
Canad. Math. Bull. Vol. 51 (4), 2008 pp. 584–592

On Tensor Products of Polynomial
Representations

Kevin Purbhoo and Stephanie van Willigenburg

Abstract. We determine the necessary and sufficient combinatorial conditions for which the tensor

product of two irreducible polynomial representations of GL(n,C) is isomorphic to another. As a con-

sequence we discover families of Littlewood–Richardson coefficients that are non-zero, and a condition

on Schur non-negativity.

1 Introduction

It is well known that the representation theory of GL(n,C) is intimately connected to

the combinatorics of partitions [8, Ch. 7, Appendix 2]. Before we address the main

problem in this paper that concerns the representations of GL(n,C), we will briefly

review this connection.

Recall that a partition λ of a positive integer m, denoted λ ⊢ m, is a list of positive

integers λ1 ≥ λ2 ≥ · · · ≥ λℓ(λ) > 0 whose sum is m. We call m the size of λ, the λi

the parts of λ and ℓ(λ) the length of λ. We also let λ = 0 be the unique partition of

0, called the empty partition of length 0. Every partition corresponds naturally to a

(Ferrers) diagram of shape λ, which consists of an array of m boxes such that there are

λi left justified boxes in row i, where the rows are read from top to bottom. By abuse

of notation we also denote this diagram by λ. In the following example the boxes are

denoted by ×.

Example 1.1

43211 =

× × × ×
× × ×
× ×
×
×

Moreover, given partitions λ, µ such that λi ≥ µi for all 1 ≤ i ≤ ℓ(µ), if we

consider the boxes of µ to be situated in the top left corner of λ, then we say that µ is

a subdiagram of λ, and the skew diagram of shape λ/µ is the array of boxes contained

in λ, but not in µ. Again we abuse notation and denote this skew diagram by λ/µ.
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Example 1.2

43211/21 =

× ×
× ×

× ×
×
×

Furthermore, given a (skew) diagram, we can fill the boxes with positive integers

to form a tableau T, and if T contains c1(T) 1 s, c2(T) 2 s, . . . , then we say it has

content c(T) = c1(T)c2(T) · · · .With this in mind we are able to state the connection

between GL(n,C) and partitions of n as follows.

The irreducible polynomial representations φλ of GL(n,C) are indexed by parti-

tions λ such that ℓ(λ) ≤ n and given two irreducible polynomial representations of

GL(n,C), φµ and φν , one has

char(φµ ⊗ φν) =

∑

λ
ℓ(λ)≤n

cλµν charφλ,

where cλµν is the number of tableaux T of shape λ/µ such that

(i) the entries in the rows weakly increase from left to right;

(ii) the entries in the columns strictly increase from top to bottom;

(iii) c(T) = ν1ν2 · · · ;

(iv) when we read the entries from right to left and top to bottom the number of i s

we have read is always greater than or equal to the number of (i + 1) s we have

read.

This method for computing the cλµν is called the Littlewood–Richardson rule. As

one might expect the cλµν are called Littlewood–Richardson coefficients. Observe that

we could have equally well chosen conditions (i)–(iv) to read

(i) the entries in the rows weakly increase from right to left;

(ii) the entries in the columns strictly increase from bottom to top;

(iii) c(T) = ν1ν2 · · · ;

(iv) when we read the entries from left to right and bottom to top the number of i s

we have read is always greater than or equal to the number of (i + 1) s we have

read.

For convenience we will call this the reverse Littlewood–Richardson rule.

Example 1.3 To illustrate both rules we now compute c321
21,21. We will replace each

box with the number it contains.

Using the Littlewood–Richardson rule we obtain c321
21,21 = 2 from the tableaux

1
2

1
and

1
1

2
.

Meanwhile, using the reverse Littlewood–Richardson rule we also obtain c321
21,21 = 2
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from the tableaux
1

2
1

and
2

1
1

.

Another place where Littlewood–Richardson coefficients arise is in the algebra of

symmetric functions, Λ =
⊕

m≥0 Λ
m, which is a subalgebra of Z[[x1, x2, . . .]] that is

invariant under the natural action of the symmetric group. Each Λ
m is spanned by

{sλ}λ⊢m, where s0 := 1 and

(1.1) sλ :=
∑

T

xT .

