1. If $\mathbf{x} \in \mathbf{R}^{n+1}$, then the notation $\|\mathbf{x}\|_{2}$ means the usual euclidean norm of \mathbf{x}, i.e., $\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n+1} x_{i}^{2}}$.

The n-dimensional sphere is the set

$$
S^{n}=\left\{\mathbf{x} \in \mathbf{R}^{n+1} \mid\|\mathbf{x}\|_{2}=1\right\}
$$

given the subspace topology.
You may assume that there is a continuous function $f: \mathbf{R}^{n} \rightarrow S^{n}$ given by

$$
f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{\|\mathbf{x}\|_{2}^{2}-1}{\|\mathbf{x}\|_{2}^{2}+1}, \frac{2 x_{1}}{\|\mathbf{x}\|_{2}^{2}+1}, \frac{2 x_{2}}{\|\mathbf{x}\|_{2}^{2}+1}, \ldots, \frac{2 x_{n}}{\|\mathbf{x}\|_{2}^{2}+1}\right) .
$$

It is helpful to know that the image of f consists of $S^{n} \backslash\{(1,0,0, \ldots, 0)\}$.
Prove this is a one-point compactification of \mathbf{R}^{n}. Hint: first construct an inverse map $g: f\left(\mathbf{R}^{n}\right) \rightarrow \mathbf{R}^{n}$. You can rely on standard facts about continuous functions and should not have to devote effort to proving g is continuous.
2. Suppose $q: X \rightarrow Y$ is a surjective function and X is a topological space. The quotient topology on Y has the following definition: U is open in Y if and only if $q^{-1}(U)$ is open in X. If Y has the quotient topology, then q may be called a quotient map.

A subspace $A \subset X$ is saturated with respect to q if $q^{-1}(q(A))=A$. Suppose A is an open saturated subspace of X. Prove that $q(A)$ is an open subspace in Y and $\left.q\right|_{A}: A \rightarrow q(A)$ is a quotient map.
3. Throughout, the notation \mathbf{k} denotes either \mathbf{R} or \mathbf{C}. Here \mathbf{C} is homeomorphic to \mathbf{R}^{2}. You may assume the field operations of addition, multiplication and inversion in \mathbf{k} or $\mathbf{k} \backslash\{0\}$ are continuous.

Fix an integer $n \geq 1$. Define a space, the projective space of dimension n over \mathbf{k}, denoted $\mathbf{k} \mathrm{P}^{n}$, as the quotient space of $\mathbf{k}^{n+1} \backslash\{\mathbf{0}\}$ by the equivalence relation

$$
\left(z_{0}, z_{1}, \ldots, z_{n}\right) \sim\left(\lambda z_{0}, \lambda z_{1}, \ldots, \lambda z_{n}\right)
$$

for all $\lambda \in \mathbf{k} \backslash\{0\}$. Write q for the quotient map

$$
q: \mathbf{k}^{n+1} \backslash\{\mathbf{0}\} \rightarrow \mathbf{k P}^{n}
$$

Write the equivalence class of $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ in $\mathbf{k P}{ }^{n}$ as $\left[z_{0}: z_{1}: \cdots: z_{n}\right]=q\left(z_{0}, \ldots, z_{n}\right)$. For each $i \in\{0, \ldots, n\}$, write V_{i} for the open subset of \mathbf{k}^{n+1} where $z_{i} \neq 0$. Write U_{i} for $q\left(V_{i}\right) \subset \mathbf{k P}{ }^{n}$.
(a) Show that the sets V_{i} are saturated.
(b) Consider the function $f_{i}: U_{i} \rightarrow \mathbf{k}^{n}$ given by $f_{i}\left(\left[z_{0}: z_{1}: \cdots: z_{n}\right]\right)=\left(z_{i}^{-1} z_{0}, z_{i}^{-1} z_{1}, \ldots, \widehat{z_{i}^{-1}} z_{i}, \ldots, z_{i}^{-1} z_{n}\right)$, where ${ }^{\wedge}$ indicates omission. Prove that f_{i} is continuous.
(c) Construct a continuous inverse for f_{i}, showing that it is a homeomorphism.

