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Chapter 1

CW Complexes

1.1 CW Structures

A “map” means a continuous function.

Notation 1.1. The following notation will be used throughout:
D" ={xeR"||xl2 <1}

and
§"=0D"" = (x e R"*! ||| xll, = 1}.

If basepoints are called for, both can be given the basepoints (1,0,...,0).

Definition 1.2. A CW Structure on a Hausdorff topological space X is a set of maps, called char-
acteristic maps
®,:D" - X

satisfying the following properties.

1. Each @, restricts to a homeomorphism from IntD” — X. The image of this homeomor-
phism is denoted e, and is called a cell of the structure (or of X). The closure &, is a closed
cell.

2. The cells e, are all disjoint and their union is X.

3. For each characteristic map @, the image ®,(0D") is contained in a finite number of
cells of dimension less than .

4. Asubset of X is closed if and only if it meets the closed cels of X in closed sets.
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Remark 1.3. Suppose X is equipped with a CW structure. Fix n = 1. Let X,, (Hatcher has X")
denote the unions of all cells of dimension 7 or less in X. This is called the n-skeleton of (the
CW structure on) X. Let Abe an indexing set, so that {®,}4c 4 is the set of all characteristic maps
®: D" — X. The following diagram is a push out diagram

ba
Heea OD" — X,

|

Dy
HaeA D" X

Here ¢ is the restriction of @, to the boundary of the disk. The maps ¢ are called attaching
maps for obvious reasons.

This means that the CW structure gives us a sequence of spaces, each one a closed subspace
of the subsequent spaces, called skeleta of X

XocXjc--rcX

The topology on X is the weak topology, i.e., the colimit topology. That is, to specify a contin-
uous function X — Y is the same as specifying a compatible sequence of continuous functions
X, — Y for all n.

Remark 1.4. If a space admits a CW structure, unless it is is 0-dimensional (i.e., discrete), it will
admit infinitely many CW structures. A space admitting a CW structure will be called a CW
complex, and generally we will assume a particular fixed CW structure, but we should not lose
sight of the fact that there are many possibilities.

Remark 1.5. CW complexes are Hausdorff by definition. They are also normal—disjoint closed
subspaces can be separated by open neighbourhoods—and locally contractible—every point
has a local basis consisting of subspaces homotopy equivalent to a point.

Remark 1.6. CW complexes have the property that to test if a subset C c X is closed, it is suf-
ficient to test if C nim(®,) is closed for each characteristic function. Since the images of the
characteristic functions are compact, it suffices to test if Cn K is closed in K as K ranges over
the compact subspaces of X. Therefore X is compactly generated.

Definition 1.7. If X is a CW complex, then a subcomplex Y < X is a subspace of X thatisa CW
complex by means of a subset of the characteristic functions of a structure on X. Equivalently,
Y € X, and Y has a CW structure such that Y, < X, for all n.

If X and Y are two CW complexes, then a cellular map f : Y — X is a map that restricts to
maps f:Y, — X, forall n.

1.2 Products

Remark 1.8. It may be the case that X and Y are compactly generated topological spaces, but
X x Y is not compactly generated. In fact, one can find an example of this behaviour where X
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and Y are CW complexes. This looks like bad news, because the product topology on X x Y
cannot be the topology of a CW complex.

Definition 1.9. If X is a topological space, let kX denote the topological space that has the same
elements (points) as X, but where a subset C c X is closed in kX if and only if Cn K is closed in
K for all compact Hausdorff subsets of X. It is an exercise to verify that this defines a topology
on X. There is a map kX — X, which is the identity if X is already compactly generated and
Hausdorff.

Notation 1.10. Suppose X and Y are Hausdorff spaces. Let X x. Y denote the space k(X x Y).
Remark 1.11. Ifboth X and Y are compactly generated and at least one is locally compact, then

X x Y is compactly generated, so k(X xY)=Xx Y.

Proposition 1.12. If X, Y are CW complexes with characteristic maps ®q and ¥ g, then X x Y is
a CW complex with characteristic maps ®q x ¥ g.

Exercise1.13. Find two CW complexes X and Y so that X x Y and X x .Y are not homeomorphic.

1.3 Categorical constructions

Notation 1.14. A based or pointed space is a pair (X, xo), where X is a topological space and
Xp € X. A map of based spaces f : (X, xy) — (Y, yo) must satisfy f(xp) = yo). The basepoints will
not always be written.

If A c X is a subspace of X, then X/A is a based space with the image of A serving as the
basepoint. The notation X, will be used to denote the space X with a disjoint basepoint.

Notation 1.15. We will write Top for the category of topological spaces and Top,, for the category
of pointed spaces.

Notation 1.16. If (X, xo) and (Y, o), then we can form
1. (X x¢ Y, (x0, y0))
2. XVY,=*
3. XA Y, ®

Note that under most circumstances the subscript ¢ is unnecessary.

We write € (X, Y) for the space of continuous functions from X to Y, endowed with the
compact open topology. This behaves best if X and Y are compactly generated (weak) Haus-
dorff spaces—for instance, if X, Y are CW complexes. For three such spaces, there is a natural
bijection (an adjunction of functors)

Map(X x. Y, Z) ~ Map(X,€(Y, 2)).
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The subspace of € (X,Y) consisting of functions satisfying f(xp) = yp is closed (exercise).
We write 6. (X, Y) for this subspace—the basepoints having been suppressed.
The previous adjunction yields a pointed adjunction

Map, (XA Y, Z) = Map, (X,6«(Y, 2))

Remark 1.17. If X and Y are CW complexes, then X v, Y and X A Y are both equipped with
obvious CW structures.

Remark 1.18. Some facts about smash products. Let (X, x¢), (Y, y0), (Z, z9) be based spaces
1. XANYANZD)=(XAYI)NZ
2. XAY =Y A X. Warning: this is not an equality.

3. If X — Y is an inclusion of based spaces then (Y A Z2)/(X A Z) = (Y/X) A X. Both are the
universal space for maps from Y x Z sending X x Z and Y x {zp} both to the basepoint.

Notation 1.19. If (X, xo) is a based space then the notation X X is used for X A S!. It is an exercise
to prove that $” A S! = §"*1

Definition 1.20. An unpointed homotopy between maps f,g: X — Yisamap H: X xI - Y
such that H(x,0) = f(x) and H(x,1) = g(x). Homotopy between maps is an equivalence relation,
and is compatible with composition.

Therefore we can form a Homotopy category H, the objects are topological spaces and the
set of morphisms X — Y are the homotopy classes of continuous functions.

Definition 1.21. There is also a notion of pointed homotopy. A homotopy between two maps
[,8: (X, xp) = (Y,yp)isamap H: X AL — Y (of based spaces). Unwinding, this means that H
is the same data as a map H : X x I — Y with the property that H(xy, t) = yo for all t. There is a
pointed homotopy category, H., where the objects are based spaces, and the morphisms X — Y
are pointed homotopy classes of pointed maps. The set of maps X — Y in thi category is often
denoted [X, Y].

Notation 1.22. An isomorphism in H or H. is called a homotopy equivalence. A space that is
homotopy equivalent to a point is said to be contractible.

Notation 1.23. Suppose A < X are two topological spaces and there is a map X — A so that the
composite A — X — Ais the identity, then Ais said to be a retract of X. If, moreover, X - A — X
is homotopic to the identity, then A is said to be a deformation retract of X.

Exercise1.24. Let C be a category and let

Al .p 8 c . p

be a diagram in which go f and ho g are isomorphisms. Show that f, g, h are isomorphisms.
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Exercise 1.25. Show that a deformation retract is a homotopy equivalence. Give an example of a
retract that is not a homotopy equivalence.

Example 1.26. w1 (X, xo) = [S', X]. In fact, we define 7, (X, xo) = [S”, X] for all n = 0.

Exercise 1.27. Suppose X is a topological space with a continuous action of I = [0,1] on X.
Namely, there exists amap a : I x X — X—such a map arises whenever X is a topological vector
space over either R or C. Suppose further that the action is multiplicative, in that (st) - x = s(tx)
forall s, t € I. Let Xy denote the subset of X consisting of points of the form 0 x for x € X. Show
that Xy € X is a closed deformation retract of X.

In particular, all topological vector spaces are contractible.

Use this exercise to show that S” < R”*!\ {0} is a deformation retract.

1.4 CW complexes and Homotopy

We remark that a deformation retraction of X onto a subspace A can be encapsulated by a single
map H: X x I — X such that H(x,0) = x and H(x,1) € A with H(a,1) = a. It is said to be a
strong deformation retraction of H(a, t) = a for all t£. We will almost always be using strong
deformation retractions, just incidentally. When we say we have a “deformation retraction X —
A” we really mean a map X x I — X of the form just discussed.

Proposition 1.28. Suppose K is a compact subset of a CW complex X. Then K meets only finitely
many open cells of X.

Proof. Suppose not, then find a sequence of points (x;), one in the intersection of each of
countably infinitely many cells with K. Verify that this has the discrete topology, a contradic-
tion. O

Definition 1.29. A CW pair (X, A) means a CW complex X and a subcomplex A.
The following is [Hat10, Proposition 0.16], even down to the proof.

Proposition 1.30. If (X, A) is a CW pair, then X x {0} U A x I is a (strong) deformation retract of
X xI.

Proof. First we do the special case where X = D" and A=0D" = S"~1 Here it is obvious (radial
projection for instance).

This gives a deformation retraction of X, x I on X, x {0} U (X;,—; U A,) x I, just do the other
thing for each cell in X, but not A;. In fact, we can produce a deformation retraction

Xx{0lu((X,UA) xI)— X x{0jU((X;—1UA) xI)

Perform that last deformation retraction above in the time interval [27771,27"]. Observe
that this actually gives a deformation retraction

Xx{OlUXUA) xT—->Xx{0u(X_1UA) xI)
and X_; = @. O
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Proposition 1.31 (The Homotopy Extension Property). Suppose (X, A) isa CW pair, Y is a space,
and suppose thereisamap Hy: X x {0UAx I — Y. Then Hy extendstoamap H: X x [ - Y.

Proof. This is a corollary of the previous statement. O

Theorem 1.32 (The Cellular Approximation Theorem). Suppose (X, A) isa CW pairand f : X —
Y is a map between CW complexes. Suppose fla: A— Y is cellular. Then f is homotopic to a
map g sothat fla=glaand g: X — Y is cellular.

Proof from Hatcher. We will do most of the proof. One highly technical, point-set part will be
left for the homework.

We work by induction. Suppose we've already done this on X;,_; and let " be an n-cell of X.
Write é” for the closure of e”, which is compact, and so f(e”) can intersect only finitely many
cells of Y. Let e be a cell of maximal dimension meeting f(e™). If k < n, there’s nothing to do.

We want to show that there is some homotopy of f|x, ,ue to a different map, let’s call it
f': X,_1ue” — Y for now, such that flx,_, = f'lx, , but so that f'(e”) c de¥—that is, f'(e")
has been deformed to miss e altogether. The main idea is the following: if there is some point
p € eX such that p ¢ f(e™), then we can deformation-retract Y*— p onto Y* - ek, and composing
this with f, we get the desired map.

The problem is a surprising one: we don’t know that there is a point p € e* that is not in the
image of f(e"). For instance, f might restrict to a space-filling curve R — R?. To get around this,
we have to deform f to be somewhat well-behaved on the interior of e”. Hatcher produces a
piecewise-linearization in Lemma 4.10. We omit this.

Repeat the above procedure as often as necessary for e” to avoid all the cells e* of dimen-
sion k > n. In fact, we can do this for all n-cells of X simultaneously. This gives us a homotopy
between f|x,ua: X, UA— Y and a cellular map f'|x,ua: X, UA — Y. Use the homotopy exten-
sion property to give a homotopy between two maps f, f' on X U A, where the first is cellular on
X,-1U A and the second is cellular on X, U A, and notice that on the cells where the thing was
already cellular (e.g., on A) nothing will change.

Then compose the countably many homotopies required together using the usual trick. This
gives cellular approximation. O

Corollary 1.33. Suppose X is a (based) CW complex having no cells of dimension greater than d.
Suppose Y is a based CW complex. Then the natural map

(X, Y9 - [X, Y]
is a bijection.

Corollary 1.34. 7,(S"**, s9) = 0 when k > 0.
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1.4.1 Sundries

Each S” includes in $"*! as an equator. The colimit is $*, given the colimit topology. That is, a
subset of S is closed if and only if it meets each S” in a closed subset. Let i, : S — S* denote
the inclusion.

S consists of infinite strings, (a;,...) where almost all terms are 0. The cells are sets of the
form (ay,...,a,,0,...) where a,, > 0 or a, < 0. There are therefore 2 cells of each dimension. A
subset is closed if and only if it meets each S” in a closed subset.

S is given the basepoint (1,0,...), in keeping with the basepoints of all the S”.

Proposition 1.35. The sphere S* is contractible.

Proof. Let hy, : S — S be a map that is cellular and such that h,(S") = sy. Then h;, is homo-
topic to a map hj; thatis cellular and such that k4 (8™ = g,.

This is proved as follows. The restriction of h, to S"*! lies in $"*!, by cellularity. The in-
clusion of §"*! ¢ §% is nullhomotopic. Compose hy|gn1 x id: S"*! x I — §*! with the nullho-
motopy to give a homotopy from £, |gu+1 : S — S to the null map A’ : "1 — S, Then use
HEP to extend to a homotopy from k,, to amap k' : $*° — S that is null on the n-skeleton. Use
cellular approximation (if we were precise, we wouldn’t need this) to make a homotopic cellular
map hp1: S — S* contracting the n + 1-skeleton.

Set h_1 = idgew.

Once all this is set up, do the homotopy from #,, to h,.; speeded up, in the interval [1 —
277=11-27"=2] This gives us a continuous function H : $® x [0,1) — S*. For each point p of
5%, there exists some time ;, such that H sends p to the basepoint after time ¢,, so we extend
H to a homotopy on all of [0, 1] by defining it to be the constant map to a basepoint at time 1.
The map H is continuous when restricted to any finite skeleton, so is continuous. O

Remark 1.36. In the homework, a criterion is given for when a topological vector space V satis-
fies the condition that V'\ 0 is contractible. Specifically, if there exists a non-surjective linear self
map T : V — V such that T has no eigenvector in V, then V' \ 0 is contractible. If V is a normed

vector space, then
v

T T -1
gives a deformation retract of V'\ 0 onto the unit sphere in V, denoted S(V).
It follows that if V is a normed vector space with a non-surjective self map T without any
eigenvectors, then S(V) is contractible. This yields many examples of “infinite spheres”, all of
which are contractible.

1.5 Cones, Cylinders, Quotients

Definition 1.37. Let f: X — Y be a map of spaces. We define the mapping cylinder M(f) as the
quotient of X x I'[[ Y by the relation (x,1) ~ f(x). The map f can be factored X — M(f) — Y, by
including X = X x {0} in M(f). The space Y is a deformation retract of M (f).
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Remark 1.38. It can be proved that f is a homotopy equivalence if and only if X is a deformation
retract of M(f). In particular, if f is a homotopy equivalence, then M(f) is a space such that both
X and Y are deformation retracts.

Definition 1.39. Let f: X — Y be a map of CW complexes. Define the mapping cone of f,
denoted C(f), to be the quotient of M(f) obtained by collapsing X x {0} to a point.

Proposition 1.40. If f is a cellular map between CW complexes, then C(f) is a CW complex.

Remark 1.41. There is a category where the objects are maps f: X — Y and the morphisms are
commuting squares

X—f>Y

The formation of M(f) and C(f) is functorial in this category.

Definition 1.42. A square

X—f>Y

.
X/ — YI
is said to be homotopy commutative if there exists a homotopy @ from jo f to f'oi.

Remark 1.43. Suppose given a homotopy-commutative square, as above. Then we may use the
data of i, j and ® to produce a map C(f) — C(f").

Specifically, for t < 1/2, define the map by (x, #) — (i(x),2¢)) and for ¢ = 1, define it by
®(x,2t—1). (this makes more sense when drawn out).

Proposition 1.44. Let f,g: X — Y be two maps, homotopicviaH: XxI—Y. Then C(f) = C(g).
Hatcher proves this indirectly. The proof here is adapted from [Ark11].

Proof. Use the fact that we have a homotopy-commutative square

X:X
b
Y=Y

and use the construction in the previous remark to get the map ¢ : C(f) — C(g).

The same construction with the reverse of H gives a map v : C(g) — C(f).

Showing that ¢ and v are homotopy inverses is a tricky business. We sketch the argument
thaty o =idc,.
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For this, we should determine what 1 o ¢» actually does. For ¢ € [0, 1/4], we have
Yoh(x, ) =(x,41)

For t € [1/4,1/2] we have
H(x,4t—1)

and for r€[1/2,1] we have H(x,2—2¢t).

Then since we are composing H with H, we can remove both, and deform this map to the
identity. This can be written down precisely, but doing so is a waste of time in class.

The argument for ¢ o y is identical. O

Lemma 1.45. Let Ac X be a CW pair and suppose A is contractible (deformation retracts onto a
point). Then the map X — X/ A is a homotopy equivalence.

Proof. There’s a homotopy of id: A — A to a map A — *. Extend this (HEP) to a homotopy
H:XxI— Xfromidtoamap s: X — X, which takes A to a point. Since H(A, t) c A for all time
t, there is a reduction of H to a homotopy h: X/Ax I — X/ A, starting atidx, 4

Note that s : X — X actually factors through a map f: X/A — X. We claim that this is a
homotopy inverse to the reduction X — X/A.

The composite f: X/A— X — X/ A is actually the end of the homotopy £, so is homotopic
to the identity. The composite X — X/A — X is similarly homotopic to the identity, via H. O

Proposition 1.46. Leti: A— X bea CW pair. Then C(i) = X/ A.

Proof. Consider the subcomplex of C(7) consisting of C(id 4). This is contractible, and C(i)/C(id4) =
X/A. -



Chapter 2

Cellular Homology

2.1 Homological Algebra

Let R denote a commutative, unital, associative ring. In practice, R will be a quotient ring of a
subring of the rational numbers, of which the most common examples are Z, Q, Z/(p) = Fp, or
R may occasionally be R or C.

We assume you know what a left R-module is. Since R is commutative, we can be sloppy
about left- versus right-R-modules. There is a category R-Mod of left R-modules. This category
is additive, in that

* One can add two maps of R-modules: f,g: M — N to get f + g. In fact, Homg(M, N)
carries an R-module structure.

¢ There is a direct sum operation M@ N that is both a product and a coproduct (it’s a biprod-
uct).

It is furthermore abelian, which is to say that a map f: M — N has a kernel and a cokernel:
coker f = N/(im N), and the kernel and cokernel satisfy the isomorphism theorems.

As a special case, when R = Z, the category of R-modules is the same as the category of
abelian groups.

