1. There is a forgetful functor $V : \mathbf{Top} \to \mathbf{Set}$ that takes a space (X, τ) to its underlying set and a map $f : X \to Y$ to the function f, viewed now as a function between sets.

Determine with proof all functors Φ : **Set** \to **Top** having the property that $V \circ \Phi$ is the identity functor, i.e., the functor sending a set X to the set X and the function $f: X \to Y$ to the function $f: X \to Y$. Possible hint: consider $\Phi(\{0,1\})$, and for each function $f: \{0,1\} \to \{0,1\}$, consider $\Phi(f)$.

- **2.** By a *discrete* set in \mathbb{R}^n , we mean a subset $D \subset \mathbb{R}^n$ such that the subspace topology on D is discrete. Throughout this question n is an integer greater than 1.
 - (a) If D is discrete in \mathbb{R}^n , prove D is countable.
 - (b) Let *F* be a countable set of points in \mathbb{R}^n with the usual topology. Prove that $\mathbb{R}^n \setminus F$ is path connected.
- **3.** Recall the definition of $\mathbf{k}P^n$ from the previous homework. Recall also the definitions of open sets $V_i \subset \mathbf{k}^{n+1} \setminus \{\mathbf{0}\}$ and $U_i \subset \mathbf{k}P^n$, and the homeomorphisms $f_i : U_i \to \mathbf{k}^n$.
 - (a) By considering the compact subset $S \subset \mathbf{k}^{n+1}$ given by $|z_0|^2 + \cdots + |z_n|^2 = 1$, prove that $\mathbf{k}P^n$ is compact.
 - (b) Prove that $\mathbf{k}P^n$ is Hausdorff.

Note: this question can be difficult. There are several strategies that I know. One is to show that $\mathbf{k}P^n$ is highly symmetric, so that any two points in $\mathbf{k}P^n$ must both lie in a subspace homeomorphic to U_0 . Another strategy is to prove that there is a quotient map $p: S \to \mathbf{k}P^n$, so that for any two points $x, y \in \mathbf{k}P^n$, the inverse images $p^{-1}(x)$ and $p^{-1}(y)$ are disjoint closed subsets of S, which are therefore at a positive distance apart, and can be included in saturated disjoint open neighbourhoods.

(c) Prove that the embedding $\mathbf{k}^n \approx U_0 \subset \mathbf{k} P^n$ is a compactification of \mathbf{k}^n .