- 1. Let $X = \{g, s\}$, and endow X with the following topology: The subsets $\{\emptyset, X, \{g\}\}$ are open. Give [0, 1] the usual metric topology.
 - (a) Suppose $f: X \to [0, 1]$ is a continuous function such that f(s) = 0. Show that f(g) = 0.
- (b) Produce, with proof, a nonconstant continuous function $f:[0,1] \to X$.
- **2.** Let (X, d) be a metric space. Recall that a sequence (x_n) in X is said to be a *Cauchy sequence* if, for all $\epsilon > 0$, there exists some $N_{\epsilon} \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for all $n, m > N_{\epsilon}$. The space X is said to be *complete* if every Cauchy sequence converges in X. Given an example, with proof, of a homeomorphism $f: X \to Y$ of metric spaces where X is complete and Y is not complete.
- **3.** Let X, Y be topological spaces and $f: X \to Y$ a function between them. As usual in this course, when a topology on a subset is not otherwise specified, the subspace topology is assumed.
 - (a) Suppose A, B are closed subsets of X such that $X = A \cup B$, and suppose that $f|_A : A \to Y$ and $f|_B : B \to Y$ are continuous. Prove that f is continuous.
- (b) Suppose that for all $x \in X$, there exists an open set $U \ni x$ such that $f|_U$ is continuous. Prove f is continuous.
- (c) Give an example, with proof, of sets X and Y and a discontinuous function $f: X \to Y$ such that for all $x \in X$, there exists a closed set $A \ni x$ such that $f|_A$ is continuous.