Definition 2.1. A chain complex of R-modules is a sequence of R-modules and maps, either
finitely many or infinitely many,

dH] di di—l
M M; M;,

such that d; o d;;; = 0 for all applicable i. The maps d; are called the differentials and are often
written simply as d.

In the homological convention the indices are written as subscripts and the differentials re-
duce degree. There is also a cohomological convention where the indices are written as super-
scripts and the differentials increase degree.

10
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Definition 2.2. If (M., d) is a chain complex, then the elements ker d; (for any i) are called cycles
and are written Z; < M;. The elements imd;,;  Z; are called boundaries and are written B;.
The homology of the complex at i is

Hl'(M.) :Zl'/Bi

The intuition here is that d; takes elements in M; to their ‘boundaries’ in M;_;. A thing
without a boundary is a cycle. The image of d; consists entirely of boundaries. This might
become clearer once we start doing the topology.

Definition 2.3. A chain complex is exact if the homology vanishes, which is equivalent to saying
that the kernel of each differential is the image of the preceding one. One can say a complex is
exact at i if H;(M.) in particular vanishes. An exact chain complex is called an exact sequence.
If the chain complex is infinite (in at least one direction) it is called a long exact sequence—and
sometimes if it is simply very long, it can be called this.

Definition 2.4. A short exact sequence of R-modules

0—sA—tsp-t.c—p

is an exact chain complex of 5 terms, the two extreme terms of which are 0.

Remark 2.5. The exactness here implies that f is an injection, g is a surjection and B/im(f) — C
is an isomorphism. Loosely, this says A c B and C = B/ A (but strictly, all this is true only up to
isomorphism).

Remark 2.6. Given an exact sequence

di 0 di_
My —= M; — M;.y — M;_,

where the indicated map is 0, then d; is surjective and d;_, is injective. As a special case, if
0-M—->N-0
appears in an exact sequence, then M — N is an isomorphism.

Definition 2.7. A free R-module F is an R-module that is a (possibly infinite) direct sum of
modules isomorphic to R.

Remark 2.8. We assume the axiom of choice. Our definition of a free R-module is therefore
equivalent to the existence of a subset B < F with the property that every element of F can be
written uniquely as a finite R-linear combination of elements of B. We will call such a B a basis
for F. If R is a field, then every R-module is free. Over a commutative ring that is not a field,
there is a nontrivial ideal p < R, and R/(p) is not free as an R-module since a nonzero element
p € p annihilates R/p but does not annihilate R or any free R-module. In less fancy terms, the
abelian groups Z/(n) are not free.



CHAPTER 2. CELLULAR HOMOLOGY 12

Example 2.9. If R is a PID—and all quotient rings of subrings of @ are PIDs, since they are all
quotients of localizations of Z—, then it is a theorem that every submodule of a free module
is free. In particular, if R is a PID and M is an R-module, we can find a free module Fy and
surjection sy : Fp — M and ker sg = F; is also free. There is a short exact sequence

0—>F1—>F0—>M—>0

Remark 2.10. While M x N and M & N mean the same thing for R-modules, the infinite ana-
logues differ. The notation [] M; means the module of sequences (m;) where m; € M;, and
@ M; means the submodule where almost all elements are nonzero. The module []y Z is not
free.

2.2 Brief resumé on functors

Definition 2.11. Given two categories C and D, a (covariant) functor F : C — D is an assignment
of an object F(c) of D to each object ¢ of C, and, for all ¢: ¢ — ¢’ in C, a morphism F(¢) : F(c) —
F(c') so that F preserves

1. Identity morphisms,
2. Function composition.
Remark 2.12. It follows from the above that functors preserve
¢ Isomorphisms

¢ Split monomorphisms—morphisms with a right inverse—in the case of topological spaces,
these are the retracts

* Split epimorphisms.

2.3 Homology

Fix aring R. Most often, the ring is Z.

Definition 2.13. A reduced ordinary homology theory for CW complexes with coefficients in R is
a sequence of functors indexed by i € {0, 1,...}

H;(;R):H. — R-Mod
satisfying the following further properties

1. Long exact sequence: if j : A— X is a CW pair, then there is a natural long exact sequence

— (A R) —> 1, (X; R) — > A;(X/ A; R) —2> ;- (A R) —
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2. Wedge sum axiom: Given an infinite wedge sum V/; X;, the projection maps V; X; — X;
assemble to give an isomorphism

Ha(V Xi; B) = D Hn (X5 B)

3. Normalization: Hy(S%; R) = R and H,,(S% R) = 0 otherwise.

Remark 2.14. Strictly speaking, the above definition is incorrect, because the maps 9 associated
to the pair (X, A) and the integer i are part of the data, not simply a property.

Remark 2.15. In this course, we will not discuss extraordinary homology theories, but they do
exist. In anticipation of these, we might extend the indexing set of H;(X;R) to i € Z, declaring
the negatively-graded groups to be 0.

Remark 2.16. Naturality means that if (X, A) is a CW pair and (Y, B) is another, and there is a
compatible map X — Y, which in the case at hand means that the square

A—s X

|

B——Y
homotopy commutes, then there is a commutative diagram of long exact sequences (a ladder).
Theorem 2.17. For any ring R, a reduced ordinary homology theory exists.

We will postpone proving this theorem for a long time. Instead, we will concentrate on the
implications of the axioms.

Theorem 2.18. If X is a pointed space that is homotopy equivalent to a pointed CW complex,
then H;(X; R) is determined by the axioms.

We will prove this result somewhat sooner, but first, we will prove some simpler results and
make some definitions.

Proposition 2.19. H;(*;R) =0

Proof. Since S° v * = S°, this follows from the wedge sum axiom. (For finite wedge sums, the
wedge sum axiom can be deduced from the l.e.s. axiom.) O

Proposition 2.20 (Homology is stable). Let (X, xq) be a pointed CW complex. Then H;(X;R) =
H;,1EX;R) foralli.

Proof. This follows from the long exact sequence associated to X — Cjgx — SX = ZX, and the
fact that Cjgx = *, so has 0 homology. O
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Corollary 2.21. H;(S";R) =0 ifn #i andH,(S";R) = R.

Corollary 2.22. Let n and m be nonnegative integers. If S" =~ S, then n = m. Similarly, if R" =
R™, then n=m.

Proof. The first part is immediate. As for the second, if there is a homeomorphism R"” — R™
then there’s an induced homeomorphism on the one-point compactifications, S” — S™. O

Proposition 2.23. The boundary S" is not a retract (deformation or otherwise) of D"*1.

2.4 Infinite CW complexes and the Mapping Telescope

We will want to use induction arguments on CW skeleta in order to prove things “for all CW
complexes”, but this runs into a difficulty when it encounters a CW complex without a bound
on the dimension of the cells appearing.

Proposition 2.24. Suppose X is a CW complex, X,, is the n-skeleton and k < n. Then Hi(X,;; R) —
H(X;R) is an isomorphism. Moreover, H, (Xy; R) — H,(X; R) is an epimorphism.

Proof. Firstsuppose X is finite-dimensional. We make use of the following fact, which will reap-
pear over the course of the term: X;;1/X, = \V §™1 one sphere for each n + 1-cell of X. By
means of the long exact sequence, we deduce that Hy(Xp;R) = Hi (X413 R), and similarly for
the epimorphism statement. If X is finite-dimensional, then X = X for some N, and the result
is proved.

Now suppose X is not necessarily finite dimensional. By applying the l.e.s. to X;, — X —
X1X,, we see that it is sufficient to prove that X/X,, has vanishing k-homology for k < n. It also
has trivial n-skeleton.

Take the inclusions Xy — X; — X, — ..., and form the mapping telescope T of this. That is,
start with ]_[‘;‘;O X; x I and then identify X; x {1} with X;,; x {0}. It may be helpful to imagine all
this as a subspace of X x [0,00) by putting X; x I in as X; x [i,7 + 1].

We claim that T — X x [0, 00), this inclusion, is a homotopy equivalence. We establish this by
proving that there is a deformation retraction. We will actually show that TU X x [1,00) = TU X x
[n+ 1,00) is a deformation retract—just use Proposition 1.30. Then string all these homotopies
together in unit time using the usual trick. This establishes the homotopy equivalence.

Now take Xy, assumed to be a point, and treat it as the basepoint of X. Let S denote the ray
Xp x [0,00) in T and let F denote the fish-skeleton SuU U‘i’zl X x {i}.

The space T'/F is an infinite wedge sum of spaces, each being a suspension of X; for some
i, and each X; has trivial n-skeleton. By the wedge-sum axiom, therefore,

Hyee1(T/F;R) = @ Hir1 (EX35 R) = PHi(X;5R) =0
i i

when k < n, since the homology of the n-skeleton surjects onto each homology group appear-
ing, and X,, = *. It follows that H;(F;R) — Hy(T;R) is an isomorphism. So it suffices to prove
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the vanishing result for Hk(F ;R), and since S is contractible, for F/S, but F/S is a wedge sum
;?gl X;, and from this we get the result. O

The preceding proof indicates another result.

Proposition 2.25. Suppose Ay — A1 — Ay — ... is a sequence of maps of CW complexes, each one
of which is a cellular inclusion, but not necessarily an inclusion of a skeleton. Then the union A,
with the CW topology, is homotopy equivalent to the mapping telescope T.

2.5 The Eilenberg-Steenrod Axioms

Definition 2.26. We define the unreduced homology or just homology of a space X, denoted
H;(X;R), to be the reduced homology H; (X,;R).

Many people might think this definition is backwards, and they’d be right! But here we are.

Definition 2.27. Let A <€ X be a CW pair. We define the relative homology H;(X, A; R) to be
H;(X/A;R).

Remark 2.28 (Eilenberg-Steenrod axioms). The following axioms for a homology theory lead
to a slightly different definition from what we have given before, but they agree for all spaces
having the homotopy type of a CW complex. They are called the Eilenberg-Steenrod axioms.
The data are the functors H;(:; R) : Pairs — R-Mod from the category of pairs A € X of topo-
logical spaces to R-modules—or more classically, to abelian groups—and the boundary maps
0:H;(X, A R) — H;_1(A; R). The notation H; (X; R) means H; (X, @; R). These satisfy the follow-
ing 5 axioms:

1. Homotopy: homotopic maps of pairs induce the same map in homology. We get around
this by defining the functor on the homotopy category in the first place.

2. Excision: if K ¢ A c X is a sequence of containments so that the closure of K is contained
in the interior of A, then the functorial map H; (X \ K, A\ K; R) — H;(X, A; R) is an isomor-
phism. This is not an axiom that is possible to state in the homotopy category, but we
instead exploit the fact that (X \ K)/(A\ K) — X/A is a homeomorphism, and therefore
a homotopy equivalence. We defined H; (X, A; R) to be H;(X/A; R). We will return to this
point.

3. Long exact sequence:
— Hiy1(AR) — Hin1(X5R) —H;1 (X, AR) — H; (A R) —
This is directly equivalent to ours.

4. Additivity: H (I X3 R) — @4 Hi(Xe; R). This is equivalent to our wedge-sum axiom.
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5. Normalization: Hy(*; R) = R if i = 0 and H;(S°; R) = 0 otherwise.
Remark2.29. In this framework, if (X, xo) is a pointed space, then H; (X; R) is defined H; (X, {xo}; R).

Proposition 2.30. Assume H is a homology theory satisfying the Eilenberg—Steenrod axioms—
possibly excluding the normalization axiom. Let A < X be an inclusion of a closed subset of X,
such that there exists an open neighbourhood V 2 A with the property that A< V is a deformation
retract*. Then the mapH; (X, A;R) — H;(X/A Al A;R) = H;(X/A;R) isan isomorphism.

Any CW pair satisfies the hypotheses. The case of A = @ is a little different, at least psycho-
logically, so we might just check it works and assume A is not empty.

Proof. We first claim that H; (X, A; R) — H;(X, V; R) is an isomorphism. This follows from the
5-lemma and the long exact sequence. Similarly, H;(X/A, A/ A;R) — H;(X/A,V/A;R) is an iso-
morphism. Moreover, by functoriality, the diagram

H;(X, A) H;(X,V)

| l

H;(X/A,AlA;R) —H;(X/A,V/A;R)

commutes.

Therefore it is sufficient to prove the reduction map (X, V) — (X/A, V/A) induces an iso-
morphism. Now we use excision. There is a subset, A c V, so that the closure of A is contained
in the interior of V. Moreover, the point A/ A is contained in the interior of V/Ain X/A. We may
replace the map under investigation by (X \ A,V \ A) — ((X/A)\ (A/A),(V/A)\ (Al A). But this
map is a homeomorphism of pairs, whence the result. O

Definition 2.31. If X is a space and x € X is a point, then we define the local homology of X at x
to be
H, (X]x; R) = Hp (X, X \ {x}; R).

Remark 2.32. Typically, X \ {x} is not a CW complex, even if X is. Therefore one might replace
X\ {x} by X\ U where U is a contractible neighbourhood of x, and such that one can place a
CW structure on X such that X \ U is a CW subcomplex. [Hat10, Proposition A.4] says that CW
complexes are locally contractible.

Proposition 2.33. Suppose a homology theory satisfying the Eilenberg—Steenrod Axioms exists.
Let U < R" be a nonempty open set and V < R™ be an open set. IfU = V, then n = m.

Proof. We calculate the local homology H;(U|x; Z) = H;(B|x; Z) where B is a small closed Eu-
clidean ball around x, by excision. Then H; (B|x; ZZ) = H; (D", D" \IntD"; Z), by homotopy and
the 5-lemma. Bu D"*/S§" ! = §”, so H; (U|x;Z) = Z if i = n and 0 otherwise. O

1Hatcher calls (X , A) a good pair
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Proposition 2.34. Suppose (X, xy) is a connected CW complex (note that CW complexes are lo-
cally path connected, so that this implies X is path connected). Then Hy(X;R) = 0.

Proof. There is a running assumption that {xp} is in the 0-skeleton of X. Let y be any other
point of the 0-skeleton of X, and consider a path y : I — X starting at x and ending at y. The
map vy is a map between cell complexes, and it restricts to a cellular map on the subcomplex
01 =10, 1}. By cellular approximation, y is homotopic to a path y’": I — X;. That is, between any
two points in the 0-skeleton of X, there is a path in the 1-skeleton. The 1-skeleton, therefore,
forms a connected graph. We can find a spanning tree T of this graph, and we may then form
X/T, a CW complex for which X — X/T is a homotopy equivalence (since T is contractible)
and where X/T has a CW structure with only one 0-cell. So without loss of generality, we may
assume X has only one 0-cell.

By Proposition 2.24, Hy(X; R) = Hy(X1; R), but X; is a wedge of S's, so the result follows. [

Corollary 2.35. Let X be a CW complex, then Hy(X; R) = @y, x) R

Proof. It follows from the wedge sum axiom that Ho (79 (X); R) = @, x) R.

For each connected component of X, choose a point in the 0-skeleton of that component.
This amounts to a cellular map 7m(X) — X splitting the evident surjection X — my(X), so we
obtain a (split) inclusion Hy(o(X); R) — Ho(X;R). Observe that X/mo(X) is a connected CW
complex, so that Hy (7o (X); R) — Ho(X; R) is also surjective, by virtue of the long exact sequence.
The result follows. O

Remark 2.36. The following problem will recur in this course. We know that H"(S™;7) is an
infinite cyclic group, and therefore is generated by a single element. There are, however, two
different elements in this group one could take as a generator. Let us fix, once and for all, a
generator in H°(S%Z) so we can write H°(S% Z) = Z, calling the generator 1. The other choice
of generator is then —1. Use the long exact sequence associated to S — D""*! — §"*! (o fix a
distinguished generator 1 € H"*(S"; Z) for all n. This will turn out later to be equivalent to fixing
an orientation on S”.

Definition 2.37. Let n = 0 and let (X, xy) be a pointed topological space. There is a map 7 :
7w, (X, x9) — H,(X; Z), the Hurewicz map, defined as follows. Every element of 7, (X, x) corre-
sponds to a homotopy class of maps (basepoint preserving) f : S” — X. We therefore obtain
a homomorphism f :H,,(8";2) — H,,(X;Z). Define 1n(f) = f«(1). This homomorphism forms
part of a natural transformation of functors.

Proposition 2.38. When n = 1, the Hurewicz map is a homomorphism.

Proof. We will do the case n = 1. The other cases are similar, but not required for this course.

Suppose given two maps f : S! — X and g: S! — X. Consider the element represented by
fgin (X, xp). [Draw the pinch map]. This is a represented by a composite S' — S' v §! — X,
and in homology we obtain

1,842 — A (852 e A1(85,2) ™2 71X 2)
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Each of the two evident composites S! — S'vS! — S! ishomotopic to the identity, so we deduce

thatn(fg) =n(f) +n(g) as required. O

Proposition 2.39. Let (X, xy be a space. The Hurewicz mapn : m1 (X, xp) — H,(X;2) factors
71(X, x0) = 71 (X, %0)*” — H1(X; 2).

If X is a connected CW complex, then w1 (X, xo)“b —-H,(X;2) isan isomorphism.

We postpone the proof until after we have developed more cellular machinery. It would be
possibly to give it now, but we would end up repeating ourselves.

Remark 2.40. We can see immediately, however, that the Hurewicz map is an isomorphism
when X = St

2.6 Degree

Definition 2.41. Suppose given a map f : S — S”, where n = 1. Under the induced map f :
H,(8™;72) — H,(S™;Z), the image f. (1) € Z is an integer. This integer is the degree of f.

Remark 2.42. Tt is implicit above that S” is the same space in both source and target. The fol-
lowing properties of the degree are easily proved:

1. deg(idg») =1.

2. deg(f) depends only on the homotopy class of f.

3. If f is not surjective, then f: S — 8" factors through D" c S”, and so deg(f) = 0.
4. If f: 8" — S" is a map, then deg(f) = deg(Sf) = deg(Zf).

5. The degree of amap f:S! — S! takes on the usual meaning of winding number.
6. If f:S" — S"isamap and g:S" — S" another, then deg(g o f) = deg(g) deg(f)

Proposition 2.43. The inclusion SO(n) < SL,(R) is a(deformation retract, and SL,(R) is path
connected (when given the topology of a subspace of’ R" .

Proof. The deformation retraction statement is proved using the Gram-Schmidt method, ap-
plied to the columns of an n x n matrix. This certainly produces an orthogonal matrix, and
leaves the sign of the determinant unchanged.

