

1. This problem is not to be handed in. Prove the snake lemma to your own satisfaction.

2. Let $f : X \rightarrow Y$ be a map of spaces. Construct a space M_f as the quotient of the disjoint union of $X \times I$ and Y by the relation $(x, 0) \sim f(x)$. There are continuous functions $i : X \rightarrow M_f$ given by $i(x) = (x, 1)$ and $p : M_f \rightarrow Y$ given by $p(x, t) = f(x)$ for all t (including the case $t = 0$) and $p(y) = y$. You do not have to prove these are continuous, or that $p \circ i = f$.

(a) Prove that $p : M_f \rightarrow Y$ is a homotopy equivalence.

(b) Let C_f denote the quotient of M_f given by collapsing the subspace $X \times \{1\}$ to a point. Construct a long exact sequence in homology:

$$\cdots \rightarrow H_n(X; \mathbb{Z}) \xrightarrow{f_*} H_n(Y; \mathbb{Z}) \rightarrow \bar{H}_n(C_f; \mathbb{Z}) \xrightarrow{\partial} H_{n-1}(X; \mathbb{Z}) \rightarrow \cdots.$$

(c) If $Y = \text{pt}$, so that f is the unique map $f : X \rightarrow \text{pt}$, then C_f is also known as the *(unreduced) suspension* of X , and may be denoted SX . Give a formula relating $\bar{H}_*(X)$ and $\bar{H}_*(SX)$.

(d) **Not to be handed in:** Check that the constructions of M_f , C_f extend to give functors to **Top** from the category whose objects are maps $f : X \rightarrow Y$ and where a morphism $v : f \rightarrow f'$ is a commutative diagram

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \downarrow v_X & & \downarrow v_Y \\ X' & \xrightarrow{f'} & Y'. \end{array}$$

Deduce that suspension S gives a functor **Top** \rightarrow **Top**.

3. Suppose X is a topological space and $g \in X$ is a point with the property that $\overline{\{g\}} = X$ (alternatively, g is an element of all nonempty open sets of X). Such a g is called a *generic point* of X .

(a) Define $f : X \rightarrow X$ by $f(x) = g$ for all x . Prove that f is homotopic to the identity function.

(b) Let $n \geq 1$ be an integer. Let $s \in S^n$ be a point. Prove that $\bar{H}_*(S^n / (S^n - \{s\}))$ and $H_*(S^n, S^n - \{s\})$ are not isomorphic.

4. When $X = Y = S^n$, the unreduced suspension functor, $S(-)$ from question 2, may be replaced by an explicit geometric construction, as we outline here.

Recall that $S^n \subset \mathbb{R}^{n+1}$, and let $\| - \|$ denote the usual norm on \mathbb{R}^{n+1} . Starting with a continuous function $f : S^{n-1} \rightarrow S^{n-1}$, define a continuous function

$$S'f : S^n \rightarrow S^n$$

by the formula

$$S'f(x_0, \dots, x_{n-1}, x_n) = \left(\sqrt{1-x_n^2} f \left(\frac{1}{\sqrt{1-x_n^2}} (x_0, \dots, x_{n-1}) \right), x_n \right).$$

- (a) Prove that $\deg(S'f) = \deg(f)$. It may be helpful either to assert that $S'f$ is homeomorphic to Sf (no proof required) or to use the Mayer–Vietoris sequence.
- (b) Suppose $f : S^n \rightarrow S^n$ is a reflection of the sphere across a hyperplane through $\mathbf{0} \in \mathbb{R}^{n+1}$. Prove that $\deg(f) = -1$.

5. The notation $\mathrm{GL}(n; \mathbb{R})$ denotes the group of invertible $n \times n$ matrices with entries in \mathbb{R} . Give it a topology as a subspace of $\mathbb{R}^{n \times n}$. You may assume that matrix operations such as multiplication and inversion are continuous.

By a *path* in $\mathrm{GL}(n; \mathbb{R})$ between two matrices B and C , we mean a continuous function $A : [0, 1] \rightarrow \mathrm{GL}(n; \mathbb{R})$ so that $A(0) = B$ and $A(1) = C$.

- (a) Give a path in $\mathrm{GL}(2; \mathbb{R})$ between $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ and the identity matrix. Beyond giving the path, no further argument is required.
- (b) Let n be a positive integer, let $a \in \mathbb{R}$ and $i, j \in \{1, \dots, n\}$ be indices satisfying $i \neq j$. The *elementary matrix* $E_{ij}(a)$ differs from the identity matrix only in the i, j -position, where it has the value a . Give a path in $\mathrm{GL}(n; \mathbb{R})$ from $E_{ij}(a)$ to the identity matrix. Beyond giving the path, no further argument is required.
- (c) Let $A \in \mathrm{GL}(n; \mathbb{R})$ be a matrix. It is well known that A may be brought to reduced row-echelon form by elementary row operations. A variant is this: there exists a list of elementary matrices (of the kind defined above) E_1, \dots, E_n such that

$$E_1 E_2 \cdots E_n A$$

is a diagonal matrix.

Prove that there is a path in $\mathrm{GL}(n; \mathbb{R})$ from A to a diagonal matrix whose diagonal entries are elements of $\{-1, 1\}$.

- (d) For the same A , sketch a proof that there is a path from A either to I_n , the $n \times n$ identity matrix, or to J , the matrix that agrees with I_n everywhere except for a -1 in the $1, 1$ -position.
- (e) If $A \in \mathrm{GL}(n; \mathbb{R})$, then A gives us a function $f_A : S^{n-1} \rightarrow S^{n-1}$ by the formula

$$f_A(\mathbf{v}) = \frac{1}{\|A\mathbf{v}\|} A\mathbf{v}.$$

You may assume this depends continuously on \mathbf{v} and on the entries of A .

Prove

$$\deg(f_A) = \frac{\det(A)}{|\det(A)|}.$$