The sum is over all tableaux T that satisfy conditions (i) and (ii) of the Littlewood–

Richardson rule and xT :=
∏

i xci (T)
i . For partitions λ, µ, ν the structure coefficients

of these Schur functions satisfy

sµsν =

∑

λ

cλµν sλ,

where the cλµν are again Littlewood–Richardson coefficients.

Similarly we can define the algebra of symmetric polynomials on n variables by

setting xn+1 = xn+2 = · · · = 0 above and working with Schur polynomials sλ(x1, . . . ,
xn). Observe that by Definition (1.1) if ℓ(λ) > n, then sλ(x1, . . . , xn) = 0. The moti-

vation for restricting to n variables is that the irreducible representations of GL(n,C)

can be indexed such that

(1.2) charφλ = sλ(x1, . . . , xn).

See [2, 8] for further details.

2 Identical Tensor Products

We now begin to address the main problem of the paper, that is, to determine for

which partitions λ, µ, ν, ρ we have

(2.1) φλ ⊗ φµ ∼= φν ⊗ φρ

for irreducible polynomial representations of GL(n,C).

For ease of notation, we assume n is fixed throughout the remainder of the paper.

Additionally, since sλ(x1, . . . , xn) = 0 for ℓ(λ) > n, we assume that all partitions have

at most n parts. We extend our partitions to exactly n parts by appending a string of

n − ℓ(λ) 0 s. For example, if n = 4, then λ = 32 becomes λ = 3200.

We now define an operation on diagrams that will be useful later.

Definition 2.1 Given partitions λ and µ and an integer s such that 0 ≤ s ≤ n − 1,

the s-cut of λ and µ is the partition whose parts are

λ1 + µ1, λ2 + µ2, . . . , λs + µs,

λs+1 + µn, λs+2 + µn−1, . . . , λn−1 + µs+2, λn + µs+1,

listed in weakly decreasing order.
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Remark 2.1. Diagrammatically we can think of the s-cut of λ and µ as

(i) aligning the top rows of λ and µ, then

(ii) cutting the diagrams λ and µ between the s and s + 1 rows,

(iii) taking the rows of µ (or λ) below the cut and rotating them by 180◦,

(iv) appending the newly aligned rows and sorting into weakly decreasing row

length to make a diagram.

Example 2.2 If n = 6, then the 2-cut of 432110 and 543200 is 973321. This exam-

ple can be viewed diagrammatically as the following.

× × × ×
× × ×
× ×
×
×

× × × × ×
× × × ×

× ×
× × ×

 

× × × × × × × × ×
× × × × × × ×
× × ×
× × ×
× ×
×

It transpires that the s-cut of λ and µ yields a condition on Littlewood–Richardson

coefficients.

Lemma 2.3 If λ, µ, and s are as in Definition 2.1 and κ is the s-cut of λ and µ then

cκλµ > 0.

Proof Observe that since the Littlewood–Richardson and the reverse Littlewood–

Richardson rule yield the same coefficients, there must be a bijection ψ between the

tableaux generated by each. This bijection will play a key role in the proof.

Consider creating a tableau T of shape κ/λ, where κi = λi + µi for 1 ≤ i ≤ s,

that will contribute towards the coefficient cκλµ. If we use the Littlewood–Richardson

rule, then it is clear that for 1 ≤ i ≤ s we must fill the boxes of the i-th row

with the µi i s. Now all that remains for us to do is to fill the remaining boxes

of T with µs+1 (s + 1) s, . . . , µn n s. To do this we create a tableau T ′ of shape

κs+1 · · ·κn/λs+1 · · ·λn = κ/κ1 · · ·κsλs+1 · · ·λn that will contribute towards the co-

efficient c
γ
αβ where α = λs+1 · · ·λn, β = µs+1 · · ·µn and γ = κs+1 · · ·κn. We do this

as follows.

Fill the box at the bottom of each column from left to right with µs+1 1 s. Then

repeat on the remaining boxes with the µs+2 2 s. Iterate this procedure until the boxes

are full. Observe by the reverse Littlewood–Richardson rule that this filling con-

tributes 1 to the coefficient c
γ
αβ . Now using ψ, create a tableau T ′ ′ of the same shape

that satisfies the Littlewood–Richardson rule and increase each entry by s, forming

a tableau T ′ ′ ′. Placing the entries of T ′ ′ ′ in the naturally corresponding boxes of T

we see we have a tableau that contributes 1 to the coefficient cκλµ by the Littlewood–

Richardson rule and indeed cκλµ > 0.