To see SL,(R) is path connected, observe that every matrix A € SL,(R) is a product of ele-
mentary matrices E; j(a), and each of these may be connected to I, by a path. O

Corollary 2.44. Let A € O(n) act on sl cRrn, giving a map A : Sl 8§71 Then deg(A) =
det(A).
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Proof. If A€ SO(n), then A=id. If A€ O(n)_, then deg(A) agrees with deg(f) where f: snl
§"~1, where f is the map flippling the sign of the first coordinate. But this is X"~2(f’) where
f': 8! — Sl is the direction-reversal map, which has degree —1. O

Definition 2.45. Let f:S" — S" be amap, let x € S” be a point and suppose there exists a neigh-
bourhood U 3 x such that f(x) ¢ f(U\ x). This is the case if f restricts to a homeomorphism
onto its image in a neighbourhood of x, for instance. Then define the local degree of f at x,
denoted deg, f, by the degree of

H, (U, U\ x;2) — Hp(S", 8"\ f(x);2)

Remark 2.46. Why is the above well defined? First observe we can shrink U by use of excision, so
we may assume U is homeomorphic to a ball in R”. The space H, (U, U \ x; Z) is equipped with
an isomorphism to H, (U, U \ V; Z), where V is a small contractible neighbourhood of x—this is
the 5-lemma and homotopy. Moreover, we can compare H,, (U, U\ V) to H, (5", S"\ V), and they
are isomorphic by virtue of excision, and the latter is isomorphic to H,,(8"/S8™\ V) which is, in
turn, isomorphic to H, (S"). A similar story applies to the target.

Proposition 2.47. Let f: S — S" be a map, and let y € S" be such that f~(y) consists of finitely
many points xi, Xz, ..., x,. Then

deg(f) = ) deg, f
i=1

Remark 2.48. Do example with winding number.

Proof of proposition. For each x; choose an open U; around x; in such a way that the U;s are
pairwise disjoint and choose an open V around y so that f(U; \ {x;}) € V' \ {y}. Now take any of
the values i and form the following commutative diagram (Z coefficients are understood, but
not written).

f*
H, (Ui, Ui\ x;) Hp(V,V\y)

i N

H, (8", 8"\ x;) =<—— H,(S", 8"\ f~1(y)) ——=H, (5", 8"\ y)

S

H,(§") —————— H,(8")

The lower map here is f. by definition, and is measuring deg f. The middle map, also labelled
[+, is induced by f as well. The upper f. is measuring the local degree of f at x;. The dif-
ferent isomorphisms are either given by excision or by means of homotopy invariance and the
5-lemma.
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Now let us write the same diagram but showing the isomorphism classes of the groups in
question. Each of the infinite cyclic groups here has a distinguished generator, and may be
identified with Z by means of that.

In the right hand column, the upper map is Z — Z" given by inclusion on the i-th factor. On
the other hand, the lower map is the diagonal inclusion a — (a, q,...,a). The upper horizontal
map is the local degree, and commutativity of this square implies that (0,...,0,1,0...,0) is sent to
deg,. (f) in the middle right Z. Commutativity of the lower square says thatdeg f = f.(1,1,...,1),
and putting these two observations together, we see thatdeg f =3/_, deg,. f.

O

Remark 2.49. This whole section was done for Z, since that is what the degree of a map of
spheres means, but there is no impediment to defining an R-degree for any ring, as the degree
of H,(S™; R) — H,(S™; R).

2.7 The Cellular Chain Complex

Throughout this section, we fix a ring R. This ring may as well be taken to be R = Z on first
reading.

Definition 2.50. Let X be a CW complex. For each n, define the cellular chains of dimension n
of X (really of the CW structure) to be
CN(X;R) := H,,(X/ Xp_1; R).
For these purposes, the —1-skeleton is @.
Remark 2.51. The space X,/ X;_1, the quotient of one skeleton by another, is homeomorphic to
a bouquet of spheres, one for each n-cell of X. Therefore
celx;p= @ R
n-cells

Definition 2.52. We define cellular differential maps d,, : C<®'(X;R) — Cff_“l (X; R) by the for-
mula
Hy(Xn/Xn-1;R) Hy-1(Xp-1/Xp-2; R)

H;-1(Xp-1; R)
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using two different long exact sequences woven together. One for X,,-; — X, — X,/ X;,—; and
one for X;,_» — X;_1 — X1/ Xn_o.

Proposition 2.53. The resulting structure C.(X; R), d. is a chain complex of R-modules, and the
homology in degree n isH, (X; R).

Remark 2.54. In fact, the chain complex is functorial in R and in (the CW structure on) X.

Proof. To prove this, we identify ker d,, and im d,,;. To keep things brief, we omit R.
First the kernel. We can factor d,, as H,,(X,,/ X;—1) — Hp—1 (Xy—1) — Hp—1(X—1/ X,—2). Ob-
serve that the second map belongs in a long exact sequence

0=H,_1(Xp-2) = Hp—1(Xp-1) = Hpo1 (Xp—1/ Xn-2)

and therefore is injective. Therefore the kernel of d,, agrees with the kernel of the first map,
which also belongs in a long exact sequence

0= Hn(Xn—l) - Hn(Xn) - I:In(Xn/Xn—l) - Hn—l (Xn—l)

and so the kernel of d,, agrees with the image of the injective map H,(X,) — H,(X,/Xp-1).
Identify H, (X,) with its image under this injective map, for convenience of notation—otherwise
you have to keep many injective maps around and it gets messy.

Now let us consider the image of d;,+;. Again there is a factorization

Hy1 X1/ Xp) — Hp(Xy) — Hp (X / Xp—1)

and we saw already that the second map is injective. The image of d,,+; therefore agrees with
the image of the map H,,41(X,11/ X)) — H,(Xp) € Hy (X! Xp-1).

Observe that we have incidentally shown thatimd,,+, c kerd,,.

Now to calculate kerd,,/imd,, 1 = H,(X,;))/ im(H;, 1 (X,41/ X)) — H,; (X)), This calculation
is already available to us in the form of the long exact sequence for X;, — X;;+1 — Xpn+1/Xn.

I:In+1(Xn+1/Xn) - Hn(Xn) - Hn(Xn+1) - I:In()(n+1 /Xn) =0

from which we see that the R-module in question is H; (X;,+1), but we established in Proposition
2.24 that this is naturally isomorphic to H, (X). O

Remark 2.55. Observe that the calculations we carried out in the proposition above depend only
on the (reduced) set of axioms for H, (X; R) that we first gave. Therefore this result establishes
Theorem 2.18.

Remark 2.56. How do we understand the differentials in Cﬁen(X ; R)? We have a decomposi-
tion of Cfle“(X ; R) into summands, one for each n-cell. Each such n-cell has an attaching map,
Sl X, 4. We compose this with the quotient X,,-; — X1/ X;,—2 = \/ §"1 where in this
bouquet of spheres, we have one sphere for each n — 1-cell. For each pair, therefore, of n-cell
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and n — 1-cell, we loosely-speaking get a map S ! — §"~1. Strictly, the target is not actually the
n — 1-sphere, merely a space homeomorphic to it. A specific homeomorphism also imposes an
orientation. One therefore has to choose orientations on all the cells in order to make the calcu-
lations. The answer does not depend (up to isomorphism) on the specific orientations chosen,
but you have to be consistent in your choice of orientation on any given cell, you can'’t orient it
one way for incoming differentials and another for outgoing.

Anyway, when the orientations have been chosen, for each n-cell and each n—1-cell, we get
amap S" ! — §"! (up to homeomorphism) and this map has a degree in R.

The behaviour on 0-cells and attaching 1-cells is a little different (do example).

Example 2.57. Klein bottle with integer homology. Klein bottle with Z/(2) homology.

Example 2.58. Let CP" denote complex projective space. A point in this space amounts to an
equivalence class of n + 1-tuples of complex numbers [z : z; : -+ : z,,]. This space has a cellular
structure where the locus where z, # 0 (or, equivalently, z, is scaled to 1, is the open top cell.
This cell is a 2n-dimensional cell, since the open cell ishomeomorphic to C". The 2n—1 skeleton
consists of those points [z : 21 : -+ : 25— : 0], which is homeomorphic to CP"1. We deduce that
CP" has a cell structure with a single cell in each even dimension 0,...,2#x, and no other cells.
The homology can be calculated immediately from this.

Some further remarks: the surjective map C” \ {0} — CP" (quotient being by action of C*)
restricts to a quotient map defined on the unit sphere in C"\ {0}, i.e., S>”~! — CP" (the quotient
being by S!). The complex projective spaces are compact complex manifolds.

The space CP! is homeomorphic to S?, by consideration of the cells for instance. It is also a
1-point compactification of C!.

We have therefore constructed an interesting map S — S?, essentially the map C? \ {0} —
CP'. This is the Hopf map. The cell structure we placed on CP? has three cells. A 0-cell, a 2-cell
(attached in the only possible way to the 0-cell) and a 4-cell, attached by some map 0D* = S® —
CP! = §2. Unproved assertion: this attaching map is the Hopf map (at least up to homotopy).
Second unproved assertion: CP? is not homotopy equivalent to S* v §?, although it has the
same Z-homology. It follows from these two assertions that the cone on the Hopf map (which
is CP?) is not equivalent to the cone on the trivial map S$3 — S§2, which is S* v 2. But we know
homotopic maps have equivalent cones, so we deduce that the Hopf map is a map S® — S? that
is not nullhomotopic.

We see here the limits of what homology can detect. The cellular chain complex remembers
the information of degrees of maps of spheres arising from the attaching of one cell to a lower-
dimensional skeleton, but if some cell is attached by a map S"** — S” for positive k, then this
is not going to appear in the homology.

Example 2.59. A more prosaic example is given by RP”. Here the induction arguments shows
there is a cell in each dimension 0,...,n. The attaching maps are therefore slightly harder to
calculate. One method of doing this is to present RP” as a quotient of §”, rather than R\ {0}, by
the antipodal action of C,, the cyclic group of order 2.
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In order that this action be cellular, we put a CW structure on S” with two cells in each
dimension 0 to n. It is a fun exercise to write down what the differentials on S” should be.
These differentials depend on the orientations chosen on the various cells, so there are several
possibilities. One consistent choice causes the differentials Cl.ce“(S";R) - Cl?flll(S”;R) to work

out as
1

11

ieven, and i odd

1 -1

in the applicable range (Do the example of §2). With this structure, one can then take the Cs-
quotient, noting that the orientations on now-identified cells are compatible, and so we can
read off the maps in the cell structure for the quotient, giving the following cellular chain com-
plex for RP™:
0-2——-222%27222%7
Thus we have
Z ifi=0ori=nisodd
H; RP*7)=<7/(2) ifiisoddandi<n
0 otherwise



Chapter 3

Singular Homology and Homological
Algebra

3.1 Definition

Definition 3.1. We fix the standard topological n-simplex A" as the closed subset of R”*! deter-
mined by the equation Z?:*ll x; = 1 and the condition 0 < x; < 1 for all i. From A”~! — A” there
are n+ 1 coface maps, d*, given by inclusion by setting each of the 7 + 1 coordinates equal to 0.

Definition 3.2. Let X be a topological space and let A be an abelian group (in particular, A
can be a ring). We define the singular n-simplices of X to be the maps A" — X, and we define
the singular n-chains of X with coefficients in A to be the “A-linear” formal sums of singular
n-simplices. That is, a singular n-chain is an element of @,.A»_. x Ac. The set of such singular
n-chains is denoted C, (X; A).

Definition 3.3. Given a singular n-simplex o, we define its boundary (with coefficients in A),
denoted d,, (o) to be

n+1 . .

Y (-D'ood

i=1
the sum being taken in C,,_1(X; A). If a =) jajoj is an A-linear formal sum of such singular
n-simplicies, i.e., a is a singular n-chain, then we define d, (@) by A-linearity.

Proposition 3.4. The sequence of groups and maps C.(X; A), d. forms a chain complex. If Aisa
commutative ring R, then it forms a chain complex of R-modules.

Proof. We first show that d;_; od; = 0. This is very simple, however, since d;,,_; od,, is a sum over
faces-of-faces, and each term appears twice and with alternating signs. The statement about
R-modules follows from the fact that C. (X; R) is defined as a free R-module and we specify R-
module maps by declaring what happens on a basis. O

24
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Definition 3.5. We define the singular homology with coefficients in A to be the homology of
this chain complex: Hjmg(X ; A).

Remark 3.6. We would like to show that the theory we have produced satisfies the Eilenberg—
Steenrod axioms, and therefore can be used to produce a theory that computes cellular homol-
ogy when applied to CW complexes. Most of the axioms are largely “algebraic”, which is to say
that there is minimal geometric input required in checking them, but the excision axiom is hard.

3.2 Basic Homological Algebra

Fix aring R.

All our chain complexes of R-modules will be bounded below, which is to say they look like —
Cy,— Cy_1 — ... where C, =0forall n < N for some N (often, N = 0). We will also occasionally
make the assumption that R is a PID. A feature of PIDs is that submodules of free modules are
free. This does not hold for domains that are not PI: for instance (2,1 + v/—5) < Z[v/—=5] is a
submodule of a free module that is not itself free.

Remark 3.7. We can define the following notions for chain complexes of R-modules:
1. The shift: C.[a] is the chain complex having C;_, in the i-th position.

2. Amorphism: f:C. — D, is the data of a sequence of R-module maps C; — D;, commut-
ing with the differentials.

3. Kernels and cokernels (DO A DIAGRAM).
4. Direct sums of chain complexes.
5. Exact sequences of chain complexes

Remark 3.8. The category of chain complexes of R-modules is a abelian category, which means
(loosely speaking) that the same isomorphism theorems hold for chain complexes of R-modules
as hold for abelian groups. For instance, the image of a map f : C. — A. is isomorphic to the
quotient of C, by the kernel of f.

Proposition 3.9. If f: C. — D, is a map of chain complexes, then there is an induced map of
homology f. : H.(Cy) — H.(D.). In fact, H, is a functor.

Definition 3.10. A map of chain complexes f : C. — D, is a quasi-isomorphismif f induces an
isomorphism on homology in all degrees.

Example3.11. Over R=Z:
1.

I

0 7—7 0

is quasi-isomorphic to 0. In fact, any exact sequence is quasi-isomorphic to the 0-sequence.
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S=——"-20O
%N
-
-

0 Z!(p) 0
is a quasi-isomorphism.

Remark 3.12. The big idea, which may seem harebrained at this stage, is that there is actually
a “homotopy theory” for chain complexes, just as there is for topological spaces. If you set up
the right theoretical framework, e.g. model categories or co-categories, then both can be seen
as special cases of a general idea. We will not devote time to setting up a general machine, but
you can still see the deep ideas if you look for them.

For instance, a chain complex of free R-modules can be thought of as rather like a CW com-
plex. The things in degree i are like the i-cells. Our next task is to define a homotopy between
maps of chain complexes C, — A.. To do this, we should define it to be a map from “C, ® I,
which should be a chain complex.

This complex should have the following form: C. ® I in level n is C,, ® C;,—; @ C,, (DRAW
PICTURE)

Cn Cn—l Cn
d d id d
—id |
Cn—l Cn—2 Cl’l—l

One can include C, into C, ® I as either of the two endpoints. A chain homotopy from
f:Ci— A, to g:Cy, — A, should be a sequence of morphisms C, & C,,_; & C,, — A, restricting
to f and g on the two outer summands and compatible with the differential in C, ® I and A..
There is some mild algebraic simplification one can do to these data. We leave the simplification
as an exercise.

Definition 3.13. A chain homotopy ¥ from f : C, — A, to g: C. — A, is a sequence of maps
W,—1:Cp-1 — Ay such that for all c € C;, we have W(dc) + d¥(c) = g(c) — f(c).

Proposition 3.14. IfV is a chain homotopy between f and g, then f and g induce the same map
on homology.

Proof. Exercise. O

Remark 3.15. With this notion of homotopy, it becomes possible to define a “homotopy equiv-
alence” between chain complexes. f: C. — A, is a homotopy equivalence if there is a “ho-
motopy inverse” g : A, — C, with the property that fo g =id and go f = id. It follows from
the functoriality of homology and the previous proposition that a homotopy equivalence is a
quasi-isomorphism.
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A quasi-isomorphism between bounded-below complexes of free modules is a homotopy
equivalence (this requires proof). On the other hand, a general quasi-isomorphism need not be
a homotopy equivalence at all.

The situation is analogous to the topological situation, where cellular maps between CW
complexes have “good” homotopical behaviour, but general spaces may behave poorly.

Proposition 3.16 (The snake lemma). Suppose given a diagram of R-modules

h 81

Ay By Ci 0
O
0 A2 Bz CZ

in which the rows are exact, then there is a natural long exact sequence

ker(a) — ker(B) — ker(y) N coker(a) — coker(f) — coker(y)
Proof. Exercise. O
Proposition 3.17. Suppose

0—=A,—LoB,—5.c,— 0

is a short exact sequence of chain complexes of R-modules. There is a natural long exact sequence
of homology groups

f* * f* *
o — D Ha(B) =2 H(0) — 2 Hyy (A) L e (B) &

Proof. Write d for the differential in A, etc. The first step is to verify that the diagram

Aplimd?, ) —L~ B, /(ma®, ) —5~ CplimdC, ) —=0

| | |

0 — ker(d} ) ———ker(d? ;) ———ker(d$ )

satisfies the conditions of the snake lemma.
The second step is applying the snake lemma—the result just falls out. O



CHAPTER 3. SINGULAR HOMOLOGY AND HOMOLOGICAL ALGEBRA 28

3.3 Singular homology satisfies the Eilenberg-Steenrod axioms

Definition 3.18. Let A < X. Use the inclusion of A in X to define an inclusion C.(4;R)
C.(X;R). Define C, (X, A; R) as the quotient C, (X; R)/C, (A; R). Define H,"®(X, A; R) as the ho-
mology of this chain complex. Note that H""8(X, @; R) = H""8(X; R) as previously defined.

Throughout the rest of this section we fix a ring R, and H. (X, A) = Hiing (X, A; R) will denote
singular homology with R coefficients.
We start with the easiest axioms:

Proposition 3.19 (Dimension Axiom). Hy(*) = R andH,(*) =0 ifn #0.

Proof. For each n = 0, there is a unique map A" — %, and so the singular chain complex of
takes the form
+—>R—-R—-R—-0—-0—...

with the last nonzero R-module being in dimension 0. The differentials C,(*; R) — C;—1(*; R)
are given as an alternating sum of n + 1 copies of the identity map: so Z;’:O(—l)i :R — R. When
nisodd, weget0: R — R and when n is even, we get 1 : R — R, the identity map. The calculation
of homology is now easy. O

Proposition 3.20 (Additivity). If X =11, X, then C.(X;R) =@, C« (Xyq; R), sSoH. (X; R) = &, Hyi (Xq; R).
Proof. Easy. O

Proposition 3.21 (Long Exact Sequence of a Pair). Suppose A c X is a subspace, then there is a
natural short exact sequence of chain complexes

0— Ci(AR) — Ci(XGR) — Cu(X, AAR)— 0
and therefore an attendant long exact sequence of homology.
Proof. The R-module C. (X, A; R) was defined to make this work. O
Now the moderately hard one: Homotopy invariance.

Proposition 3.22. Let f = g: X — Y. Then the maps f«,g« : C«(X;R) — C.(Y;R) are chain
homotopic.

Proof. Let Hbe ahomotopy H: X x I — Y from f to g. We use H to produce a chain homotopy
P:Cy(X;R) — Ci11(Y; R) between f. and g..

