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Homework 01
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Whenever you are asked to give an example, you should prove your example is correct unless other-

wise instructed.

1. We define a basis for an abelian group F to consist of a subset B c F with the following prop-
erties:

* (spanning) every element f € F may be written as a finite sum of Z-multiples of elements of B,
ie.,
f=ai1by+---+apb, wherelay,...,a,} <Zand{by,...,b,} < B;

* (linear independence) The set B is linearly independent, in that a relation
ayby +...a,b, =0 where{ay,...,a,} <7 and {by,...,b,} =B
implies a; =ap =---=a, =0.

An abelian group is freeif it has a basis. You may assume the invariant basis property: any two bases
of the same free abelian group have the same cardinality.

(a) Suppose F is a free abelian group with basis B. Suppose A is an abelian group. If f: B — Ais
a function (viewing A as its underlying set here), prove that there exists a unique homomor-
phism ¢ : F — A with the property that ¢(b) = f(b) for all b e B.

(b) Give an example of a spanning set S € Z? that does not contain a basis as a subset.

(c) Give an example of a linearly independent set S € Z? that is not a subset of any basis.

(a) The letter a, possibly with subscript, always denotes an integer in this answer. We will write ex-
pressions such as
Z abb.

beB
It is to be understood that the integers a;, are 0 for all except finitely many values of b € B. In this
way, an apparently infinite sum collapses to give a finite sum.
First we construct ¢ as a function.

Let x € F. We may write x = }_,cp apb where the a;, are integers, all but finitely many of which are
0. The values aj, are uniquely determined by x and the basis B by the same argument as for bases
for vector spaces over fields.

Define ¢p(x) = Y ,ep ap f(b). Since all but finitely many of the a;, are 0, this is a finite sum, and it
gives us a function ¢p: F — A.



(b)

(]

We now must prove additivity of ¢. Consider two elements of F:

x=) apb, x'=) ayb.
beB beB
Then ¢ (x +x') = Lpep(ap + ay) f(b) = Lpep () + Lpep aj, f (b) = p(x) + ¢p(x), as required.

As for uniqueness: if two homomorphisms ¢, ¢’ : F — A agree on B, then for any x =Y g apb, we
have

dx) =) appb) =Y apdp'(b) = ' (x).

beB beB
Since x was arbitrary, this implies ¢ is unique.

Consider the set {(2,0), (3,0), (0, 1)}. Certainly this set spans 72 since (a, b) = a(3,0)—a(2,0) + b(0, 1).
However, it does not contain a basis. A basis must consist of two different elements, so there are
three subsets to check: {(2,0), (3,0)} does not have (0, 1) in its span. The span of the set {(2,0), (0, 1)}
is the set of pairs (2a, b) where a, b € Z, and this does not contain (1,0). The argument disqualifying
{(3,0),(0,1)} is similar.

Consider the set {(2,0), (0, 1)}. This is linearly independent since
a2,0)+b(0,1) = (2a,b) wherea,beZ.

This is (0,0) only when a = b = 0. Nonetheless, it is not a basis (as proved in the previous part) and
it cannot form part of a basis, since it already has 2 elements.

2. The homomorphisms d : S,;1(X) — S, (X) were defined in lecture in terms of maps d’ :

A™1 — A" Establish the identity d/ o d’ = d’ o d/~! when i < j. Deduce that dod = 0.

We verify the identity directly:

dj(di(xo,...,x,,+1) = dj(xo,...,xi,l,O,xi,...,xn) (0 in the i-th position),

and since j > i, the term in the j-th position on the right is x;_;. Continuing, we get

This

dj(x()’-~-)xi—1v0,xi)-~-rxn) = (x(];-“)xi—lyo)xi;-~'rxj—2)0,xj—ly---,xn)-

On the other hand:

i -1 i
d'(d!™ (xo,..., Xps1) =d' (Xo,...,Xj=2,0,Xj-1,..., Xp) = (X0, ., Xi=1,0, Xj,. .., Xj—2,0, Xj1,..., Xp).

establishes the identity.

