- **1.** For a topological space X, let $\pi_0(X)$ denote the set of path components of X. Given a map $f: X \to Y$ of spaces, we may attempt to define a function $\pi_0(f): \pi_0(X) \to \pi_0(Y)$ by $\pi_0(f)(P_X) = P_{f(X)}$.
 - (a) Prove that $\pi_0(f)$ is indeed well defined. It is customary to write f_* instead of $\pi_0(f)$.
 - (b) Suppose $f \simeq g : X \to Y$ are homotopic maps. Prove that $f_* = g_*$.
 - (c) Deduce that π_0 actually yields a functor $\pi_0 : \mathbf{H} \to \mathbf{Set}$. You do not need to give details here. Just list the further properties that π_0 must satisfy in order to be a functor.
 - (d) Suppose $f: X \to Y$ is a homotopy equivalence. Use the theory above to show that $f_*: \pi_0(X) \to \pi_0(Y)$ is a bijection.
- **2.** Let *S* denote a compact version of the topologist's-sine-curve:

$$S = \{(0, y) \in \mathbb{R}^2 \mid -1 \le y \le 1\} \cup \{(x, y) \in \mathbb{R}^2 \mid 0 < x \le 1, y = \sin x^{-1}\}.$$

You may assume without proof that *S* has two path components, as indicated in lecture. Let $L = \{(0, y) \in \mathbb{R}^2 \mid -1 \le y \le 1\}$ denote the closed-interval part of *S*. This is one of the path components. I remark in passing that *L* is contractible and is a closed subspace of *S*.

- (a) Produce, with proof, a homeomorphism $S/L \rightarrow [0,1]$.
- (b) Prove that S is not homotopy equivalent to S/L.
- **3.** In each of the following cases, use deformation retracts to show that the two spaces indicated are homotopy equivalent to one another. Pictures may be sufficient proof, provided they describe a correct argument and I can understand them.
 - (a) $S^2 \vee S^1$ and $S^2 \cup L$ where L is a line segment joining the north and south poles of S^2 .
 - (b) $\mathbb{R}^3 \setminus \{(x, y, z) \mid x^2 + y^2 = 1, z = 0\}$ and $S^2 \vee S^1$.