In order to do this, we really have to subdivide the spaces A" x I into n+ 1-simplices. A good
way of doing this as follows: Let [vy, ..., V] denote the vertices of A” x {0} and [wy, ..., wy,] the
vertices of A” x {1}. An n + 1- or n-simplex in A” x I may be specified by naming the vertices, in
order. Then the simplex is taken to be the image of a homeomorphism A" — A" x [ or A1 —
A" x I, mapping the vertices to the vertices in order, and behaving linearly elsewhere.
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The following all describe 7 + 1-simplices embedded in A" x I:
Aj=1[vo,...,Vj, Wj,..., Wyl

as j varies from 0 to n. (DRAW PICTURE IF POSSIBLE)

We wish to produce a chain homotopy P. To do this, suppose 7 : A" — X is a singular
n-simplex. We will produce a singular n + 1-chain Pt € C,,4+1(Y;R), and then extend to all of
C,(X; R) by linearity. To get going, we consider the map

H:=Ho(rxid):A"x > XxI—Y

The map H’ is not a map from an n + 1-simplex, but rather, a map from the n + 1 different n+ 1-
simplices A; — Y. Let us define P(7) to be

P(7) =

J

n .
(D! H'|[v, ..., vj, wj,..., wpl.
=0
This extends by linearity to a perfectly good homomorphism C,(X;R) — C,+1(Y;R).
Now we show this is actually a chain homotopy, by calculating d Pt and Pdrt

n 7] n
dPr) =Y (Z(—l)”fH’qu,..., Diveey Uy Wiy wpl+ Y (=D H 0, v, W, wn])
j=0"i=0 i=j
This is a large sum, and there are cancellations. With the exception of the two terms H'|[vy, ..., vy,]
and H'|[wy, ..., wy], all the terms H'|[vy, ..., Vj, Wj41,..., Wy] With consecutively-numbered ver-
tices appear twice, and with opposite signs. Note further that H'|[wy, ..., w,] = g« (1) and H'|[vy, ..., v,] =
[+« (7). With this simplification, we can write

dP(r) = H'|[wo, ..., wn) + (=D*" ' H'|[vg, ..., vx] + Y (<D H'l[vg, ..., Dy, Ujy Wy oo, Wil +
i<j
+Y DT H vy, .. v, W)y Wiy, Wyl =
i>j

= g. (1) — f« (1) + other terms

On the other hand, we calculate Pdt

n
PY (-1)'H'|wo,..., Diyees val = X (1) H'[vg, ..., vj, wj,..., Wi, wnl+
i=0 i<j
il .
+Y D" H o,y Diyey v, W)y, W)
i>j

which happens to be precisely —1 times the “other terms” referenced above. So we see that
dP(1)+ Pd(t) = g (1) — [ (7)

Since the elements 7 form a basis for C, (X; R), this identity holds on the whole free module, and
so dP+ Pd = g. — [, giving the required chain homotopy. O
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And now for the hard one: Excision.

Definition 3.23. Let X be a topological space and let % be an open cover of X. Say that a singu-
lar simplex o : A" — X is subordinate to % if there is an open set U; € % such that im(o) c U;.
Let C¥(X;R) denote the chain complex obtained by restricting C.(X;R) to singular simplices
subordinate to %.

Hatcher weakens this to simply requiring that the interiors of the sets of % should form a
cover.

Lemma 3.24. The inclusion Cf‘ (X;R) — C.(X;R) is a quasi-isomorphism (in fact, a homotopy
equivalence).

Proof. The proof of this hard technical fact will not be done in class. Notes will be made avail-
able. O

Proposition 3.25. Let Z < Y < X be a sequence of spaces, where Z is closed in X and Y is open.
Then C.(X\Z,Y\Z) — C.(X, Y;R) is a quasi-isomorphism. This establishes the excision theorem.

Proof. Recall that C. (X, Y) is defined as a quotient
Ci(Y)— Ci(X) — Ci (X, Y).

Define an open cover of X by Y and W = X — Z. Then cYW(x)isa subcomplex of C, (X) and
has the same homology. Note that C,(Y) is also a subcomplex of this subcomplex, and so we
get a diagram of chain complexes

0—C.(Y) — "M x) —c""M(x,v) —0

| |

0 ——Ci(Y) Ci(X) Ci(X,Y) 0

Here we have used this diagram to define cYW(X,Y). There is an induced map of long exact
sequences of homology groups, and the 5-lemma says that c"Y(x,v) - C.(X,Y)isa quasi-
isomorphism.

Now consider C,(X — Z) — CiZY’W} (X). The former has a basis consisting of all n-simplices
with image in X — Z = W, the latter has a basis consisting of all n-simplices with image in ei-
ther Y or in W. In particular, we can say CLY’W} (X) is equal to the sum of two submodules
Cn(W) + C,(Y). The second isomorphism theorem then produces a (natural) isomorphism
Cn(W)/(Cr(W) N Cu(Y)) — CYWH(X)/C,(Y). But this is an isomorphism C,(X - Z,Y - Z) —
C,{1Y' WX, Y). This isomorphism is compatible with differentials (check, or use naturality), and
so establishes the result. O
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3.4 Functoriality of homology in the coefficients

In these notes, we defined H}, "8(X; A) when A is merely an abelian group, but we've proved most
of our results under the further assumption that A is a ring. This is really only for convenience,
the results hold also for general A. The most important abelian groups are the finitely generated
ones, which are all direct sums of abelian groups Z/(n) carrying an evident ring structure.

Lemma 3.26. Given two abelian groups A and B, there is a natural isomorphism Hiing (X;A®B) =
H"8(X; A) e HY"8(X; B).

Proof. This follows from a similar level at the singular-chain level. For all n, there is an iso-
morphism Cflmg(X ;A® B) = C,S;ng(X ;A) @ Cimg(X ; B), and the behaviour of the differential is
compatible with this decomposition. That is, if d;} is a differential for C.(X; A) and d? is the
corresponding differential for C, (X; B), then d,’? ® d,{? is the differential for C.(X; A® B). Then
direct verification shows that H. (X; A® B) = H.. (X; A) @ H. (X; B). O

Lemma 3.27 (The 3 x 3 lemma). Suppose given a diagram

Ajg —— Ay —— Az

L

Ajp —— App —— Az

L

A3 — Apz — As3

in which all columns are short exact sequences, and in which Ay, — Asp is the0 map. Then if any
two rows are short exact sequences, so is the third.

Note that the condition on A;» — Asj is required only when the middle row is not the one
assumed exact.

Proof. Exercise. O

Proposition 3.28. Let A — B be a map of abelian groups. Then for all n and all pairs of spaces
(X,Y), there is a natural map H,"8(X,Y; A) — H},"8(X, Y; B). These natural maps are compatible
with the boundary map Hj,"8(X, Y; A) — H,,_1(Y, ; A), and if

0—-A—-B—-Q—0
is a short exact sequence of abelian groups then there is a (natural) long exact sequence

- HEMB(X; A) — HS"8(X; B) — HIM8(X; Q) — HO™8(X; 4) — ..

n-1
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Proof. The map of groups A — Byields a map of chain complexes C; ¢(X,Y;A) — C5 (X, Y;B).
Homology being a functor for chain complexes, we get the first assertion.
The compatibility with the boundary map is a diagram chase, which is long but not espe-
cially interesting.
Given the short exact sequence of coefficients, we get a (natural) short exact sequence of
chain complexes _ ‘ ‘
0— C™8(X; ) — CI™ (G B) — CI™(X;Q) — 0

for any X.
From there, we get a short exact sequence

0— CI"8(X,Y; A) — CS"8(X, V; B) — C"8(X, Y;Q) — 0

by using the 3 x 3 lemma (DO OUT).
Associated to a short exact sequence of chain complexes, there is a long exact sequence of
homology groups, establishing the result. O

Example 3.29. We'll see more about the above when we talk about “Universal coefficients”. For
now, we'll content ourselves with seeing an example relating Z-homology and Z/(2)-homology
for an interesting space: say RP3.

The homology H. (RP3;7) was calculated earlier. It is Z in dimension 3 and 0, and Z/(2) in
dimension 1. It vanishes in other dimensions. Write H; instead of H; (RP3; Z/(2)) for brevity. The
long exact sequence we get from the short exact coefficient sequence

0-237-7/2) —0
takes the form
0-H =227 -H;3—=0-0-Hy, - Z/2)32/2)=H, —2237—Hy—0

This gives the homology: it’s Z/(2) in all dimensions 0 to 3, which can also be calculated directly
from the cell structure.



Chapter 4

Further properties and uses of
homology

4.1 The Hurewicz map

We first pay off a debt, namely, the proof of the Hurewicz map.

First, a recollection on notation. Let G, H be groups and W — G and W — H be group
homomorphisms. Then G * H denote the pushout group so that for any group K the following
two sets are in bijection

1. the set of a pairs of group homomorphisms G — K and H — K such that the composites
W —G— Kand W — H — K agree

2. The set of homomorphisms G *y H — K.
We recall the van Kampen theorem.

Theorem 4.1. Let X = U UV be a union of two path-connected open subspaces for which U n
V is also path connected. Fix a basepoint xy € U NV, which is suppressed from the notation
henceforth. Then the evident map w1 (U) * , unv) 71 (V) — n1(X) is an isomorphism.

Recall that G2 denotes the abalianization of G, i.e., the universal abelian group equipped
with a map G — G?.

Lemma 4.2. Let G be a group and g € G an element. Let g denote the image of g in G®®. There is
a natural isomorphism (G * (g) (eh® — G/ (g).

In fact, it is not difficult to see that G2 glet = G?/(g), so that the lemma is really saying
that the abelianization functor commutes with the construction G *g) {e}. One can read in the
appendix about left-adjoint functors, and see that ab is left adjoint to the functor forgetting
the “abelian” structure of abelian groups, so this is a special case of a result saying left-adjoint
functors preserve colimits. This explains the formal quality of the following argument.

33
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Proof. Both groups Gab/(g) and (G * (g {e)2P are universal groups for maps G — K with the
property that K is abelian and the image of g is 0. (DO SLOWLY IN CLASS) O

We now establish the Hurewicz isomorphism in the most geometrically easy case. We will
later reduce all cases to this.

Proposition 4.3. Hurewicz isomorphism in the geometric case] Let T be a finite 2-dimensional
CW complex for which Ty = {1y} is a singleton. Then the Hurewicz mapn : n1(T, to)ab —H(T;2)
is an isomorphism.

Proof. We prove this by induction on the number of 2-cells. If there are none, then we have the
case of a wedge of circles
T=\/ S

acA

The van Kampen theorem says 71 (7, tp) = F, the free group on the classes [a] (or [id,] if you
prefer). The homology, by virtue of the axioms is the free abelian group on the same classes.
Now we consider what happens when a 2-cell is added to T by means of a gluing map
¢ :0D? — Tj. The space constructed 7’ is the mapping cone of ¢, and (up to homotopy equiv-
alence) depends only on the homotopy class of [¢] = g € 71 (T1, fp). The van Kampen theorem
says that 71 (T", to) = m1 (T, to) *(g) {e}, whereas the long exact sequence for homology says that
H,(T';Z) =H;(T;Z)/(g). Then, by the lemma, the result holds. O

Proposition 4.4. Let X be a simply connected CW complex with basepoint xy, and consider the
mapn:m1(X, xp) — H,(X;2). Then 1 induces an isomorphism (also denotedn))

n:m1(X, x0)%° — Hy (X;Z).

Proof. The map n was previously produced and is natural. We can make some reductions. First
of all, we can assume X is 2-dimensional (has no cells of dimension 3 or higher), since the in-
clusion of the 2 skeleton induces isomorphisms on the invariants being computed. Second, we
can contract a spanning tree in the 1-skeleton, this does not change the homotopy type of X
and therefore we may assume Xj is a point, and X is a wedge sum of circles.

Suppose therefore that X is a CW complex with X = X,, and where X; = Vgea S}x. Moreover,
X> is given as a pushout square:

¢
Lpen aD% —Xi

.

v
pep D* — X

The (cellular) homology H; of this space is given by the homology of the sequence

0
0—— @ﬁeB Zﬁ — Baecala —7
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where Zp — Zq is the degree of a particular map OD% — S}X. Moreover, Hy(X1;Z) = @ 7Z,, S0
H,(X1;72) — H;(X; Z) is surjective.

The homotopy 7; (X, xp) can also be presented, but this is a little more delicate. We know
from the van Kampen theorem (Math 426) that 71 (X, xo) is the free group (not free abelian) F
generated by the circles S}. By virtue of the cellular approximation theorem, any map S' — X
can be deformed to have image in X, so that 7, (X3, x9) — 71 (X, X) is surjective.

We have a diagram

711 (X1) —>m1(X)

.

H; (X1) — H1(X)

The left vertical map is the map from F, a free group, to the abelianization, a free abelian group.

Suppose we have a class in a € H; (X), then we can find a preimage in H; (X;), which we can
lift to 71 (X;), and then map to 7; (X). This shows that 7 is surjective.

Finally we can show that 7 is injective. This amounts to a reduction to the previous propo-
sition. Suppose z € 71 (X, xp) is such that n(z) = 0. We can assume as before that z is repre-
sented by a cellular map, and of course this map meets finitely many 1-cells. We can also find
finitely many 2-cells ef, ceo e? of X such that the image of z in H;(X;; Z) is in the image of the
boundary maps of the e?s. Therefore we can produce a finite subcomplex of X, denoted T,
so that z € im(m (T, x9) — m1(X, xp) and n(z) = 0 € H;(T; Z)—just add in enough cells to in-
clude all the e?s, their boundaries, and whatever else was used to define z. But we know that
n:m (T, .X'())ab — H;(T;Z) is an isomorphism, so z =0 in (7, xo)ab, and since abelianization is
a functor, this implies z = 0 in 7, (X, x0)2P, which is what we wanted to show. O

4.2 FEuler Characteristic

This is the first-discovered topological invariant.

Definition 4.5. Let C, be a chain complex of vector spaces over a field k, such that @,,C;, is
finite dimensional. Then the Euler characteristic, x(C,) is the alternating sum

[e.°]
Y (-D"dimg Cp,.
n=-—o00
Remark 4.6. By treating the homology of a chain complex as a chain complex again, but this
time with differentials all 0, we may define the Euler characteristic

o0
YH.(C))= Y (-1 dimgHi(Cs).
n=—oo
While the definition of y can be made over a ring as well as over a field, simply by requiring the
modules that appear to be projective and therefore to have a well defined rank, one may not be
able to make sense of the Euler characteristic of the homology in that generality.
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Proposition 4.7.
x(Cy) = x(Hx (Cy))

Proof. Exercise. O

Definition 4.8. Fix a field k. If X is a space such that @ H, (X; k) is a finite dimensional k vec-
tor space, then define the k-Euler characteristic, y(X)k, of X to be y(H.(X; k)). If no field is
specified, k = Q is understood.

Proposition 4.9. Let Y be a space with a CW structure having a,, cells in dimension n, where
almost all a,s are0. Then -
A(YV)e=) (-D"ap.
n=0
In particular, y(Y)y is independent of k. In fact, x(X)y is independent of k even if X is merely
homotopy equivalent to a finite CW complex.

Proof.
XV => (-D"Cu(Y;k) =) (-1 "a,
n=0 n=0

O

Example 4.10. Euler’s formula f — e+ v = 2 for connected planar graphs is a special case of the
Euler characteristic.

4.3 The Kiinneth Formula

Construction 4.11. Fix a ring R. Suppose C, and C, are chain complexes of R-modules. We
define C, ®g C’, as the chain complex having

oo
(Cer C/)n = @ Ci®r C;l_,'
i=—o00
andwhered:C;®C_; — (C®g),—1isd(cec)=d(c)®c' + (-Diced(c).

Remark 4.12. One notes that d*> = 0. Moreover, defining B; < Z; < C; to be the boundaries
and cycles, and B} € Z < C; similarly, we see that the evident map C; ® C;,; — Cj, restricts to
Zi®Zy, | — Zy,andalso B;® Z, .and Z; ® B) . both map to B;,.

In this way we can get a map

Zi®RZ, ;i Zy

- "
Bn

Zi ®R B;z—i + B; ®p le’l—i

or (after a small amount of algebra) gives rise to a map

H;(C.)®pH,—;(C.) = H,(Cs ®r C))
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Summing over all 7, we have

o0
P Hi(C.) ®rH,—i(C,) — H,(C. ®r C,)
i=—o0
Proposition 4.13 (Algebraic Kiinneth). IfC, and C., are chain complexes of free R-modules where
R is a PID, then there is a short exact sequence

0—EPH;(C) &g H,—i(C") = Hy(Co C) - @ Tor® (H;(C), Hy—i—1(C) — 0

Proof shamelessly taken from Hatcher. First, let us do the case where C is concentrated in a sin-
gle degree. This case is easy, since free modules are flat. In this case, there is no Tor term.
Second, the case where C is a direct sum of complexes, each concentrated in a single degree—
that is, C has only 0-differentials. This follows easily from the previous case. Again there is no
Tor term.
For each i, we can write short exact sequences 0 — Z; — C; — B;—; — 0 and since B;_; <
C;_1, this sequence is moroever split. In fact, we can make

0 Zi C; B;_ 0
b ]
0 Zi Cia Bi 1 0

and generalizing, we can make 0 — Z, — C. — B. — 0, a short exact sequence of chain com-
plexes. The outer complexes have 0 differentials.
Now apply ®gC.. This results in a short exact sequence of chain complexes:

0— Z,8rC., - C,®rC. - B,®rC. -0

(again, levelwise split).
Take homology to get a long exact sequence:

-— Z,8rH,(C)—H,(C®rC")— B, ®rH,(C) — ...

Here there are bundary maps B, ® gkH. (C') — Z, ® gH. (C’). On the level of actual named groups,
this consists of maps B;_1 ®g H.(C') — Z;_; ® g H.(C')—at first blush the groups are sums of
these and the maps might interact between the B; and the Z;, but in fact they do not. Indeed,
if you trace everything through using the snake lemma, the boundary map is just induced from
all the inclusions

Bi-1®gH,—;(C,) — Zi—1 ®g H,_; (C}).

Let i; denote the direct sum of all these maps. Exactness above gives us short exact se-
quences
0 — cokeri, - H,(C®rC") — keri,—_; — 0
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The calculation of cokeri, = @; H;(C.) ®g H,,_; (C.) is direct.
The determination of the kernel is not much harder. (DO IN CLASS). This establishes the
short exact sequence. O

Remark 4.14. The short exact sequence of the Kiinneth formula is natural. That is, given maps
C — D and C' — D’ of chain complexes, you get induced maps of short exact sequences. This
can be seen by tracing through everything in the proof.