Definition 2.4 If λ, µ, and s are as in Definition 2.1, then the s-poset of λ and µ is

the set of all partitions κ such that

(i) cκλµ > 0,

(ii) κi = λi + µi for all 1 ≤ i ≤ s,
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which are ordered lexicographically, that is, κ > κ ′ if and only if there exists some i,

where 1 ≤ i ≤ n, such that κ1 = κ ′
1, . . . , κi−1 = κ ′

i−1 and κi > κ ′
i .

Lemma 2.5 If λ, µ, and s are as in Definition 2.1, then the s-cut of λ and µ is the

unique minimal element in the s-poset of λ and µ.

Proof Let ξ be any element in the s-poset ofλ and µ and let U be any tableau that will

contribute towards the coefficient cξλµ via the Littlewood–Richardson rule. As in the

proof of Lemma 2.3, it is clear that for 1 ≤ j ≤ s we have that j appears in every box

of row j. Now consider the natural subtableau of shape ξs+1 · · · ξn/λs+1 · · ·λn, which

we denote by U . Note that if we subtract s from every entry in U , then we obtain

a tableau that contributes towards c
(ξs+1···ξn)
(λs+1···λn)(µs+1···µn) via the Littlewood–Richardson

rule. If we then apply the bijection ψ to rearrange these new entries, we obtain

a tableau U ′ that contributes towards c
(ξs+1···ξn)
(λs+1···λn)(µs+1···µn) via the reverse Littlewood–

Richardson rule.

Now let κ be the s-cut of λ and µ. Let T and T ′ be the tableaux constructed in

the proof of Lemma 2.3. Recall that T contributes towards the coefficient cκλµ via the

Littlewood–Richardson rule, and that T ′ contributes towards c(κs+1···κn)
(λs+1···λn)(µs+1···µn) via

the reverse Littlewood–Richardson rule.

We now consider transforming T ′ into U ′ as follows. Since T ′ and U ′ both have

content µ, we can map the boxes of T ′ bijectively to the boxes of U ′ such that the

k-th box containing i from the left in T ′ maps to the k-th box containing i from the

left in U ′. This bijection factors as follows. First move each box in T ′ horizontally,

so that it is in the same column as the corresponding box in U ′. Then move each box

vertically to form U ′. By the construction of T ′ the entries are as left justified and

low as possible, and so this transformation necessarily moves each box rightwards

and upwards. It follows that κ, the shape of T ′, is lexicographically less than or equal

to ξ, the shape of U ′, and we are done.

Recall that λn is the number of columns of length n in the diagram λ, and thus

(λn)n is a subdiagram of λ. Define λ− := λ/(λn)n. Notice that λ− is a Ferrers

diagram, with at most n − 1 rows, and the number of columns of length n − 1 is

λ−n−1. We therefore define λ−− := λ−/(λ−n−1)n−1. Notice that by (1.1) we have the

factorization

(2.2) sλ(x1, . . . , xn) = (x1 · · · xn)λn sλ−(x1, . . . , xn),

and moreover x1 · · · xn does not divide sλ−(x1, . . . , xn).

Theorem 2.6 φλ⊗φµ ∼= φν⊗φρ as representations of GL(n) if and only if λn +µn =

νn + ρn and {λ−, µ−} = {ν−, ρ−} as multisets.

An alternative proof, previously unknown to the authors, appears in [6].

Proof We will show that

(2.3) sλ(x1, . . . , xn)sµ(x1, . . . , xn) = sν(x1, . . . , xn)sρ(x1, . . . , xn)



On Tensor Products of Polynomial Representations 589

if and only if λn + µn = νn + ρn and {λ−, µ−} = {ν−, ρ−}. The theorem then

follows, using (1.2).

