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2026-01-19

Whenever you are asked to give an example, you should prove your example is correct unless other-
wise instructed.

1. We define a basis for an abelian group F to consist of a subset B ⊂ F with the following prop-
erties:

• (spanning) every element f ∈ F may be written as a finite sum ofZ-multiples of elements of B ,
i.e.,

f = a1b1 +·· ·+anbn where {a1, . . . , an} ⊆Z and {b1, . . . ,bn} ⊆ B ;

• (linear independence) The set B is linearly independent, in that a relation

a1b1 + . . . anbn = 0 where {a1, . . . , an} ⊆Z and {b1, . . . ,bn} ⊆ B

implies a1 = a2 = ·· · = an = 0.

An abelian group is free if it has a basis. You may assume the invariant basis property: any two bases
of the same free abelian group have the same cardinality.

(a) Suppose F is a free abelian group with basis B . Suppose A is an abelian group. If f : B → A is
a function (viewing A as its underlying set here), prove that there exists a unique homomor-
phism φ : F → A with the property that φ(b) = f (b) for all b ∈ B .

(b) Give an example of a spanning set S ⊆Z2 that does not contain a basis as a subset.

(c) Give an example of a linearly independent set S ⊆Z2 that is not a subset of any basis.

(a) The letter a, possibly with subscript, always denotes an integer in this answer. We will write ex-
pressions such as ∑

b∈B
abb.

It is to be understood that the integers ab are 0 for all except finitely many values of b ∈ B . In this
way, an apparently infinite sum collapses to give a finite sum.

First we construct φ as a function.

Let x ∈ F . We may write x =∑
b∈B abb where the ab are integers, all but finitely many of which are

0. The values ab are uniquely determined by x and the basis B by the same argument as for bases
for vector spaces over fields.

Define φ(x) = ∑
b∈B ab f (b). Since all but finitely many of the ab are 0, this is a finite sum, and it

gives us a function φ : F → A.
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We now must prove additivity of φ. Consider two elements of F :

x = ∑
b∈B

abb, x ′ = ∑
b∈B

a′
bb.

Then φ(x +x ′) =∑
b∈B (ab +a′

b) f (b) =∑
b∈B f (b)+∑

b∈B a′
b f (b) =φ(x)+φ(x ′), as required.

As for uniqueness: if two homomorphisms φ,φ′ : F → A agree on B , then for any x =∑
b∈B abb, we

have
φ(x) = ∑

b∈B
abφ(b) = ∑

b∈B
abφ

′(b) =φ′(x).

Since x was arbitrary, this implies φ is unique.

(b) Consider the set {(2,0), (3,0), (0,1)}. Certainly this set spansZ2 since (a,b) = a(3,0)−a(2,0)+b(0,1).
However, it does not contain a basis. A basis must consist of two different elements, so there are
three subsets to check: {(2,0), (3,0)} does not have (0,1) in its span. The span of the set {(2,0), (0,1)}
is the set of pairs (2a,b) where a,b ∈Z, and this does not contain (1,0). The argument disqualifying
{(3,0), (0,1)} is similar.

(c) Consider the set {(2,0), (0,1)}. This is linearly independent since

a(2,0)+b(0,1) = (2a,b) where a,b ∈Z.

This is (0,0) only when a = b = 0. Nonetheless, it is not a basis (as proved in the previous part) and
it cannot form part of a basis, since it already has 2 elements.

ä

2. The homomorphisms d : Sn+1(X ) → Sn(X ) were defined in lecture in terms of maps d i :
∆n+1 →∆n . Establish the identity d j ◦d i = d i ◦d j−1 when i < j . Deduce that d ◦d = 0.

We verify the identity directly:

d j (d i (x0, . . . , xn+1) = d j (x0, . . . , xi−1,0, xi , . . . , xn) (0 in the i -th position),

and since j > i , the term in the j -th position on the right is x j−1. Continuing, we get

d j (x0, . . . , xi−1,0, xi , . . . , xn) = (x0, . . . , xi−1,0, xi , . . . , x j−2,0, x j−1, . . . , xn).

On the other hand:

d i (d j−1(x0, . . . , xn+1) = d i (x0, . . . , x j−2,0, x j−1, . . . , xn) = (x0, . . . , xi−1,0, xi , . . . , x j−2,0, x j−1, . . . , xn).

This establishes the identity.

The free abelian group Sn+2(X ) has Sinn(X ) as a basis. It suffices to prove that d ◦d(σ) = 0 for all
σ ∈ Sinn(X ), since the basis is a spanning set. By definition,

d ◦d(σ) = d
(n+2∑

j=0
(−1) jσ◦d j

)
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and then by linearity of d this equals

n+2∑
j=0

(−1) j d(σ◦d j ) =
n+2∑
j=0

(−1) j
n+1∑
i=0

(−1)iσ◦d j ◦d i =
n+2∑
j=0

n+1∑
i=0

(−1)i+ jσ◦d j ◦d i .