Remark 4.15. The short exact sequence in the Kiinneth formula is split, but not necessarily
naturally split. To see this, we produce a splitting map

H,(CerC") — @H;(C.) 8 Hy_;(C)).
i
To do this, we produce maps C; — H;(C.) and C;_l. — H,—;(C},)—using the fact we're over a
PID—and so, induced maps on the tensored homology.

Lemma 4.16. Let f : S" — S" and g : S™ — S be basepoint preserving maps. Then f A g :
S AS"™ — S" A S™ is of degree deg(f) deg(g).

Proof. We can write f A g as f Aidoid A g. Then we would like to know that deg(id A g) = deg(g),
but this is an iterated application of the fact that the suspension preserves degree. O

Theorem 4.17 (Kiinneth formula). Let X and Y be CW complexes, and let R be a PID. Then there
are short exact sequences

n n-1
0 —@H;(X;R) ®r H,—;(X; R) — Hy(X x Y;R) — @ Tor® (H;(X; R), Hp,— -1 (Y; R) — 0
i=0 i=0

This short exact sequence is natural, and split, but not naturally split.

Proof. To prove this theorem, we prove that C.(X;R) ® C.(Y;R) = C.(X x Y; R) for the cellular
chain complexes of X and Y. The identification of the cells is easy: given an i-cell ef;( ofa X and
an n—i-cell ef”" of Y we getan n-cell of X x Y, denoted e}, x e}’

Now we should show that the differentials do what we want. Following [Hat10], we establish
this first in the case where X and Y are both products of intervals.

We give I the obvious structure with two 0-cells and a 1-cell. Then we give I" the induced
product structure. Let e; denote the i-th 1-cell of I"*, and write 0; and 1; for the vertices at the
boundary of these 1 cells. The top cell of I" is e} x --- x e,,. We try to calculate d(e; x --- x ey,).
This has to be of the form

n
dleyx--xep)=Y (-1)Pey x -+ x de; x - x ey
i=1
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Either swapping the ends of an edge, or swapping two adjacent edges, induces a reflection on
the boundary, and therefore a degree-—1 map, so that up to an overall sign we must have

n .
d(elx...xen):Z(_l)lelx...xdeix...xen_
i=1

The overall sign is a matter of convention, ultimately (Hatcher has already fixed a convention
previously at this point). We choose it so that the formula works out.

Now if we consider 1% x ["~%, we give the first I* a cell structure with top cell E=e; x---x e,
and the second I""“the top cell F=e,.1 x -+ X ey, then

d(ExF)=d(E)x F+(-1)*E x d(F).

This is what we wanted to establish in general, in a special case.

Now suppose we have a general situation, with two CW complexes X and Y having cells ¢,
and eg_l respectively. We then have a cell e}, x eg_l of X x Y. We want to write down a boundary
map d(e’, x e}’g"').1

Cells usually are represented by disks D and D", but we can use I’ and I~/ as models
for these disks. Let ¢: 0I' — X;_; and v : 0I""* — Y,,_;_1 be attaching maps for the cells above,
and ® and V¥ the characteristic maps. Write e* for the top cell of I' and e"~* for the top cell of
I''"'. We may assume the attaching maps, and therefore ® and ¥, are cellular, using cellular
approximation for instance.

Now we can calculate

dleg®ep) =d(®@x¥(e' x /)= (@xWP),(de' x e/ +(~1)'e’ x d(e’))

This is great as far as it goes, but we should understand (® x W), as it applies to a cell.

Lemma4.18. If®: W — X and V¥V : Z — Y are cellular maps, then (® x V), =90, 0¥,

ProofofLer?’Lma. Suppose V.. (e("x) = ZY maye)’; and V. (eé) =)s 1.1[;5 eg. Then we determine (® x
¥). (efx X eé). Specifically, we determine the coefficient of e)’; X e(]s in this sum, hoping to show it

is mq yngs. Since this is the coefficient of e;, x e(js in @, ® ¥,, establishing this identity would
establish the lemma.

How does this coefficient come about? Define @ : St W;IWi_; — Xil Xj—; — St given by
characteristic maps for @, y and the map ¥. Define ¥g s similarly. Then deg®,,y = mq, and
deg¥ g, = np,s. The coefficient calculation we want is the degree the top cellin AW : S'AS/ —
Wi x Zijl ~— X; x Yjl ~— S§' A S/. We already established this fact in a previous lemma. This
proves the result. O

n this argument, the cells eq x eg appear both as cells per se as well as elements of C;, (X x Y), where they may
be identified with eq ® eg. We are therefore not careful in distinguishing e, x eg andey ®e 8-
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Now we finish the proposition. We have established that
dleg®ep) = (@ x ¥),(de' x e +(-1)'e' x d(e))) =D, (de') x ¥(e/) + (1) D, (e") x ¥(de))
and finally, use the fact that ® and ¥ are cellular maps to conclude that this is:
deé X e;3 + (—l)ieé X deij
which is what we wanted to prove. O

Remark 4.19. The result also holds for singular homology, using a result called the Eilenberg—
Zilber Theorem.

Theorem 4.20 (Universal Coefficients for Homology). Let A be an abelian group, then for any
space there is a short exact sequence of singular homology groups

0— A®zH,(X;Z) — Hy(X; A) — Tor” (A, H,_1(X;Z)) — 0

again, this sequence is natural, split, but not naturally split.



Chapter 5

Cohomology

5.1 Cohomology

For simplicity, we work with Z-modules.

Construction5.1. Suppose C, is a chain complex of R-modules. Let A be another R-module. We
can form the complex Homz (C., A), and take the homology. We will call this the cohomology of
C. with coefficients in A, and we will denote it H* (Cy; A).

Proposition 5.2. Let R be a PID, and let C, be a chain complex of free R-modules. Then there is
a natural short exact sequence

0— Ethlq(Hiq(C*), A) — H'(C,; A) — Hompg(H;(C,), A) — 0.
This sequence is split, but not naturally split.

Definition 5.3. If X is a topological space and R a ring. We define the singular cohomology of X
with coefficients in R as the cohomology H* (C(X; Z); R).

Remark 5.4. If A is an abelian group, then a group homomorphism f: A — R corresponds to an
R-linear mapid® f : R®z7 A — R. Therefore HomZ(Ciing (X;Z), R) isisomorphic to HomR(Ciing (X;R),R),
and so the definition you might want to give of H* (X; R) as the cohomology of Cimg (X : R) with
coefficients in R also works.

Proposition 5.5 (Universal Coefficients for Cohomology). For any space X and any ring R there
is a short exact sequence

0— Ext}q(H,-_l(X; Z),R) — H'(X; R) — Homz (H;(X),R) — 0.
This sequence splits, but not naturally.
Proposition 5.6. Let k be a field. Then there is an isomorphism

H'(X; k) = Hom(H; (X; k), k)

41
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Remark 5.7. The above constructions for spaces can equally well be made for pairs of spaces,
based on the chain complex C. (X, 4; Z). Of course, H* (X, @; R) =H'(X; R)

5.1.1 Eilenberg-Steenrod Axioms for Cohomology

There are Eilenberg-Steenrod Axioms for Cohomology. Fix a ring R (the axioms can be stated
for abelian groups, but we don'’t do that here).

Remark 5.8. Cohomology with coefficients in R gives a contravariant functor from Top to the
category of graded R-modules. That s, if f: X — Y is a map of spaces, then there is an induced
map f*:H*(Y;R) — H*(X; R). Similarly, given a continuous map of pairs of spaces f : (X, A) —
(Y, B), there is a contravariant map in cohomology. These satisfy the following properties.

Homotopy Invariance If f ~ g, then f* = g*.
Product axiom H'([Iyc4 Xa;R) = [TgeaH (X R).

Long Exact Sequence of a Pair Associated to a pair of spaces (X, A), there is a natural long exact
sequence . _ _ .
- —H"1A4A;R) - H'(X,A;R) - H'(X;R) - H' (4 R) — ...

(as a consequence, there is a suspension isomorphism for cohomology: H (X; R) = H*1(ZX; R).

Excision Let Z < A < X be a sequence of spaces such that the closure of Z is contained in the
interior of A. Then H' (X, A;R) — H* (X — Z, A— Z; R) is an isomorphism.

Dimension H°(S;R) = R.

Remark 5.9. As before, the excision and long exact sequence axioms imply that for a CW pair,
H*(X, A;R) = H* (X/A; R). Moreover, there is a cellular cohomology theory. One can form the cel-
lular cochains of a CW complex. With coefficientsin R, one has C’;,(X; R) = Homz (ceell(X;2),R).
The axioms therefore determine the cohomology of a CW complex.

The situation is most pleasant when X is a CW complex having only finitely many cells in
each dimension. In this case, Cie”(X; R) = HomR(C,fe”(X; R),R) is a free R-module in each
degree. When X has infinitely many cells in degree i, then Céen(X ; R) will be the dual of a free
R-module, and may not be free, depending on R.

Remark 5.10. Let X be a space. From the universal coefficients theorem, we see that HY(X;R) =
Hompg(Ho(X;2),R). In fact, since Homy(X; Z) is a free abelian group with coefficients in Z, we
see that H*(X; R) = R™ &) In this sense it clearly has an R-module structure—and in fact, it has
an R-algebra structure given by componentwise multiplication.
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5.2 Cup Product

There are two approaches to cup product. At this stage of the term, I'm willing to skip some
details, farming them out to references. The approach in [Hatl0, Section 3.2] is a good one,
requiring little technology, but it’s not the intuitive way of seeing the cup product. We sketch
another method here.

Remark5.11. Let X and Y be spaces and R aring. Then there are natural maps
¢:Ci(XxY;R) = Ci(X;R) @ Cu(Y5R), Y :Cu(X5R)QRCA(YSR) = Cu(X X YSR)
of singular chain complexes satisfying the following properties:
* ¢ and y are normalized so that they induce the ‘obvious’ isomorphism on Cjy.
* ¢ and v are inverse chain homotopy equivalences.
¢ ¢ and y are determined up to chain homotopy by the two properties above.

A wiser presentation of the course material might have used these to produce the Kiinneth for-
mula in singular homology.

Proposition 5.12. Let X and Y be spaces. Let R be a coefficient ring. Then there is a natural map

n . .
x:EPH GR egH' ' (Y;R) — H*(X x Y;R)
i=0
Proof. There are two ideas in the proof. The map defined above is the degree-n part of a map

that is actually easier to define in general.
First there is a map

C*(X;R)®r C*(Y;R) = Hompg(C(X), R) @ g Homp (C+(Y); R) — Homg(C(X) ® Cs+(Y), R)

given by sending f'® g to the function sending a® € C. (X)®rC«(Y) to f(a)g(p), and extending
by R-linearity.

Then there is the map ¢* : Homg(C,(X) ® C.(Y),R) — Homp(C.(X x Y;R),R) = C*(X x
Y;R).

Then taking the homology gives us the map we wanted. O

Definition 5.13. The natural map &; H{(X;R) ®RH"_i (Y;R) - H"(Xx Y; R) is called the exterior
product in cohomology. It can be constructed even more easily in cellular cohomology (where
the analogue of the map ¢ is an isomorphism), and in the case where R = k is a field (or where
the homology is free over Z etc) and finitely generated in each degree, the exterior product is an
isomorphism.
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Proposition 5.14. The exterior product is associative, in that the two obvious maps
H*(X;R)@rH* (Y;R)®g H* (Z;R) = H* (X x Y x Z; R)

agree. This can be proved precisely (if you believe Remark 5.11 at any rate) but is just going to be
more algebra.

Construction 5.15. Let A: X — X x X denote the diagonal. Let R be a ring. We can construct a
map
— H*"(X;R)®p H*(X;R) - H* (X x X; R) =X H*(X;R)

called the cup product.
Restricted to specific integers, we get —: H* (X; R) g H""*(X; R) — H"(X; R).

Remark 5.16. The cup product has the following properties:
1. —isnaturalin X and in R.
2. — is associative.

3. If X is path connected, then we can identify H’(X;R) = R, and the action H°(X;R) x
H"(X; R) — H"(X; R) is the usual R-action. If X has multiple components, then H* (X;R) =
[x,en,00 H* (X3 R) and R™™) = HO(X; R) works component by component.

4. — is graded-commutative. This is a property of graded rings that bears further explana-
tion. Let ¢ € H (X; R) and n € H/ (X; R), then ¢ —n = (—1)!/5 — &. The proof of this appears
in Hatcher as [Hat10, Theorem 3.14], and the proof there is long and involved, but this is
the cost of doing things in the elementary way.

In our case, one can argue as in the following sketch.

Recall that if C, and C., are chain complexes of R-modules, then C, ®r C., has differential
satisfying d(c® ') = d(c)® ¢’ +(~1)9%8¢c® d(c'). We can define an isomorphism C® C’ —
C' ®p C by the formula (c® ¢) — (—1)4e8(©)de8(c) ¢/ @ ¢ when ¢ and ¢’ are homogeneous
elements. The sign is necessary to make the differentials work out.

There are two maps C. (X x X; R) — C.(X; R)®gC. (X; R), one is ¢ and the other is obtained
by composing ¢ with the the twist isomorphism that swaps the order of the two factors,
and potentially introduces a sign. That is, if a is in C,,(X x X; R), then ¢p(a) =) ;i ® Yn—i
for various homogeneous classes of the indicated degree. Then the twist map replaces
Bi ®Yn—i with (-1)'""Dy,_; & ;.

Then when we build the cup product in this way, this sign propagates all the way through
and we obtain the graded-commutativity as advertised.
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Remark 5.17. A major consequence of the naturality of the cup product is the following: if f :
X — Y is a homotopy equivalence of spaces, then there is an isomorphism f* : H*(Y;R) —
H"(X; R) for each n. This gives an isomorphism of R-algebras

H*(Y;R) — H"(X;R)

Actually opinion differs on whether H* (X; R) should mean @ H/(X;R) (a graded R-algebra)
or ]'[;’20 H*(X;R). In this course, the former is meant.

Example5.18. Let R be aring. Then, as an R-algebra
H*(S"; R) = Rlel/(e?), lel=n

This is forced for reasons of dimension.

Example5.19. Let X = Y]] Z be a disjoint union. We know that H”(X; R) = H"(Y; R) x H*(Z; R).
By chasing diagrams around, we can establish that if (y,z) € H"(Y;R) x H*(Z; R) and (y/,z') €
H" (Y;R) x H" (Z;R), then (y,2) — (y, 2) = (y — ¥, 2 — 2)).

By comparison using the map Y[[Z — Y v Z, we deduce the same result for Y v Z away
from degree 0.

Example 5.20. Two examples that we’ll actually compute later:
H*(CP™;R) = R[x]/(x"*1), |x|=2

and similarly H* (CP*°; R) = R[x].

Accepting this for the time being, recall that the mapping cone of the Hopf map 1 : $* —
$? = CP! is homeomorphic to CP?. It was observed long ago that this space has homology
isomorphic to H, (S* v §%; R), where S* v S? is the mapping cone on the trivial map S* — S2. We
know enough now to see that the cup-product structures on the spaces are different, and so we
see that 77 is not homotopic to the constant map.

Example5.21. Similarly
H* (RP";F,) = Fo[x]/(x™™h), |x|=1.

Remark 5.22. Recall above that we produced a cross product: H*(X;R) x H*(Y;R) — H* (X x
Y; R). This was produced as a map of R-modules. In fact, it is a map of rings. I proved this one
year in 527, and it is very boring.

We should remark on the definition. If A and B are graded R-algebras, then A®p B can be
given a ring structure: if a,c € A are homogeneous elements and b,d € B are homogeneous
elements, then define

(a®b)(cod) =(-1)"""ace bd

and extending linearly to the entire tensor product.

In good circumstances, for instance, if X and Y are CW complexes and at least one of them
has f.g. free (co)homology in each dimension, then H* (X;R) 8 g H* (Y; R) — H*(X x Y; R) is an
isomorphism. (DO IN CLASS).
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Example 5.23. Let R be a ring. The notation Ar(xi,...,X,;) means an R-algebra generated by
variables x1,..., x;, satisfying the relations x? =0and x;x; = —x;x;. Let

X =8Mx...x §"
be a product of spheres where ny,..., n; are all odd integers. Then by induction
H*(X;R) = Ag(x1,...xg)
where |x;| = n;.

Similarly if
Y:Sml x...xSmj

is a product of even spheres, then
H*(Y;R) = Rlyr,.... yil/ (yiyih=izin<j=t

that is, the relation x;x; = —x;x; is replaced by y;y; = y;y;.
If we have Z = X x Y, then

H*(Z;R) = Ar(x1,... X)) ®r RIy1, ..., il {yiyihi<i<ii<j<i

5.3 The Cap Product

Throughout we use singular homology and cohomology.

Remark 5.24. Let X be a space and R aring. Just from the definition C"(X; R) is the R-module of
R-linear functions ¢ : C,(X; R) — R. This gives an evaluation map e: C"(X;R) ®r C,(X;R) — R
One verifies directly that if { ® a is an elementary tensor in C"(X; R) ® g C,,(X; R) such that both
¢ and «a are (co)cycles and at least one is a (co)boundary, then e({ ® a) = ¢(a) = 0. Therefore the
evaluation map descends to an evaluation map H"(X; R) ® g H,(X; R) — R.

We have already seen this map in the special case R = Z in the universal coefficients formula,
part of which is a map

H"(X;Z) — Homz (H,(X;2),Z)

Now we combine this evaluation pairing with the diagonal in order to produce an action of

cohomology on homology.

Construction 5.25. Let X be a space and let R be a ring. Consider the following composite map
(R coefficients are taken throughout, and are omitted)

C™(X) 8 Ca(X) 2 C™(X) @ Cp(X x X)
Eere( @ Ci0srCui )

i=—00
— C"(X)®r Cp(X) ®p Cry—n(X)
— RORCip—n(X) = Cp—pn(X)
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If we start with an elementary tensor ¢ ® a where « is a cycle, then the output of this procedure
is a cycle—this is because v is a map of complexes. If both ¢ and a are (co)cycles and either ¢
of a is a (co)boundary, then the output is a boundary. This requires detailed verification, not
written up here, but it’s true. We have an induced map

—~:H"(X;R) ® g H;n(X; R) — Hyp—n(X; R)

called the cap product.

Remark 5.26. In general this gives us a map H”(X; R) ® H,,(X; R) — Ho(X; R). Composing with
the map Hy(X; R) — Hy(*; R) induced by X — R recovers the evaluation map.

The proofs of the following two propositions are a matter of homological algebra.

Proposition 5.27. If f : X — Y is a map of spaces, ifa € Hy,(X; R) and £ e H"(Y; R) are homology
and cohomology classes, then f.(f* () —a) =&~ fi(a).

Proposition 5.28. If¢,n are cohomology classes and a a homology class, the (( —n) —~a =¢ —
n—a).

Remark 5.29. There are relative cap products:

H"(X;R) ®@r Hn(X, A;R) = Hyy—n (X, A; R)
(the construction of this is not at all difficult) and

H"(X,A;R)® g H;u (X, A;R) — Hyp— (X R).

This is a little more surprising, but exists because if you have ¢ € C"(X, A; R)—cochains on X
vanishing when restricted to A—and a € C;;;,(A; R) then the pairing map gives 0, so it follows that
there is an induced map C"(X, A;R) ®g C1,,(X; R)/ Cpy(A; R) — Cpy—pn(X; R). This is the asserted
map.

5.4 Compactly supported cohomology

We use singular cohomology throughout and let R be a ring.

Definition 5.30. Let X be a space, and let £ € C"(X;R) be a cochain. We say ¢ is compactly
supported if there exists a compact set K < X such that for all chains a € C,,(X - K) € C,(X),
we have {(a) = 0. Observe that if ¢ is compactly supported—with support in K—and if a €
Cp+1(X=K) then d(¢)(a) =¢(da) =0, so that d¢ is also compactly supported.

Therefore there exists a (co)chain complex C; (X; R) of compactly supported singular cochains.
The homology of this complex is the compactly supported cohomology of X, and is denoted
H:(X;R).
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Definition 5.31. By a directed system of objects, we mean a diagram X; indexed by a totally
ordered set I in which there exists a unique morphism X; — X; whenever i < j. In practice, we
draw the case of I = N—the most important case.

Lemma 5.32. Suppose given a directed system of short exact sequences of R-modules

AoﬁAlﬁ-...

|

BO—>Bl—>...

|

Co—Cp ——...
(the 0-s above and below having been omitted). Then the induced map diagram of colimits
0— coll_im Aj— coliim B; — coll_im Ci—0
is also short exact.
Proof. The proof is a sequence of diagram chases, and is not done in the notes. O
Corollary 5.33. IfCy,« — Cy,« — ... is a sequence of chain complexes, then for all n,

colimH,(C;, *) =H,(colimC; )
l 1

Proposition 5.34. Let X be a space and let {K;} denote a directed system of compact subspaces of
X with the property that each compact ] < X is contained in some K;. Then

coIl(imH*(X,X— Ki;;R)=H}(X;R)
Proof. Thesystem C* (X, X—K;; R) is a directed system. Taking colimits first, we see that colim; C"* (X, X—
K;; R) is the R-module of compactly supported n-cochains. Therefore H" (colim; C* (X, X —

K;);R) = H}(X;R). By the corollary above, this is naturally isomorphic to colimg, H" (X, X —
K;; R). O

Example 5.35. A specific example is given by X = R” and the compact spaces K; = B(0, i), the
closed balls of radius i about the origin. We can calculate

H'(R",R" — K;; R) = H'(R"/(R" - B(0,i +1)); R) = H'(S"; R)
and the maps between different groups are isomorphisms. In the colimit, therefore, we get
HL(R"; R) = H!(S";R).

In particular, Hé(-; R) is not a homotopy invariant.
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5.5 Orientations and Fundamental Classes

Definition 5.36. A topological manifold of dimension n is a topological space M" satisfying the
following properties

1. M" is Hausdorff
2. For each point x € M" there exists an open neighbourhood U 3 x such that U = R".

It should not be considered to be part of the definition, but we will also assume M"s appear-
ing are second countable (i.e., have a countable dense subspace). This is required to ensure
that M" embeds as a closed subset of R for some N. The manifolds without this property are
considered pathological.

Remark 5.37. Tt's worth remarking that R” is homeomorphic to any open ball B(¥;¢) < R”".

Remark 5.38. Topological mainfolds are the minimally structured examples of general mani-
folds.

Let M" be a manifold and choose a set of open embeddings ¢; : R” — M" such that the sets
U; :=¢;([R™) c M" cover M". These data will be called an atlas and the maps ¢; (or possibly the
just the images) are called charts. Second-countability implies that we can assume the atlas is
countable. Suppose one has two charts

¢ UN=R" ;" (U) > UinUj=U;nU; = ¢ UNNR" = ¢ (UD)

Reading left-to-right, one has a homeomorphism c/)]_.l o ¢; between two open subsets of R”. By
imposing further conditions on these maps, we can define more highly-structured manifolds.
For instance, we can require that they all be n-times or infinitely continuously differentiable, in
which case we are led to the definition of a €"'-smooth manifold. A smooth manifold is, how-
ever, not just a topological space (unlike the continuous manifold) but is also an equivalence
class of atlases. That is, one can enquire whether certain topological manifolds admit inequiva-
lent smooth-manifold structures. Strikingly, there are 28 inequivalent smooth structures on the
topological space S’.

Remark 5.39. Manifolds are all locally contractible and therefore locally path connected and lo-
cally simply connected. The connected components of a manifold are all manifolds themselves,
and we will generally restrict our attention to connected manifolds.

Remark 5.40. By convention, a compact manifold as defined above is called a closed manifold.
There is a notion of manifold-with-boundary, which generalizes that of manifold, and “closed”
here indicates the absence of boundary. It is the case that a closed smooth manifold can be
given a finite CW complex structure, a fact which we use but do not prove (Morse theory), and
in dimensions other than 4 it is known that even a topological closed manifold can be given a
finite CW complex structure. In [Hat10, Appendix A], it is proved that a compact manifold (even
with boundary) has the homotopy type of a finite CW complex.
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Example 5.41. A 0-manifold is a discrete space. A connected (second countable) 1-manifold
is homeomorphic to R (noncompact) or to S' (compact). There exist non-second-countable
connected 1-manifolds, for instance, the long line. The connected 2-manifolds form a much
more interesting family: this contains the surfaces My of genus g > 0, with S? corresponding to
the g = 0 case, it contains RP? and it contains K, the Klein bottle. There is an operation §, the
connect sum, and all compact 2-manifolds can be obtained as connect sums from Mg, RP? and
K. The classification even of closed 3-manifold is beyond us.

Definition 5.42. Let M" be a nonempty n-manifold, and let x € M" be a point. We can find a
chart U; 3 x and then we can calculate H*(M"|x; Z) = H*(M", M" —{x}; 7) = H"(U;, U; — {x}; 7) =
H"(S";7) = Z. A local orientation) of M" at x is a choice of generator for H”(M"|x; Z). Denote
the set of local orientations at x by py.

Construction 5.43. Let x and y be points in R" and let V be an open ball containing both x and
y- Then by use of excision and homotopy invariance, there are natural isomorphisms

H,R"|x;2) =H,(V|x;Z) =H,(V/0V;Z) =H,(V]y; Z) = H,(R"|y; Z)

a short argument shows that the identification H, (R"|x; Z) = H,(R"|y; Z) doesn't change if we
enlarge V, so that we obtain an identification of u, with u,. In fact, both are identified with a
set of generators of H! (R"; Z).

Construction5.44. Let M" be an n-manifold. Place a topology on the set of pairs M" ={(x,u)|x€
M", u € uy} as follows. Given a chart U; > x, the orientation u gives rise to an orientation u, for
all y € U; by the previous construction. For any open V < U; containing x, declare V,{(y, u,)|y €
VisubseteqM" to be an open subset. This gives a base for a topology on M" equipped with an
obvious map M"™ — M". For each (x, u) € M", moreover, we can find a neighbourhood U, that
maps homeomorphically to U 3 x. That is, M" — M" is a 2-sheeted covering space, called the
orientation double cover of M".

Definition 5.45. Let M" be a manifold. If M" ~ M™ x {u;, u} is a split covering space, M" is
orientable. If not, it is non-orientable. If M" is orientable, then either of the two sections of
M"™ — M" is called a orientation of M".

Remark 5.46. An orientation amounts to a continuous choice of local orientations at all points
of M".

Remark 5.47. There are two orientations on R”, all arising from generators of H,(S";Z). One
knows that the action of SO, on R” should therefore be orientation-preserving, while the action
of O,—S0O,, should be orientation-reversing. If one has a differentiable n-manifold M", allowing
one to talk about a tangent bundle to M", then a local orientation of M" at x amounts to an
equivalence class of bases for the tangent bundle T,, M" under the action of SO,,. An orientation
of M"™ amounts to a globally consistent choice of such bases at each point. This allows us to
relate our general notion of “orientation” with the sorts of orientation used in multivariable
calculus (or differential geometry or topology).
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Construction 5.48. Let R be a ring. The orientation double cover M" is enlarged to a twisted
form of R over M". This is our first view of a nontrivial sheaf of R-modules in this course. It
appears as a covering space R = M" xz;2) R where the action of Z/(2) on the left is the reversal
of orientation, and that on the right is multiplication by —1.

If the ring R is of characteristic 2, then +1 = —1 in R and so R = M x R a space over M", but
if 1 #—1in R, then the covering space R — M contains M as a sub-covering-space, and may be
nontrivial.

Definition 5.49. Given a space over M, i.e, amap f: X — M, if A< M is a subset, we define the
set of sections of f on Atobe

FX;A)={s:A— X| fos=1id 4}

In the case of R — M, the set of sections over any subset is always an R-module, although it may
be 0.

Remark 5.50. If A, B are both closed or both open, then the set of sections satisfies a sheaf
condition. In our case, this means that the sequence of R-modules

0—-T(R;AUB) -T(R;A)oT(R;B) - T(R;ANnB (5.1)

is exact.

Over a point, the sections I'(R; x) form a free R-module of rank 1, and there are two distin-
guished R-generators u and v in I'(R; x), satisfying © + v = 0. Choosing a local orientation of M
at x gives a choice of either u or v as the distinguished generator 1 in R.

Remark 5.51. Suppose M" is an n-manifold, let R be a ring, and let x € M" be a point. We can
identify
Hp(M,M—{x};2) =T (Z, x)

since both are the infinite cyclic abelian groups generated by the local orientations of M at x.
We can promote this to the tensor products

H,(M,M—-{x};R) = R®zH,(M,M - {x};Z) = R®7'(Z; x) =T'(R; x)

Definition 5.52. If R is a ring and M an n-manifold, then we will say M is R-orientableif R is a
trivial covering space. This happens exactly when M is orientable or when 2 =0¢€ R.

Theorem 5.53. Let M" be a closed connected n-manifold and let A< M" be a compact subset.
1. H;(M"|A;R) =0 foralli> n.

2. If M™ is R-orientable then the maps H,,(M"| A; R) — H,(M"|x; R) are isomorphisms for all
x€ A.

3. IfM" is not R-orientable, then the mapsH,(M"| A; R) — H,,(M"|x; R) are injections having
image equal to the 2-torsion in H,(M|x; R).
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By taking A = M, we see that H;(M;R) = 0 for i > n in all cases. We see that H,(M;Z) = Z
if and only if M is orientable, otherwise it is 0. Finally, when R = [F», every manifold appears
orientable.

Proof. This proof is a variation of [Hat10, Theorem 3.26].
The main trick in the proof of the theorem is to show that there are natural isomorphisms

['(R; A) — H,,(M", M" - A;R)

whenever A is a compact subset of M". The sheaf condition (C.1) and the Mayer—Vietoris se-
quence allow one to reduce the proof of this claim to the case of compact sets within the charts,
which are homeomorphic to R”, and then eventually to convex compact sets in the charts. In the
case of a convex compact set B in a chart, since B is convex, it is contractible, and covering space
theory says elements of I'(R; B) (i.e., sections of R over B) are determined by their values at any
single point x of B, i.e., to T['(R; x). Similarly, homotopy invariance means that H,(M, M — B; R)
is naturally isomorphic to H,(M, M — {x}; R), but we have identified (i.e., produced a natural
isomorphism between) these two R-modules.

Now to prove the actual theorem. For the vanishing, we again use a Mayer-Vietoris argu-
ment. The vanishing statement is known when A is a contractible compact subset, and we can
build any A up out of these. At each stage, will have a sequence

0— H,.1(M|AUB;R) — H,(M|AN B; R) — H,(M|A; R)  H,,(M|B; R) — H,(M|AN B;R) — ...

and the sheaf condition applies to show that the higher homology vanishes.
The other two claims follow from the natural isomorphism.
O

Definition 5.54. In particular H,(M";Z) = Z if M" is orientable and a choice of local orienta-
tion at any point (equivalently, a choice of orientation of M"™) yields a choice of distinguished
generator [M"] € H,(M";Z). This is called a fundamental class. In fact, for any coefficients
H,(M"; R) = R=H,(M";Z)®zR, and the absence of any Tor-term here implies that H,,_; (M"; Z)
is torsion-free. Since it is known to be finitely generated, it must be a free abelian group.

If M" is not orientable, then H,(M"; Z) = 0 while H,,(M";F») = F,. A similar argument to the
orientable case and universal coefficients shows that H,,_; (M";7) = Z/(2) ® Z* for some a.

Remark 5.55. The orientable closed 2-manifolds are precisely the genus-g-surfaces. The Klein
bottle and RP? are not orientable.

Remark 5.56. The fundamental classes of oriented manifolds allow us to get a geometric view
of certain homology classes. Let R be a ring. Consider arbitrary X, and a map f : N% — X from
an R-oriented manifold, giving f.([N]) € Hz(X;R). It is a theorem that all homology classes
arise this way with Z/(2)-coefficients. With Z coefficients, in dimensions d = 7, not all integral
homology classes are representable this way.
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If X = M" is an differentiable manifold itself, and @ = f.[IN] is a homology class obtained
from amap f: N% — M%, and if d < n/2 then we may actually obtain a as the class of a embed-
ded submanifold P € M". Moreover, all rational homology classes may be obtained this way,
without restriction on the dimension.

All this was proved by René Thom in his seminal paper [Tho54], in which he introduced the
theory of (co)bordism.

5.6 Poincaré Duality

Construction5.57. Let M be an R-oriented n-manifold and let A< M be a compact subset, and
let x € A. Recall that the cap product gives us a map

HX(M|A; R) x Hy, (M| A; R) — H,,_(M; R)

Recall that there are natural isomorphisms H,(M|A; R) = H,(M|x; R) = R. Write [M 4] for the
generator of H¥ (M| A; R) determined by the orientation. If A= M then this is just the fundamen-
tal class again, and in general it should be thought of as the “fundamental class with support on
A”. Write D4 : HE (M| A; R) — H,,_r(M; R).

If i : A< Bis an inclusion of compact sets, then there is a compatibility diagram

H¥(M|A;R) x  Hy(MIA;R)

T

i Hy-«(M|B;R)

/

HE(MIB)  x  H,(MIB)

sothat Dpga)(i«¢) = Dpgp(€). Therefore in the colimit, there is a well defined map Dy : H’Cc (M;R) —
H,_«(M;R). When M is compact, Dy : H*(M;R) — H,_x(M;R) is given by Dy (&) =& — [M]—
and in general, it wants to be this, but you have to restrict classes ¢ supported on a compact A
because [M] doesn’t always exist, only [M]].

Theorem 5.58. Let R be a ring. Let M be an R-oriented n-manifold. Then the map
Dy :HE(M; R) — Hy,_ ¢ (M; R)

given by
Dy (&) =&~ [M]

is an isomorphism.
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Proof. We give only an idea of the proof here, which should be enough to explain why this the
result is true. There is a major technical step omitted.

The simplest kind of manifold is R”, and one observes that the result holds for R”. We al-
ready calculated HX(R"; R) and H,,_1(R"; R)—both vanish except when k = n, and in each case
the modules are free of rank 1—in fact, in the process of establishing the existence of a funda-
mental class for oriented manifolds, we asserted there was a natural isomorphism between the
R-duals of these two modules. The — product H”(R"|B; R) x H,(R"|B; R) — R is actually just
the evaluation pairing, and so there is not just an abstract isomorphism between H!(R"; R) and
H,(R™; R), but a specific isomorphism depending only on the orientation.

Now we would like to build a general M up as a union of coordinate charts. Most impor-
tantly, we would like to build the result up for Ms that are unions of finitely many spaces, each
homeomorphic to an oriented R”. To that end, we would like a commuting diagram of Mayer—
Vietoris sequences

.. —=HNUNY) HE () e HA (V) HEUUY)

lDUnV lDU@_DV lDUuV

.. —=H"*UNV)—H"* U)o H" *(V) —H" F(UUV) — ...

It is the case that this exists, and so one can build up the result for any finite union of coordinate
charts in M.

One peculiarity of the sequence is the variance in the cohomology: if A is a compact subset
of U and B a compact subset of V, then we get

H*(UNV|AnB) = H*(M|An B) — H* (M| A) @ H*(M|B) = H*(U| A) @ H* (V| B)

from excision. Passing to colimits over a directed system pairs of A< U and B < V where A and
B are compact, we get the required maps on compactly supported cohomology. This gives the
slightly peculiar cohomology long exact sequence.

The hard part of the construction is showing the diagram commutes. We don’t prove that
here.

This suffices to establish Poincaré duality for all manifolds with finite atlases. For the gen-
eral case, we let % denote the collection of open subsets of M for which the duality map is an
isomorphism. This is partially ordered by inclusion. Let {U;} denote a totally ordered subset,
i.e., a chain. We know that homology commutes with direct limits of chain complexes, so we
can write

HY(JUp) = colimHX (U)) = colimH,,_ (U;) = H,,_(J U1

and so the union of the U; is also in %. Therefore, by Zorn’s lemma, there must be a maxi-
mal open set for which the result holds. Using the Mayer—Vietoris argument again, we see this
maximal open set must be M itself. O
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The two cases to pay attention to here are when M is oriented and R is arbitrary, or when M
is arbitrary and R = F».
Note that if M itself is closed, then H} (M; R) = H* (M; R)

Remark 5.59. This is an astonishing result, because the isomorphism is quite different from the
relation between homology and cohomology one obtains from universal coefficients.

Corollary 5.60. Let M" be a closed n-manifold where n is odd. Then y(M) = 0.

Proof. It is possible to calculate y(M) as the Euler characteristic of H. (M;[F»), since M has the
homotopy type of a finite CW complex.

Then H; (M;[Fy) = Hi(M; [F») by universal coefficients—these are dual vector spaces. By Poincaré
duality, however, H!(M;F,) = H,_;(M;F,). Writing h; for the dimension of the i-th homology

(the i-th Betti number), we see that h; = h,_;, and so Z?ZO(—I)ih,- =0. O

Construction 5.61. Suppose we have a map of oriented closed manifolds, f: M* — N”. We can
produce an Umkehr map in homology:

D —i * —i D
Hi(N;2) 2P ) Lo nb i o5 2) 2 Wy ooy (M5 2)

Construction 5.62. Let M be a closed oriented differentiable n-manifold, let A and B be closed
oriented differentiable submanifolds of dimensions a = n—i and b = n — j respectively, and
assume AN B intersect transversely.

We produce an orientation on An B by the following procedure. If An B is empty, there is
nothing to do. Pick a point p € An B, and observe that there is a short exact sequence of tangent
spaces at p

0— Tp(ANB) — Ty(A) @ Ty(B) — Tp(X) — 0

Pick an oriented basis for T, of the form (uy,..., up-i-j, v1,..., v}, w1,... w;) so that the ordered
basis (u1,...,v;) is an oriented basis for T, A and (wy, ..., Uy j, w1,..., w;) is an oriented basis
for T, B. Then declare (uy,..., u,—;- ;) to be an oriented basis for T,,(An B)—i.e., alocal orienta-
tion.