One direction is immediate. Suppose λn + µn = νn + ρn and {λ−, µ−} =

{ν−, ρ−}, then by (2.2) we have

sλ(x1, . . . , xn)sµ(x1, . . . , xn) = (x1 · · · xn)λn+µn sλ−(x1, . . . , xn)sµ−(x1, . . . , xn)

= (x1 · · · xn)νn+ρn sν−(x1, . . . , xn)sρ−(x1, . . . , xn)

= sν(x1, . . . , xn)sρ(x1, . . . , xn).

For the opposite direction, assume that (2.3) holds. We first show that λn + µn =

νn + ρn. If they were not equal, say λn + µn > νn + ρn, then by (2.2), we would have

(x1 · · · xn)λn+µn−νn−ρn sλ−(x1, . . . , xn)sµ−(x1, . . . , xn)

= sν−(x1, . . . , xn)sρ−(x1, . . . , xn),

which is impossible since x1 · · · xn does not divide the right-hand side. Similarly we

cannot have λn + µn < νn + ρn. Thus, we see furthermore that

(2.4) sλ−(x1, . . . , xn)sµ−(x1, . . . , xn) = sν−(x1, . . . , xn)sρ−(x1, . . . , xn).

Let S(n) be the assertion that the equation (2.4) holds only if {λ−, µ−} =

{ν−, ρ−}. To complete the proof of the theorem, it remains to show that S(n) is

true for all n. We prove this by induction.

The base case n = 1 is trivial, since each of λ−, µ−, ν−, ρ− is necessarily the

empty partition.

Now assume that S(1), . . . , S(n−1) are true. In particular this assumption implies

that the theorem holds for smaller values of n. Furthermore, assume that (2.4) holds.

Let

a := λ−n−1 b := µ−
n−1 c := ν−n−1 d := ρ−n−1.

Since (2.4) implies

sλ−(x1, . . . , xn−1)sµ−(x1, . . . , xn−1) = sν−(x1, . . . , xn−1)sρ−(x1, . . . , xn−1),

by our inductive hypothesis we must have

a + b = c + d and {λ−−, µ−−} = {ν−−, ρ−−}.

Assume without loss of generality that λ−−
= ν−−

=: α and µ−−
= ρ−−

=: β. To

show that {λ−, µ−} = {ν−, ρ−}, we need to check that a = c and b = d, or that

a = d, b = c, and α = β.

To show this we note that if (2.4) holds, then for all s, 0 ≤ s ≤ n − 1, the s-poset

of λ− and µ−, must be the same as the s-poset of ν− and ρ−. Thus by Lemma 2.5,

the s-cut of λ− and µ− must be the same as the s-cut of ν− and ρ−.
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The s-cut of λ− and µ− has part sizes

a + b + α j + β j

a + b + αs+ j + βn− j+1

a + αs+1,

b + βs+1,

1 ≤ j ≤ s,

2 ≤ j ≤ n − s − 1,

whereas the s-cut of ν− and ρ− has part sizes

a + b + α j + β j

a + b + αs+ j + βn− j+1

c + αs+1,

d + βs+1.

1 ≤ j ≤ s,

2 ≤ j ≤ n − s − 1,

These lists must agree. Consequently we must have

a + αs+1 = c + αs+1 or a + αs+1 = d + βs+1,

for all s. If, for any s, we are in the first situation, then a = c and b = d as desired. If

not, then

a + αs+1 = d + βs+1 and c + αs+1 = b + βs+1

for all 0 ≤ s ≤ n − 1. In particular, since αn−1 = βn−1 = 0, we have a = d and

b = c, ensuring α j = β j for 1 ≤ j ≤ n − 1.

Example 2.7 If n = 3,

λ =

× × × × ×
× × ×
× ×

and µ =

× ×
× ×

then φλ ⊗ φµ ∼= φν ⊗ φρ if and only if {ν, ρ} is equal to one of

{λ, µ} ,







× × × ×
× ×
×

,
× × ×
× × ×
×







or







× × ×
× ,

× × × ×
× × × ×
× ×







.

We consequently obtain a strict lower bound on n, in terms of the size of the

partitions, to guarantee that (2.1) has only trivial solutions.