The free abelian group S;+2(X) has Sin,(X) as a basis. It suffices to prove that d o d(o) = 0 for all
o € Sin, (X), since the basis is a spanning set. By definition,

n+2 . .
dod(o) = d( Z (—1)]00d1)
j=0



and then by linearity of d this equals

n+2 i X n+2 n+l i i . nt2n+l L . X
Y (-D/d(oed)=) (-1)! ) (-D'ood/od' =) Y (-1)'"god/od".
=0 =0 i=0 =0 i=0

LetI=1{0,...,n+1}x{0,...,n+2} denote the set of pairs of indices (i, j). Divide I into two disjoint sets:
the set N where i < j, and the set S where i = j. The function

FiN=S, f:i(i,)—(-1i

has inverse
S—N, (G,)N—(,i+]1)

and therefore is a bijection between the two subsets.
The sum we wish to evaluate is therefore

Y (~DMoodlod +(-1)godiodi T =0
@i, )eN

by the identity that we proved previously. o

3. Let Ab denote the category whose objects are abelian groups and whose morphisms are ho-
momorphisms between them. Let id : Ab — Ab denote the identity functor.
Determine with proof the set of all natural transformations v : id — id.

The set of natural transformations is in bijection with Z, where A € Z corresponds to the transformation
v that on any given abelian group A is the homomorphism xA : A — A given by multiplying by A.

We first verify that this does indeed define a natural transformation. That is, for all homomorphisms
¢ : A — B of abelian groups, the diagram

A=A 4

\L¢ \L¢ 1)
B =% B
commutes. That is, ¢(La) = A¢p(a) for all a € A. This holds because ¢ is a homomorphism.

Second, we verify that all natural transformations are of this form. Suppose v : Ab — Ab is a natural
transformation. Consider vz : Z — Z. This must satisfy vz (1) = 1 € Z. Next, let A be an arbitrary abelian
group, and let a € A be an element. There exists a homomorphisms i, : Z — A satisfying i, (1) = a.
Consider

7 ﬂ) 7
[
A A
which implies that v 4(i4(1)) = i, (vz(1)), which simplifies to say v4(a) = iz(A) = Lig(1) = Aa. Since ae€ A

was arbitrary, we deduce that v 4(a) = Aa for all elements a in all abelian groups A. That is, v is one of the
natural transformations previously described. o



4. This problem is not to be handed in.
This question takes place in some unspecified category. Prove that if the morphisms go f and

hogin W ! X il Y L Z are isomorphisms, then so are f, g, h.

Deduce thatif s: M — N, and ¢ : N — M are two morphisms such that so ¢ and ¢ o s are isomor-
phisms, then s and ¢ are isomorphisms.

First, a lemma.

Lemma 0.1. Suppose a : X — Y is a morphism in a category such that a has a left inverse f: Y — X for
which foa =idx and arightinversey : Y — X for which a oy =idy, then =y and « is an isomorphism.

Proof.
B=Po(aoy)=(foa)oy=y
which establishes the first claim. Then foa =idx and a o § =idy, establishing the second. O

Now we prove g is an isomorphism. It has a left-inverse: (ho g)~!ohog = idx and a right inverse:
gofo(gof)~! =idy. The lemma proves that g is an isomorphism.

Next we show that f is an inverse for the isomorphism j := (go f) ! o g. it is immediate that f is a
right inverse for j. Since j is an isomorphism, it has a left inverse j~! as well, and the lemma tells us that
f=j71, sothat f is an isomorphism.

Similarly, 7 is a left inverse for the isomorphism k := go(hog)~!, and therefore 1 = k™! by the lemma.

Finally, if we apply the preceding results in the case where f = h = s and g = t, we see that if so t and
to s are isomorphisms, then s and ¢ are isomorphisms. o

5. There is a category Haus consisting of Hausdorff topological spaces and continuous functions
between them. It is a full subcategory of Top.

(a) Show that the inclusion i : [0,1) — [0, 1] has the following property if f, g : [0,1] — X are two
morphisms in Haus with the property that foi = goi, then f = g. The name for a morphism
with this property is epimorphism.

(b) Show that i no longer has this property when we allow f, g to have target in Top. In particular,
the inclusion functor Haus — Top does not preserve epimorphisms.

(@) If foi = goi, then f(x) = g(x) forall x € [0,1). To prove that f = g, it suffices to show that f(1) = g(1).
Therefore consider the sequence (1 — 1/n) which converges to 1. Since f, g are both continuous, it
must be the case that f(1-1/n) — f(1) and g(1-1/n) — g(1). Since f(1-1/n) = g(1—1/n), we see
that f(1) and g(1) are both limits of the sequence f(1 —1/n), and since X is Hausdorff, the limit of
the sequence is unique and we conclude f(1) = g(1).



(b) Let T =10,1]/[0,1) be the quotient space. As a set: T = {b,1}, and the topology on T is that {b} is
open, along with @ and T itself.
The quotient map g : [0,1] — T is continuous. It satisfies g(x) = b if x < 1 and g(1) = 1. But the
constantmap f:[0,1] — T given by f(x) = bfor all x is also continuous. The maps g, f are different,
but they agree on [0,1), so that goi = f o i, as required.



