore equal

to . This can be compared to the values needed

in the original matrix . The compression ratio is the ratio between the uncompressed

and compressed amounts of data, in this case

.

In [4]: print(X[12,45])

In [5]: # Plot a small square of this colour
fig=plt.figure(figsize=(1, 1))
plt.axis('off')
plt.imshow(np.array([[X[12,45]]]))
plt.show()

A = PΣQT m × n A

A =
r

∑
i=1

σipiqT
i = σ1p1qT

1 + ⋯ + σrprqT
r ,

r A σ1, σ2, … , σr

σ1

A

k A σk

Ak =
k

∑
i=1

σipiqT
i = σ1p1qT

1 + ⋯ + σkpkqT
k

, (1 ≤ k ≤ r).

Ak k P Q

k σ1, … , σk

m ⋅ k + k + k ⋅ n = k(m + n + 1) mn

A

Compression Ratio =
mn

k(m + n + 1)

SVD compression of the digital photo

We will now perform the compression described above for our digital image matrix .

Since we have three different colour channels, we actually find the SVD and do the

compression for each channel separately. (This might take some time if the photo is very

large — for me the following code took several minutes using the Syzygy service but was

much faster when run in a local IDE.)

The following function will display the amount of compression obtained for a given value

 in the truncated SVD, and reconstruct the corresponding compressed image.

X

In [6]: # Separate X into one matrix for each colour channel
R = X[:, :, 0]
G = X[:, :, 1]
B = X[:, :, 2]

Find the SVD of the three matrices
We can set 'full_matrices' to false since we are going to truncate anyway
PR,SR,QRT = la.svd(R, full_matrices=False)
PG,SG,QGT = la.svd(G, full_matrices=False)
PB,SB,QBT = la.svd(B, full_matrices=False)

k

We can now test different values of and observe how the compressed image changes.

Amount of data compared to original: 0.42 % (Compression ratio: 239.8)

Amount of data compared to original: 3.34 % (Compression ratio: 30.0)

In [7]: def compressImage(k):
 # k is the number of singular values to keep

 # Construct the truncated versions of the colour channel matrices
 newR = PR[:,:k] @ np.diag(SR[:k]) @ QRT[:k,:]
 newG = PG[:,:k] @ np.diag(SG[:k]) @ QGT[:k,:]
 newB = PB[:,:k] @ np.diag(SB[:k]) @ QBT[:k,:]

 # Make sure that the new matrices are of the right format
 newR = np.clip(newR, 0, 255).astype(np.uint8)
 newG = np.clip(newG, 0, 255).astype(np.uint8)
 newB = np.clip(newB, 0, 255).astype(np.uint8)

 # Combine the three new matrices into one
 newX = np.dstack((newR,newG,newB))

 # Plot the new matrix as an image
 plt.imshow(newX)
 plt.axis('off')
 plt.show

 # Display the compression ratio
 # i.e. how much data needs to be stored compared to the original matrix
 xm = X.shape[0]
 xn = X.shape[1]
 cratio = (xm * xn) / (k * (xm + xn + 1))
 csave = 100 / cratio
 print("Amount of data compared to original: ","{:.2f}".format(csave),"%"
 " (Compression ratio: ","{:.1f}".format(cratio),")")

k

In [8]: compressImage(1)

In [9]: compressImage(8)

Amount of data compared to original: 10.43 % (Compression ratio: 9.6)

Amount of data compared to original: 41.71 % (Compression ratio: 2.4)

Amount of data compared to original: 83.42 % (Compression ratio: 1.2)

In [10]: compressImage(25)

In [11]: compressImage(100)

In [12]: compressImage(200)

Amount of data compared to original: 166.83 % (Compression ratio: 0.6)

In [13]: compressImage(400)

Comments

When selecting the value , there is a trade-off between better image quality and more

compression. If we keep every singular value, we actually store more data than before

(which makes sense, since the SVD contains more information than just the matrix).

Based on the images above, we can see that there is little difference to the original

image if we keep half of the singular values (), whereas we then only need to

store around 83% of the amount of data. Going down to , we do notice a

difference in quality. If we keep only a handful of the singular values, the approximation

will certainly not be very good, but it will also require only a small fraction of the amount

of data. It is curious to note that in this particular example, the main feature of the photo

— the flagpole — is still somewhat recognizable even if we keep only the largest singular

value (), although obviously the image is otherwise not a good approximation at

that point.

The SVD can be used for compressing matrix data in general, but when it comes to

compressing digital images in particular, it is much more common to use a discrete

cosine transform (DCT) instead. This is the method implemented in, for instance, the

JPEG compression. The DCT is related to the Discrete Fourier Transform, which you will

learn about during the final weeks of the course. Nevertheless, the example above

serves as a nice visual illustration of the truncated SVD expansion and how it can be

applied for data compression.

k

A

k = 200
k = 100

k = 1

In []:

