Math 426 Homework 10 Due 7 December 2022

1. Suppose $f: S^1 \to S^1$ is a continuous function. Define the *degree* of f as follows: Choose a basepoint $p \in S^1$, and let ι denote a generator of the infinite cyclic group $\pi_1(S^1, p)$. There is an induced homomorphism $f_*: \pi_1(S^1, p) \to \pi_1(S^1, f(p))$. Choose a path γ in S^1 from f(p) to p. Then conjugation by the class of γ in $\Pi(S^1)$ gives us an isomorphism

$$\phi_{\gamma}: \pi_1(S^1, f(p)) \to \pi_1(S^1, p), \quad \phi_{\gamma}(\delta) = \gamma^{-1} \cdot \delta \cdot \gamma.$$

The composite $\gamma^{-1} \cdot f_*(\iota) \cdot \gamma = \iota^d$ for some integer *d*, since *ι* generates the infinite cyclic group $\pi_1(S^1, p)$. Define the *degree of f* to be this integer *d*.

- (a) Fix a point *p*. Prove that the degree of *f* does not depend on the choice of the path γ .
- (b) Prove that the degree of f does not depend on the choice of p either.
- (c) Prove that two maps $f, f': S^1 \to S^1$ are homotopic (without reference to basepoints) if and only if they have the same degree.
- (d) Prove that the degree is multiplicative, in that $deg(f \circ g) = deg(f) deg(g)$.

2. In this question, it is useful to know that S^1 is a topological abelian group. Most naturally, you can embed $S^1 \subset \mathbf{C}^{\times}$, endowing S^1 with a group operation given by complex multiplication. Alternatively, you can view each point of S^1 as corresponding to an angle $[0, 2\pi)$, and the group operation as given by addition of angles modulo 2π . You may assume this group operation, and inversion in the group, are continuous functions. The identity element of the group structure on S^1 will be denoted 1, the usual notation for the complex number 1 + 0i.

- (a) Suppose that $h: S^1 \to \mathbf{R}$ is a continuous function such that h(-x) = -h(x) for all $x \in S^1$. Prove that h(x) = 0 for some $x \in S^1$.
- (b) Suppose $f: S^1 \to S^1$ is a map of even degree (see the previous question for the definition of degree) and such that f(1) = 1. Prove that f has a 'square root', in that there exists a continous map $g: S^1 \to S^1$, also satisfying g(1) = 1, and such that $g(x)^2 = f(x)$ for all $x \in S^1$.
- (c) Suppose that $f : S^1 \to S^1$ is an *odd function* in that f(-x) = -f(x) for all $x \in S^1$. Prove that the degree of f is an odd integer. Hint: reduce to the case where f(1) = 1. Suppose for the sake of contradiction that f has even degree. Consider the continuous function $x \mapsto g(x)/g(-x)$, where g is as in the previous part.
- (d) Suppose that $h: S^2 \to \mathbf{R}^2$ is a function such that h(-x) = -h(x) for all $x \in S^2$. Prove that h(x) = (0, 0) for some $x \in S^2$.

3. Fix a natural number $n \ge 2$. Let D^2 denote the unit disk in \mathbb{R}^2 , and S^1 the boundary circle. Consider the quotient $q: D^2 \to X$ given by the relation

$$(\cos\theta, \sin\theta) \sim (\cos(\theta + 2r\pi/n), \sin(\theta + 2r\pi/n))$$
 for all $r \in \mathbb{Z}$.

The map q is a homeomorphism onto its image when restricted to the interior of D^2 , and on $S^1 = \partial D^2$ is an *n*-fold covering map $q|_{S^1} : S^1 \to Y$, where $Y \approx S^1$. You may assume all this without proof.

- (a) Prove that the inclusion $i: Y \hookrightarrow X \setminus \{(0,0)\}$ is a deformation retract.
- (b) Choose a basepoint x_0 in *X*. Calculate $\pi_1(X, x_0)$.