Math 426 Homework 4 Due 11 October 2022

1. Recall that a Hausdorff space *X* is *perfectly normal* if, for every closed set *A*, there exists a continuous function $f_A : X \to [0, 1]$ such that $f_A^{-1}(0) = A$. In such a space, for any two disjoint closed sets *A*, *B*, there exists a continuous function

$$f: X \to [0,1], \qquad f = \frac{f_A}{f_A + f_B}$$

for which $f^{-1}(0) = A$ and $f^{-1}(1) = B$.

Suppose *X* is perfectly normal, that *C* is a closed subset of *X* and $g : C \rightarrow [-1, 1]$ is a continuous function.

- (a) By considering $g^{-1}([-1, -1/3])$ and $g^{-1}([1/3, 1])$, construct a continuous function $h_1 : X \to [-1/3, 1/3]$ such that $|h_1(c) g(c)| \le 2/3$ for all $c \in C$.
- (b) Produce a sequence (h_n) of continuous functions $h_n: X \to [-1 + (2/3)^n, 1 (2/3)^n]$ such that
 - i. $|h_n(c) g(c)| \le (2/3)^n$ for all $c \in C$.
 - ii. $|h_n(x) h_{n-1}(x)| \le (1/3)(2/3)^{n-1}$ for all $x \in X$.
- 2. You may use the results of the previous problem in answering this one.
 - (a) Suppose $(f_n : X \to \mathbf{R})$ is a sequence of functions, where *X* is a topological space. We say that (f_n) converges to a function $f : X \to \mathbf{R}$ uniformly if, for all $x \in X$ and all $\epsilon > 0$, there exists some $N_{\epsilon} \in \mathbf{N}$ such that $|f_n(x) f(x)| < \epsilon$ for all $n > N_{\epsilon}$. Suppose you are given a sequence of continuous functions $f_n : X \to \mathbf{R}$ converging uniformly to $f : X \to \mathbf{R}$. Prove that *f* is continuous.
 - (b) Suppose *X* is a perfectly normal topological space and $C \subset X$ is a closed subset. Suppose $g : C \to [-1,1]$ is a continuous function. Construct a continuous function $h_{\infty} : X \to [-1,1]$ such that $h_{\infty}(c) = g(c)$ for all $c \in C$.

3. Give **Q** the usual topology. Let $C \subset \mathbf{Q}$ be a compact subset. Prove that *C* is nowhere dense in **Q**. It may help to consider *C* as a subset of **R**. You may assume that **Q** is dense in **R**.