Now we can speak meaningfully of the fundamental classes [M], [A], [B] and [An B]. We
have defined [A] € H,,_;(A; R). In this case, let [A]* € H!(M; R) denote the Dj;-dual of the image
of [A] in H,,_;(M; R), and similarly for [B]* € H/ (M;R) and [An B]* € H'*/ (M; R). We assert that

[A]* — [BI* =[AN B]*.

This gives a geometric interpretation of the cup product.

Example 5.63. Let M = CP". This is an oriented manifold (or, at the very least, orientable) of
dimension 2n. We know from the cell structure that

H*(CP%2)=7Y>; 0<i<n
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for some class X;. We asserted previously that the relations were so as to make H* (CP"; Z) into
a truncated polynomial ring, but we don’t know why.

We establish the ring structure by induction. It is true in the case n = 1, because CcP! =~ 2,
and there is no interesting cup product for dimensional reasons.

We know by looking at the cell structure that the inclusion CP"*~! — CP" induces an isomor-
phism on Hi(-;Z) when i <2n -1, and is the 0-map in H2"(-; 7). So we can say that

H*(CP";2) = (Z[x2] ® ZYay)/ 1

where the subscripts denote the degrees of classes, and where the ideal I contains xﬁ”l and

X2 Yo, and Yzzn (for dimensional reasons) and some relation xg = aY>, for some a € Z. The hard
thing to determine is a.

The class x; is Poincaré dual to a generator of Hp,,_» (CP"; Z), since x, generates HZ2. Another
way of getting a generator of Hy,,_»(CP"; Z) is as the fundamental class of the embedded closed
submanifolds CP"~! — CP" embedded as hyperplanes (all these embeddings are homotopic
to each other). Let Py,...,P,_1, P, be n—1-embedded hyperplanes, and assume the P; are all
transverse. Say, P; is given by the vanishing of the i-th projective coordinate. Then, by our
geometric identification of cup product, the class of xg is the class of the dual of [P1 NPy N---N
Py]. This intersection is a point, so the class of xJ is (up to sign, at least) the poincare dual to
[*] € Hyo(CP"; Z). But this is [CP"] itself.

Example 5.64. The same story works the same way for RP", except you have to use F, coeffi-
cients because the manifolds appearing are not Z-orientable.

Example 5.65 (Alexander duality). Let X be a compact subspace of S”. A point-set argument
says that because S” is locally contractible, X is the limit of a directed system of open neigh-
bourhoods U; o X, all of which deformation retract onto X.

Then Hi(S" - X;R) = H? k(S - X;R), by Poincaré duality. Further (R coefficients used
throughout),

H k" - X) = coliimH”‘k(S” - X|(S"-U;) =
= coliimH"_k(S” -X,Ui-X)
= coliirnH”_k(S",Ui)
=H"%(8", X)
— ATkl

where the last step comes from the long exact sequence in cohomology associated to the pair
(8™, X) and requires k = 1.
In the exceptional case of k = 0, use functoriality for the map (S”, ) — (5", X) to see that

(8" - X; R =A"*1(X;R)

for all values of k.



Appendix A

Category Theory

A.1 Categories, Functors and Natural Transformations

We generally disregard problems of size, viz. whether or not something is a set or not.

Definition A.1. A category C consists of a collection of objects, obC and a collection of mor-
phisms MorC, such that

1. Every morphism has a source in obC and a target in obC. A morphism f is often written

f:X—=YorX N Y, where X is the source and Y is the target.

2. For any two objects X and Y, there is a set Morc(X, Y) or C(X, Y), consisting of precisely
those morphisms of C having source X and target Y.

3. For any three objects X, Y, Z of C, there is a composition of morphisms
0:C(X,Y)xC(Y,2) — C(X, 2)

and this composition is associative in that fo(goh) = (fog)oh whenever these composites
are defined.

4. For each object X of C, there exists an identity morphismidx € C(X, X) such that foidx =
f and idx o g = g whenever these composites are defined.

Remark A.2. An easy and standard argument proves that idx is the unique morphism X — X
with the stated property.

Notation A.3. There are categories Set, Gr, Ab, of sets, groups, abelian groups, and many other
similar categories of objects commonly studied in mathematics. These are generally large cate-
gories, in that the collection of objects does not form a set.

57
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Example A.4. There are also small categories, where the collection of objects forms a set, and
therefore the collection of morphisms also forms a set (under our hypotheses). For instance,
given any partially ordered set S, one can construct a category, also called S, where one regards
‘element of” and ‘object of” as synonymous, and then declares that S(a, b) = @ if b < a and that
S(a, b) consists of one morphism if a < b.

It is often possible to depict such small categories diagrammatically. It is customary to draw
only a subset of all morphisms, and to leave out morphisms that can be inferred from the mor-
phisms and objects drawn. In particular, identity morphisms are seldom drawn.

1. The standard span:

O <—m0 —> o

2. The standard cospan:

o —> 0 <—— o

3. The category N (with the usual order)

0 1 2 3

Example A.5. There is a category Top of topological spaces where the objects are topological
spaces and morphisms are continuous functions. There is also a category of pointed spaces,
Top,, where the objects are pairs (X, xo) where X is a topological space and xy € X. The mor-
phisms are the based maps, i.e., Top, ((X, xo), (Y, y0)) is the set of continuous f : X — Y such that
f(x0) = yo.

Definition A.6. Given a category C, a subcategory, D of C consists of a subcollection obD of obC
and a subcollection MorD of MorC, containing id x for all objects X in obD, such that MorD is
closed under composition.

Example A.7. There are many examples of subcategories that arise by restricting the class of
objects, but not restricting the morphisms between the objects. For instance, Ab is the subcat-
egory of Gr where the groups considered are required to be abelian, but given any two abelian
groups G, H, one has Gr(G, H) = Ab(G, H). In this situation, Ab is a full subcategory of Gr.

Example A.8. At the other extreme, it is possible to form subcategories where one considers all
the objects, but strictly fewer morphisms. For instance, given a field k, one might consider the
category having as objects the collection of finite-dimensional k vector spaces, but where the
morphisms are restricted to be isomorphisms. This is a subcategory of the usual category of
finite-dimensional k vector spaces and all k linear maps, and it appears in some definitions of
algebraic K-theory.

Definition A.9. Given two categories, C and D, it is possible to form a product category CxD. The
objects in this category are ordered pairs (X, Y) where X is an object of C and Y is an object of
D. The morphisms are also ordered pairs, (f, g) : (X,Y) — (Z, W) is a morphism in the product
categoryif f: X — Zisamorphismin Cand g: Y — W is a morphism in D.
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Definition A.10. If Cis a category, and f : X — Y is a morphism in this category, then we say
that f is an isomorphism if there exists a morphism f~!:Y — X such that f~'o f = idx and
fof~!=idy. It isimmediate that idx is an isomorphism.

Remark A.11. Anisomorphism in Top or a related category is generally called a homeomorphism

Definition A.12. If C is a category, and f : X — Y is a morphism in this category, then we say
that f is

1. a monomorphism if, whenever g, h : Z — X are morphisms, the statement fog = foh
implies g = h. That s, f is left cancellable,

2. an epimorphism if, whenever g,h : Y — Z are morphisms, the statement go f = ho f
implies g = h. That s, f is right cancellable,

3. a bimorphismif it is both a monomorphism and an epimorphism.

Definition A.13. If C is a category, and f : X — Y is a morphism in this category, then we say
that f is

1. a split monomorphism if there exists a morphism g: Y — X such that go f =idy.

2. a split epimorphism if there exists a morphism g: Y — X such that fo g =idy.

Exercises
1. Suppose f: X — Y is an isomorphism. Prove that f~! is uniquely determined by f.

2. Prove that the class of isomorphisms in a category has the fwo-out-of-three property,
namely: if
f g

A——B——C

are composable morphisms such that two of f, g and go f are isomorphisms, then so too

is the third.
3. Prove that the class ofisomorphismsin a category has the fwo-out-of-six property, namely:
if
At.p-t.c . F

are composable morphisms such that go f and & o g are isomorphisms, then so too are
f,ghand hogo f.

4. Determine the monomorphisms, epimorphisms and bimorphisms in the category of sets.
5. Give an example in Top of a bimorphism that is not an isomorphism.

6. Let Haus denote the full subcategory of Hausdorff topological spaces. Give an example in
Haus of an epimorphism that is not surjective.
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A.2 Functors and Natural Transformations

Definition A.14. Given two categories C and D, a (covariant) functor F : C — D consists of an
assignment
F:obC — obD

and for every pair of objects X, Y in obC, a function
F:C(X,Y)—-D(F(X),F(Y))
such that
1. F(idx) =idpx for all object X of C and
2. F(fog)=F(f)oF(g) wherever f o g isdefined.
Example A.15. Given any category C, there is an identity functor idc.

Definition A.16. Given two categories C and D, a contravariant functor F : C— D consists of an
assignment
F:obC — obD

and for every pair of objects X, Y in obC, a function
F:C(X,Y)—D(F(Y),F(X))
such that
1. F(idx) =idpx for all object X of C and
2. F(fog) =F(g)oF(f)wherever fogisdefined.

Remark A.17. Warning: contravariant functors reverse the direction of morphisms. Failure to
keep adequate track of the variance of functors is the category-theoretical analogue of a sign
error in arithmetic. These errors are minor, frustrating and common.

Notation A.18. Given a category C, there is an opposite category, C°P having the same collection
of objects, but where
C?(X,Y) =C(Y, X).

One may view a contravariant functor F : C — D as a covariant functor F : C°? — D.

Example A.19. There are many functors in mathematics that consist largely of forgetting struc-
tures. Such functors are often called “forgetful”, but it is difficult to give a precise definition of
what this means. Common examples include:

1. V:Top, — Top, forgetting the basepoint.
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2. V :Top — Set, forgetting the topology.
3. V:Ab — Grp, forgetting that the group is abelian.

Example A.20. There is a canonical functor 1 : C°? x C — Set given by (X, Y) = C(X, Y). Fixing
either X or Y gives rise to functors

1. nx:C— Set,
2. n¥ :C°P — Set.
Definition A.21. Let F: C — D be a functor. We say F is
1. fullif, for any two objects X, Y of C, the function F: C(X,Y) — D(F(X), F(Y)) is surjective.

2. faithfulif, for any two objects X, Y of C, the function F: C(X, Y) — D(F(X), F(Y)) is injec-
tive.

3. essentially surjectiveif, for any object Z of D, one can find an object X of C such that there
exists an isomorphism Z — F(X).

Definition A.22. Given two (covariant) functors F, G : C — D, a natural transformationV : F — G
consists of a collection of morphisms ¥y : F(X) — G(X), one for each object X of C, such that
for any morphism % : X — Y in the category C, the square

FX) — G(X)

LF(h) jG(h)

FIY) —2~ G(Y)
commutes, which is to say: G(h)oWx =¥y o F(h).

Remark A.23. A similar definition of natural tranformation can be made if F and G are both
contravariant. The details are left to the reader.

The word “natural” is often applied to morphisms between objects in categories. It should
be used only to apply to a morphism that is part of a, possibly implicit, natural transformation.
If the morphisms Wy are all of a certain type, for instance all isomorphisms or all inclusions,
then W x may be said to be a natural isomorphism or a natural inclusion as appropriate.

Example A.24. Fix afield k. Let kVect denote the category of k vector spaces and all linear maps
between them. Then there is a contravariant functor sending f: V. — Wto f* : W* — V*, where
V* =Homg(V, k) and f* is the evident map Homy (W, k) — Homy (V, k) given by postcomposing
with f.

There is a covariant functor sending f: V — W to f**: V** — W™** given by applying V*
twice. That is, V** is the k vector space of linear functionals on the k vector space of linear
functionals on V. There is a natural transformation e : idyect — ()** given by a collection of
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k-linear maps ey : V — V** given by defining ey (x), where x € V, to be the functional sending
weV* tow(x).

At least if one assumes the Axiom of Choice, the map ey : V — V** defined above is a natural
inclusion. If one restricts to the full subcategory of finite dimensional k vector spaces, then e is
a natural isomorphism, but if V is not finite dimensional, then ey : V — V** is not an isomor-
phism.

Definition A.25. If F: C — D is a functor, then we say F is an equivalence of categories if there
exists a functor G : D — C and natural isomorphisms ®: Go F — id¢ and ¥ : Fo G — idp.

Remark A.26. In contrast to the case of isomorphisms, the functor F is not sufficient to deter-
mine G, ¥ and ® uniquely. The notion of “isomorphism of categories”, where Go F and Fo G are
required to be identity functors, is not particularly common.

Remark A.27. In the presence of a sufficiently strong version of the Axiom of Choice, a functor
is an equivalence of categories if an and only if it is full, faithful, and essentially surjective.

ExampleA.28. Let Fin denote the category of finite sets. This category is not small. Let N denote
the full subcategory of sets {@, {1}, {1,2},...}. Then N — Fin is an equivalence of categories. In this
situation, one says that N is a small skeleton for Fin.

Remark A.29. If one restricts attention to small categories, then one can define a “category of
categories”, but as we have remarked, the notion of isomorphism one gets is not generally use-
ful. It is better to incorporate the natural transformations and form a “2-category” of small
categories, a structure having objects (categories), morphisms (functors), and morphisms of
morphisms (natural tranformations). We will not pursue this further here.

Exercises
1. Let F: C — D be a functor. Show that F preserves isomorphisms and split mono- and
epimorphisms. Show by example that it need not preserve monomorphisms or epimor-
phisms that are not split.

A.3 Adjoint Functors

Definition A.30. Given two functors L:C — D and R:D — C, we say L is left adjoint to R and R
is right adjoint to L if, for any object X of C and Y of D, there exists a bijection

Yxy :DL(X),Y) — C(X,R(Y))
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and such that the bijection ¥ is a natural isomorphism of functors C°P xD — Set. More explicitly,
if f: X — X'and g: Y’ — Y are morphisms in the appropriate categories, then the square of sets

\IJX’,Y’

D(L(X"),Y") —= C(X',R(Y"))

T

D(L(X),Y) —== C(X,R(Y))
commutes.

Example A.31. Forgetful functors often have one or both kinds of adjoint. For instance, the
forgetful functor V : Top — Set has both a left- and a right-adjoint. The forgetful functor V :
Ab — Set has a left adjoint, but no right adjoint.

Example A.32. A very important family of adjunctions is modelled on the following one: fix a
set X. This gives rise to two functors Set — Set; the cartesian product functor Y — Y x X, and
the mapping space functor Z — Z%X, where ZX is notation for the set of functions X — Z. That
these are indeed functors Set — Set is left as an exercise. We assert that they form an adjoint
pair, in that there is a natural bijection

Set(Y x X, Z) — Set(Y, Z%).

Veritying this is left to the reader.

Example A.33. The previous example has a variant for topological spaces, provided some ad-
ditional hypothesis is placed on the spaces appearing. For instance, if X is a locally compact
Hausdorff space, then there is a natural bijection

Top(Y x X, Z) — Top(Y, € (X, Z2))
where € (X, Z) is the space of continuous functions X — Z given the compact-open topology.

Definition A.34. Given an adjoint pair of functors L: C — D and R : D — C, we can define two
natural transformations.

1. The unit of the adjunction € :id¢ — Ro L

2. The counit of the adjunction n: Lo R — idp.

The unit is formed by letting n x : X — R(L(X)) be the element of C(X, R(L(X))) corresponding to
idrx) € D(L(X), L(X)) under the natural isomorphism of the adjunction. The counit is formed
similarly.

Remark A.35. We continue with the notation of the previous definition. The unit and counit
have certain universal properties. In the case of the unit, suppose that there is a morphism f :
X — R(Y) in C. Since L and R are adjoint, the morphism f is equivalent to a unique morphism
g : L(X) — Y. This morphism can be written, tautologically, as id;(x)c g : L(X) — L(X) = Y,
which, by adjunction, is equivalent to a factorization f = R(g)cex : X — R(L(X)) — R(Y).
Dually, any morphism /% : L(X) — Y factors uniquely as ny o L(i) : L(X) — L(R(Y)) = Y.
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Remark A.36. If L: C — D and M : D — E are two functors, each left adjoint to functors R and S
respectively, then Mo L is left adjoint to Ro S.

Proposition A.37. SupposeL, L’ : C — D are two naturally isomorphic functors and R, R’ are right
adjoints to L and L'. Then R and R’ are naturally isomorphic.

This result applies in particular in the case where L =L'.

A.4 Diagrams, Limits and Colimits

Notation A.38. If1is a small category and C is a category, then a functor D : I — C may be called
a diagram. If, for any morphism f: i — j in the category I, the morphism D(f) depends only on
i and j, then we say the diagram is commutative.

Example A.39. Not all commonly occurring diagrams are commutative. For instance, pairs of
parallel morphisms X = Y appear often but form a commutative diagram only when the two
morphisms agree.

Definition A.40. Given a small category I and a category C, one can define a category Fun(l, C)
of I-shaped diagrams. The objects are the functors D : I — C, and the morphisms are the natural
transformations between them.

Definition A.41. Give a small category I, a category C and an object X of C, we can form the
constant I-shaped diagram with value X by consty(X) : I — C by sending all objects to X and all
morphisms to idx. In fact, consty is a functor consty : C — Fun(l, C).

Definition A.42. Let I be a small category and C a category.

Given an I-shaped diagram D in C, a limit of D is an object lim D of C and a natural trans-
formation @ : consty(lim D) — D such that for any object X of C equipped with a natural trans-
formation ¥ : consty(X) — D, there is a unique map u : X — lim D such that ¥ = ® o const(u).

Dually, a colimit of an I-shaped diagram D is an object colim D of C and a natural transfor-
mation @ : D — consty(colim D) such that for any object X of C equipped with a natural trans-
formation ¥ : D — constj(X), there is a unique map u: colim D — X such that ¥ = const(u) o ®.

Remark A.43. Strictly speaking a limit or colimit of a diagram encompasses both the object and
the natural transformation of functors—which is to say, the morphisms. In practice, one often
refers to the object as the limit or colimit, leaving the morphisms implicit.

Remark A.44. Tt follows easily from a standard argument that if L and L’ are two limits of the
same diagram D : I — C, then there is a unique isomorphism f: L — L’ in C such that the dia-
gram

consty(f)

consty L consty L’

N,

D
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commutes. A dual statement applies to colimits.
Since they are unique up to unique isomorphism, one often abuses terminology and speaks
of “the limit” or “the colimit” of a diagram.

Remark A.45. There is another view of limits and colimits that is sometimes useful. Suppose the
functor consty has a right adjoint ¢. Then a limit of D is given by the object £(D) and the counit
map consty (D) — D.

Dually, if consty has aright adjoint colim, the colimit of D is the unit map D — constjcolim(D).