Corollary 2.8 Suppose m,m ′ are non-negative integers. If n > max{m,m ′}, then

for any partitions λ ⊢ m and µ ⊢ m ′, we have that

(2.5) φλ ⊗ φµ ∼= φν ⊗ φρ

has only the trivial solution {ν, ρ} = {λ, µ}. If min{m,m ′} ≥ 2 and n ≤
max{m,m ′}, then there exist λ ⊢ m and µ ⊢ m ′ for which (2.5) has non-trivial

solutions.
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3 Schur Non-Negativity

Recently the question of Schur non-negativity has received much attention; see for

example [4, 7]. The notion of Schur non-negativity is of interest as it arises in the

study of algebraic geometry [1], quantum groups [3], and branching problems in

representation theory [5].

One of the most basic Schur non-negativity questions is the following. Given par-

titions λ, µ, ν, ρ, when is the difference sλsµ− sν sρ a non-negative linear combination

of Schur functions? Note that if sλsµ − sν sρ is Schur non-negative, then the same is

certainly true of the corresponding expression in finitely many variables

sλ(x1, . . . , xn)sµ(x1, . . . , xn) − sν(x1, . . . , xn)sρ(x1, . . . , xn).

The following yields a test for failure of Schur non-negativity.

Corollary 3.1 For 0 ≤ s ≤ n − 1, let κ = κ1 · · ·κn be the s-cut of λ and µ, and let

ξ = ξ1 · · · ξn be the s-cut of ν and ρ. Form the sequences

σ(s) := κ1 · · ·κsξs+1 · · · ξn and τ(s) := ξ1 · · · ξsκs+1 · · ·κn.

If there exists an s for which τ(s) is lexicographically greater than σ(s), then

sλ(x1, . . . , xn)sµ(x1, . . . , xn) − sν(x1, . . . , xn)sρ(x1, . . . , xn)

is not Schur non-negative.

Proof Suppose the s-cut of λ and µ is not equal to the s-cut of ν and ρ, and let k be

the first index in which they differ. If k ≤ s, and ξk > κk, then by the Littlewood–

Richardson rule, c
ξ
λµ = 0. On the other hand if k > s and κk > ξk, then the same is

true by Lemma 2.5. In either case, by Lemma 2.3, cξνρ > 0, and thus

sλ(x1, . . . , xn)sµ(x1, . . . , xn) − sν(x1, . . . , xn)sρ(x1, . . . , xn)

is not Schur non-negative.

Example 3.2 Suppose n = 3, and

λ = 310, µ = 110, ν = 220, ρ = 200.

Then σ(0) = 222 < 321 = τ(0). Thus we can conclude that sλsµ − sν sρ is not Schur

non-negative. On the other hand, σ(1) = 420 > 411 = τ(1). Thus sν sρ− sλsµ is also

not Schur non-negative.

Acknowledgements The authors are grateful to Matthew Morin for helpful discus-

sions, Christopher Ryan for providing some data and Mark Skandera for suggesting

the problem. They would also like to thank the referee for illuminating comments.



592 K. Purbhoo and S. van Willigenburg

References

[1] S. Fomin, W. Fulton, C. Li, and Y. Poon, Eigenvalues, singular values, and Littlewood-Richardson
coefficients. Amer. J. Math. 127(2005), no. 1, 101–127.

[2] I. Macdonald, Symmetric Functions and Hall Polynomials. Second edition. Oxford University Press,
New York, 1995.

[3] A. Lascoux, B. Leclerc, and J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine
algebras and unipotent varieties. J. Math. Phys. 38(1997), no. 2, 1041–1068.

[4] T. Lam, A. Postnikov, and P. Pylyavskyy, Schur positivity and Schur log-concavity. Amer. J. Math.
129(2007), no. 6, 1611–1622.

[5] A. Okounkov, Log-concavity of multiplicities with applications to characters of U (∞). Adv. Math.
127(1997), no. 2, 258–282.

[6] C. Rajan, Unique decomposition of tensor products of irreducible representations of simple algebraic
groups. Ann. of Math. 160(2004), no. 2, 683–704.

[7] B. Rhoades and M. Skandera, Kazhdan-Lusztig immanants and products of matrix minors. J. Algebra
304(2006), no. 2, 793–811.

[8] R. Stanley, Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics 62, Cambridge
University Press, Cambridge, 1999.

Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2
e-mail: kevinp@math.ubc.ca

steph@math.ubc.ca


