- **1.** Let (X, τ) be a topological space and $A \subset X$ a subset. Recall that the *subspace topology* τ_A is defined as follows: $U \in \tau_A$ if there exists some $V \in \tau$ such that $U = V \cap A$.
 - (a) Prove that τ_A defines a topology.
 - (b) Prove that $\tau_A \subset \tau$ if and only if *A* is open in *X*.
 - (c) Prove that $C \subset A$ is closed in the subspace topology on A (i.e., is the complement $A \setminus U$ for some $U \in \tau_A$) if and only if there exists some closed subset K of X such that $C = K \cap A$.
- **2.** Suppose $\{X_j\}_{j\in J}$ and $\{Y_j\}_{j\in J}$ are two families of topological spaces and that $\{f_j: X_j \to Y_j\}_{j\in J}$ is a set of continuous functions between them. Prove there exists a unique function

$$f: \prod_{j \in J} X_j \to \prod_{j \in J} Y_j$$

with the property that $\operatorname{proj}_j f(x) = f_j(\operatorname{proj}_j x)$ for all $x \in \prod_{j \in J} X_j$, and prove that this function f is continuous. (Hint: it may be helpful to use the universal property of the product, Remark 1.56).

- **3.** Let $\{X_i\}_{i\in I}$ be a family of spaces and let $\operatorname{proj}_i:\prod_{i\in I}X_i\to X_i$ denote the projection maps.
 - (a) Prove that for any family of subsets $\{A_i \subset X_i\}$,

$$\prod_{i \in I} \overline{A_i} = \overline{\prod_{i \in I} A_i}$$

- (b) Give an example to show that the analogous statement is false when the closure is replaced by the interior.
- (c) Suppose that the spaces X_i are all Hausdorff. Prove that $\prod_{i \in I} X_i$ is Hausdorff.