Let I = {0, . . . ,n+1}×{0, . . . ,n+2} denote the set of pairs of indices (i , j ). Divide I into two disjoint sets:
the set N where i < j , and the set S where i ≥ j . The function

f : N → S, f : (i , j ) 7→ ( j −1, i )

has inverse
S → N , (i , j ) 7→ ( j , i +1)

and therefore is a bijection between the two subsets.
The sum we wish to evaluate is therefore∑

(i , j )∈N
[(−1)i+ jσ◦d j ◦d i + (−1) j−1+iσ◦d i ◦d j−1] = 0

by the identity that we proved previously. ä

3. Let Ab denote the category whose objects are abelian groups and whose morphisms are ho-
momorphisms between them. Let id : Ab → Ab denote the identity functor.

Determine with proof the set of all natural transformations ν : id → id.

The set of natural transformations is in bijection with Z, where λ ∈Z corresponds to the transformation
ν that on any given abelian group A is the homomorphism ×λ : A → A given by multiplying by λ.

We first verify that this does indeed define a natural transformation. That is, for all homomorphisms
φ : A → B of abelian groups, the diagram

A A

B B

φ

×λ

φ

×λ
(1)

commutes. That is, φ(λa) =λφ(a) for all a ∈ A. This holds because φ is a homomorphism.
Second, we verify that all natural transformations are of this form. Suppose ν : Ab → Ab is a natural

transformation. Consider νZ : Z→Z. This must satisfy νZ(1) = λ ∈Z. Next, let A be an arbitrary abelian
group, and let a ∈ A be an element. There exists a homomorphisms ia : Z → A satisfying ia(1) = a.
Consider

Z Z

A A

ia

νZ

ia

νA

which implies that νA(ia(1)) = ia(νZ(1)), which simplifies to say νA(a) = ia(λ) = λia(1) = λa. Since a ∈ A
was arbitrary, we deduce that νA(a) =λa for all elements a in all abelian groups A. That is, ν is one of the
natural transformations previously described. ä
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4. This problem is not to be handed in.
This question takes place in some unspecified category. Prove that if the morphisms g ◦ f and

h ◦ g in W
f // X

g // Y
h // Z are isomorphisms, then so are f , g ,h.

Deduce that if s : M → N , and t : N → M are two morphisms such that s ◦ t and t ◦ s are isomor-
phisms, then s and t are isomorphisms.

First, a lemma.

Lemma 0.1. Suppose α : X → Y is a morphism in a category such that α has a left inverse β : Y → X for
which β◦α= idX and a right inverse γ : Y → X for which α◦γ= idY , then β= γ and α is an isomorphism.

Proof.
β=β◦ (α◦γ) = (β◦α)◦γ= γ

which establishes the first claim. Then β◦α= idX and α◦β= idY , establishing the second.

Now we prove g is an isomorphism. It has a left-inverse: (h ◦ g )−1 ◦h ◦ g = idX and a right inverse:
g ◦ f ◦ (g ◦ f )−1 = idY . The lemma proves that g is an isomorphism.

Next we show that f is an inverse for the isomorphism j := (g ◦ f )−1 ◦ g . it is immediate that f is a
right inverse for j . Since j is an isomorphism, it has a left inverse j−1 as well, and the lemma tells us that
f = j−1, so that f is an isomorphism.

Similarly, h is a left inverse for the isomorphism k := g ◦(h◦g )−1, and therefore h = k−1 by the lemma.
Finally, if we apply the preceding results in the case where f = h = s and g = t , we see that if s ◦ t and

t ◦ s are isomorphisms, then s and t are isomorphisms. ä

5. There is a category Haus consisting of Hausdorff topological spaces and continuous functions
between them. It is a full subcategory of Top.

(a) Show that the inclusion i : [0,1) → [0,1] has the following property if f , g : [0,1] → X are two
morphisms in Haus with the property that f ◦ i = g ◦ i , then f = g . The name for a morphism
with this property is epimorphism.

(b) Show that i no longer has this property when we allow f , g to have target in Top. In particular,
the inclusion functor Haus → Top does not preserve epimorphisms.

(a) If f ◦i = g◦i , then f (x) = g (x) for all x ∈ [0,1). To prove that f = g , it suffices to show that f (1) = g (1).
Therefore consider the sequence (1−1/n) which converges to 1. Since f , g are both continuous, it
must be the case that f (1−1/n) → f (1) and g (1−1/n) → g (1). Since f (1−1/n) = g (1−1/n), we see
that f (1) and g (1) are both limits of the sequence f (1−1/n), and since X is Hausdorff, the limit of
the sequence is unique and we conclude f (1) = g (1).
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(b) Let T = [0,1]/[0,1) be the quotient space. As a set: T = {b,1}, and the topology on T is that {b} is
open, along with ; and T itself.

The quotient map q : [0,1] → T is continuous. It satisfies q(x) = b if x < 1 and q(1) = 1. But the
constant map f : [0,1] → T given by f (x) = b for all x is also continuous. The maps q , f are different,
but they agree on [0,1), so that q ◦ i = f ◦ i , as required.

ä
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