Example A.46. The language used above is technical. In practice, the idea is simple. Let us
consider as a category I the standard cospan

O ——— 0 <——— o

Let C = Top be the category of topological spaces. Then the data of an I-shaped diagram D
consists of three spaces and two continuous functions X — Y — Z.

The constant-diagram functor takes a space W and produces W — W — W, where the mor-
phisms are identities. A natural transformation const(W) — D is the data of continuous func-
tions f: W — X, g: W —Y and h: W — Z such that

commutes, o1, more succinctly
(A.1)

Y —= 7.

Note further that the dotted arrow is determined by either f or i, and may be omitted.
The space lim D and the natural transformation amounts to an objcet and morphisms fitting
in the following diagram

limD - x (A.2)
b
Y Z.

This diagram has the property that if W is as in Diagram (A.1), then there exists a unique
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map W — lim D such that Diagram (A.3) commutes.

(A.3)

This particular kind of limit is called a fibre product and is written X xy Z. While our def-
inition specifies the limit only up to unique isomorphism, we can easily construct an explicit
model for X xy Z in the category of topological spaces. Most usually, let X xy Z consist of the
subset of pairs (x, z) € X x Z such that the image of x and of z in Y agree. Then endow X xy Z
with the coarsest topology (fewest open sets) such that the evident projection maps X xy Z — X
and X xy Z — Z are both continuous.

It is instructive to consider X xy Z in the following cases:

1. When Y is a singleton space.

2. When X — Y is the inclusion of a subspace.
Remark A.47. By uniqueness of adjoints and of unit or counit maps, if a limit or colimit of a
diagram exists, it is unique up to unique isomorphism.

Notation A.48. A category in which all limits can be constructed is complete and one in which
all colimits can be constructed is cocomplete. The following categories are all complete and
cocomplete:

1. Set.
2. Top and Top,.
3. R-Mod.

The full subcategory Haus of Hausdorff topological spaces is complete but not cocomplete.

Notation A.49. If D is a diagram in C consisting of a family of objects {X;};c; and no nonidentity
arrows, then a limit of D is called a product of {X;};c; and a colimit of D is called a coproduct
of {X;};e;. The product of topological spaces is an example of a categorical product, and the
disjoint union of topological spaces is an example of a categorical coproduct.

Notation A.50. If D is a diagram in C of the form

A<—>
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then a limit of D is called a pullback of D, and often denoted A x¢ B.
The dual concept is the pushout, a colimit of.

A——B

|

C

Proposition A.51. Suppose F : C — C is a functor between complete categories such that F has a
left adjoint, L. Suppose further that D is a diagram in C. Letlim D be a limit of D. Then F(lim D)
is a limit of F(D).

Dually, suppose F : C — C is a functor between cocomplete categories such that F has a right
adjoint, R. Suppose further that D is a diagram in C. Let colim D be a limit of D. Then F(colim D)
is a colimit of F(D).

Remark A.52. Let C be a category. Consider the empty diagram D. If lim D exists, then it is an
object * such that all objects X of C are equipped with a unique morphism X — . Such an
object * is called a terminal object of C. Any two terminal objects are isomorphic by a unique
isomorphism.

Dually, the colimit of an empty diagram is called an initial object; such an object may often
be denoted @. If an object is both initial and terminal, then it is called a zero object.

Exercises

1. The forgetful functor V : Ab — Set has a left adjoint, L. Describe the unit mape:S —
V(L(S)).

2. Show that V' : Ab — Set does not preserve colimits. For instance, consider the colimit of a
diagram consisting of two nonzero abelian groups and no nontrivial arrows. Therefore V'
does not have a right adjoint.

3. Let R be aring and let M denote the category of R-modules and R-linear maps, and let
f:M — N be amorphism in M. Describe the limit of the diagram

0
Mﬁf-N.

Express the cokernel of f as the colimit of a diagram.

4. Consider the forgetful functor V : Top, — Top. Describe a left adjoint to this functor. Prove
that V does not have a right adjoint.

5. Let X be alocally compact Hausdorff space, and consider the adjunction between x X and
%6 (X,-) in Top. Describe the counit of this adjunction.
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Tensor Products, Tor and Ext

B.1 Tensor Products

Fix a commutative ring R and consider two R modules A and B. In more generality, R can be
noncommutative and A need only be a right R module and B a left R module, but we will not
need this level of generality.

Definition B.1. Amap f: Ax B— M of R-modules is bilinear if
1. f(ra+r'a,b)=rf(a,b)+r'f(a, b)and
2. fla,rb+r'b)y=rf(a,b)+r' f(a,b)

hold for all choices of element.

Remark B.2. The tensor product A®g B is a universal R-module for R-bilinear maps f: Ax B —
M. Thatis, A®g B is an R-module, there is a canonical R-bilinear map Ax B — A®gB, and given
any R-bilinear map f: A x B — M, there is a unique factorization of f through Ax B — A®pg B.

Remark B.3. We can study the tensor product using the images of elements (a,b) € A x B in
A x g B. The image of such an element is called an elementary tensor and is written a® b. The
elementary tensors satisfy bilinear relations:

1. a®(b+b)=aeb+acb
2. (a+a)eb=aeb+a eb
3. ra®bh)=(ra)®b=a®rbh.

You can use the above to produce the tensor product: It is the R-module generate by all el-
ementary tensors subject to these relations. In fact, to generate A®g B, it’s sufficient to take
elementary tensors a ® b as a and b range over some sets of generators of A and B.

68
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Remark B.4. It follows from the above that there is a natural fwist isomorphism A®g B = B®g A.
It is also the case that (A®g B) g C = A®p (B ®g C). This can be worked out directly from the
universal property.

ExampleB.5. If F} and F, are free R-modules with bases {ng}A and {bf,}c, then F; ® g F» is a free
R-module with basis {bgr ® b%x}AxC-

Remark B.6. Similarly to the above, there is a natural isomorphism

D 4

iel

®RBE®(AZ' ®rB)

iel

RemarkB.7. The data ofahomomorphism ¢ : A® g B — Cis equivalent to a bilinear map AxB —
C, which is in turn equivalent to an R-linear map A — Hg(B, C). That s,

Hompg(A®g B,C) = Hompg(A,Homg(B, C))

so that - ®p B is left adjoint to Hompg (B, -).
From this we can derive the very useful fact that if

0-X—-Y—-2Z2—-0

is a short exact sequence of R modules, then
X®rB—Y®rB— Z®rB—0

is an exact sequence of R-modules. We say that - ® B is a right exact functor. The same also
holds for the isomorphic construction B ®g-.
B.2 Examples
ExampleB.8. If I is an ideal of R, then there is a short exact sequence

0—-I—-R—R/I-0

and if M is an R-module, then applying - ® g M gives us

TexMY RexM=M— (RIT) &g M— 0.

Identifying R® p M = M see that ¢ sends an elementary tensor i ® m to i m. Therefore, im¢ = I M,
precisely the submodule of M generated by multiplying all elements of M by all elements of I.
We deduce M/IM = (R/1) ®r M.
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Example B.9. The previous example gives us a calculation of all tensor products of f.g. abelian
groups. Each such group decomposes as a direct sum of cyclic groups. Z®z A= A= A®z7Z, so
all that remains is the calculation of tensor products

Z1(m)®7Z1(n)

but thisisjust Z/(n)/mZ/(n) £ Z/ gcd m, n.
Remark B.10. The following is a list of properties of the tensor product over R.
1. -®p-is a functor of both variables (a bifunctor).
2. -®p Ais additive.
3. -®p A preserves arbitrary direct sums.
4. -®p A preserves quotients.
5. -®g R is naturally isomorphic to the identity functor.

Almost everything we do involving tensor products can be deduced from these.

Remark B.11. If ¢ : R — S is a homomorphism of commutative rings, then ¢ makes S into an
R-module, allowing us to define a functor S®p-. If M is an R-module, then S® zr M (ostensibly an
R-module) can be endowed with an S-module structure by s’'(s ® m) = (s's) ® m and extending
to sums of elementary tensors.

B.3 The Tor functor

We continue our digression into homological algebra. Suppose we are given a short exact se-
quence of R-modules:
0—-A—-B—-C—0

and another R-module M. We apply ® r M and get a sequence
AQrM —B®rM —C®r M —0

(this much is guaranteed to be exact).
In certain cases, the sequence is actually short exact.

Definition B.12. Let M be an R-module. We say M is flat if the functor - ® g M preserves short
exact sequences, or equivalently, preserves injections.

Example B.13. The R-module R is flat. A direct sum of flat modules is flat. A free module is flat.
If R is a field, then all R-modules (R-vector spaces) are free, therefore flat.
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ExampleB.14. The Z-module Z/(n) is not flat (if n = 2). For instance, take the sequence
0—-222—27/(n)—0
and apply - ®z Z/(n) to get the exact sequence
Z1(m) > Z/(n) —Z/(m) -0

Example B.15. (As-yet unproved assertion) An abelian group, that is, a Z-module, is flat if and
only if it is nontorsion (all nonzero elements have infinite order).

Construction B.16. Let M be an R-module. It is possible to write a long exact sequence
w—>Fb—->F—->F—M-—0

in which the F; are free R-modules. This is called a free resolution of M.
Suppose N is an R-module. Then we can make a chain complex (if N is not flat, then it need
not be exact):
= FHQprN—-F®pr N — Fyer N — 0.

Define the i-th homology of this complex to be
H;(F. ®g N) = Tory (M, N).
It is the case that Torﬁ? (M, N) does not depend on the free resolution of M we used. We will

not prove this in full generality, however.

Remark B.17. Given a map f : M; — M, of R-modules, one can produce compatible free reso-
lutions, C.,; — M; and C. » — M, and therefore by functoriality of ® g N and of homology, we
can produce a map f; : Tor. (M;, N) — Tor. (M>, N). In this way Tor; becomes a functor for all i.

Example B.18.
Tor%(M,N) = M &g N

We will concentrate on the case of Tor over a principal ideal domain R, most importantly, Z.
In this setting we establish some of the unproved assertions above, at least for Tor}?.

LemmaB.19. Let R be a PID and M, N be R-modules. Then Torliz(M, N)=0.

Proof. 1f you believe the above statement about independence of the resolution, then this fol-
lows from the existence of a resolution of length 2:

0—F —Fp— M—0.
O

Whether or not you're willing to believe the unproved assertion, we use this lemma to justify
ignoring Torlz?z. In fact, from now on, we restrict attention to free resolutions of length 2.
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Remark B.20. If M is a free R-module, then Tor! (M, N) = 0. The reason is that any free resolution
will take the form 0 — F; — F1 @ M — M — 0, and applying - ® g N results in an exact sequence
again.

Proposition B.21. Let R be a PID. Let M and N be R-modules, let 0 — F; 9, Fy k4 M — 0 and
0— Gy 5 Gy Ym— 0 be two free resolutions of M. Then

ker(@ ® idy) = ker(w ®idy)
and either can be used as a construction ofTor}?(M ,N). In summary, TorllLa is well defined.

Proof. For the sake of making the construction more easily, identify G, and F; with their images.
Construct a diagram of R-modules:

G —GeoeF——F,

L

Gy Gy M

Most of the arrows in this diagram are self-evident. The exception is the map Fyt0Gy. This is
constructed as a lift of the map ¢: Fy — M to amap ¢ : Fy — Gy, such that o ¢ = ¢.

We claim the map G; & Fy — Gy is surjective. Suppose g € Gy is some element, and choose
f € Fy mapping to w(g) € M. Then g — () lies in the kernel of v, and therefore in the image of
G —G.

Now we determine the kernel of G, & Fy — Gy. Suppose (g, f) — 0. Then ¢(f) = —g. Applying
v, we see that ¢(f) =0, so f must lie in F; = ker(¢). Then gB(f) € G, and so g is uniquely
determined, g = —¢(f).

The upshot is that there is a commutative diagram with split short exact sequences for rows

0 F Fy

]

G —GeF——F,

Since the rows are split exact, applying -® g N gives a diagram where the rows are still short exact

0 FL®r N Fyer N

| | |

Gi® g N——= (G199 F)) g N ——= Fy®r N

Observe that the middle column here is a free resolution of Gy, and therefore the inclusion F; —
Gy @ Fj is actually split. Applying the snake lemma gives us an exact sequence

0—>ker(6®idN)—>G1®RN—» Go®rN—0

thus establishing the result. O
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Proposition B.22.
Tor (EB M;, N) = P Tor(M;, N)

iel iel
and similarly in the other variable.

The proof is immediate
We now concentrate on the case R = Z, i.e., on abelian groups.

Lemma B.23.
Tor(Z,A) =0

and
Tor(A,Z) =0

Since Z ®z - and - ®7 Z are naturally isomorphic to the identity functor, this is immediate.

Lemma B.24.
Tor(Z/(n),A) ={a€ A| na=0}

Proof. Look at the obvious resolution. O

That is, Tor(Z/(n), A) is the set of n-torsion elements in A. This is sometimes written , A.
This is what gives the Tor functor its name.

Example B.25. These three results allow us to calculate Tor(A, B) for all f.g. abelian groups. The
case we have not yet covered is Tor(Z/(m), Z/(n)), which is the m-torsion in Z/(n), a group iso-
morphic to Z/gcd m, n.

Remark B.26. We observe that in all cases, Tor(M, N) = Tor(N, M). This is a general theorem,
but we will not prove it.

Proposition B.27. Let0 — M; — M» — M3 — 0 be a short exact sequence of modules over a PID
R. Let N be an R-module. Then there is a long exact sequence

0 — Tor® (M, N) — Tor® (M», N) — Tor® (M3, N) = M @ N — My, ® g N — M3 ®g N — 0

That is, Torf (M, ) is measuring the failure of M ® - to be exact.

B.4 Ext

Remark B.28. Let R be a (commutative) ring and let B be an R-module. Let
0— A — Ay — A3—0

be a short exact sequence of R-modules. We remark that Hompg(:, B) is a contravariant functor,
and that
0 — Hompg (A3, B) — Hompg(Ay, B) — Hompg(A;, B)

is exact.
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Remark B.29. The functor Hompg(:, B) does preserve split short exact sequences. Moreover,
Hompg(B;cs Ai, B) = [1;e; Hompg(A;, B), even in the case of infinite I.

Definition B.30. We define Ext;'?(A,B) analogously to Tor. That is, we take a free R-resolution
F. — A, then apply Hom(:, B), then finally take the homology of the possibly inexact chain com-
plex Hom(F., B).

Remark B.31. In all cases, Ext% (A, B) = Hompg (A, B). Note that, in contrast to ®p, the functor
Hompg (A, B) is not symmetric. For instance, Homz(Z,Z/(n)) = Z/(n) whereas Homz(Z/(n),Z) =
0. The same goes for all the Ext groups—they are not symmetric in general.

Remark B.32. Exth(A; ® Ay, B) = Exth(A;, B) ® Exth(A,, B) and Exth(A, By & By) = Exth(A, B)) @
Extr (A, By).

Remark B.33. If Ais a free R-module, then Extfq(A, B)=0fori=1.

Remark B.34. As with Tor, if the ring R is a PID, then the resolution has length 2, and therefore
only Ext? and Ext! are nonzero. We will not show here that Ext}?(A, B) is independent of the free
resolution, but the argument is similar to that used for Tor.

Proposition B.35. Over a PID, there is a long exact sequence

0 — Hompg (A3, B) — Hompg (A2, B) — Hompg (A1, B) —
— Ext! (A3, B) — Ext!(A,, B) — Ext! (A3, B) — 0

Example B.36. We can carry out the following calculations:
1. Over afield k, all higher Ext groups vanish.
2. Ext}(Z/(n), A) = AlnA.

Remark B.37. Suppose
0—-B—-X—-A—-0

is a short exact sequence of abelian groups, and 0 — F; — Fy — A — 0 is a free resolution, then
we can lift the map Fy — A to amap Fy — X. Then the composite map F; — Fy — X — Ais 0, so
it follows that there is amap F; — B, i.e., an element ¢ € Homp (F;, B). It turns out that the lift we
chose affects ¢, but only up to an element of Homp (Fy, B). The short exact sequence therefore
determines an element of ExtlZ (A, B). There is a bijection between Ext% (A, B) and isomorphism
classes of short exact sequences. We do not prove this here, or pursue the idea further.
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Solutions

C.1 Homework2

Exercise C.1. Classify up to isomorphism all abelian groups A that can appear in a short exact
sequence

0—7/(pY L a—L 7/(ph) —>0.
Solution C.2. The isomorphism classes that can arise are A = Z/(pk) ) Z/(p‘”b’k) where k <

min{a, b}.
We give three solutions, in increasing order of sophistication.

1. The group A, by coset-counting, must have order p*+?.

Identify Z/(p®) with its image in A. Choose an element x € A such that g(x) is a generator
of Z/(pb). We know that pbx € Z/(p%), and we may therefore find a generator y of Z/(p%)
such that

pbx = pky (C.1)
for some k € {0,...,a— 1}. This equation implies that p?*% ¥ x = 0.

We claim that {x, y} form a set of generators for A. Let a € A, then there is some m such
that mg(x) = g(a), so that mx — a is a multiple of y.

Now we use (C.1) to give a presentation of A. We split this into two cases.

(a) k < b. In this case, define y' = —p? *x + y. The group A is generated by {x, '}, and
these are p**?~k_ and p¥-torsion respectively, so they induce a surjective homomor-
phism

zI(p™" M ezi(ph - A

By order considerations, this is necessarily also an injection, so an isomorphism.
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In order to prove that this case actually arises, define a map Z/ (p‘”b_k) eZ/ (pk) —
Z/(p?) sending (1,0) — 1 and (0,1) — p?~*. The kernel is cyclic of order p%, gener-
ated by (pb_k, -D.

(b) k> b. In this case, define x’' = x — p¥~?y. The elements {x, y} generate A, and they
are p’- and p“-torsion. As in the previous case, this establishes an isomorphism
ZI(pY ezl (p?) — A

2. We know that A is a finitely generated abelian group of order p®*?. Let x — 1 under g and
let y be a generator of ker(g). Then {x, y} generates A, as in the previous solution.

By the structure theorem of f.g. abelian groups, A= Z/(p) e Z/(p%)&---&Z/(p°m), where
each c¢; > 0. Calculating the order gives Z;’i L Ci = a+ b. We wish to show that m < 2. We
claim that if m = 3, then A cannot be generated by 2 elements. This is not trivial, but one
can argue as follows:

A z Z z

s _ .0 —
pA (p) (p) (p)
with m summands. Any generating set of A descends to give a generating set of A/ p A, but
Al pAis avector space of dimension m over Z/(p), so can have no basis of cardinality less
than m, and therefore m < 2.

It follows that A = Z/ (p‘“b_k) &7/ (pk). It remains to ascertain which values of k can
actually arise. Without loss of generality, let k < a+b—k. Then the existence of a surjection
A—7ZI (pb) implies that at least one element of A has order pb or more. The existence of
an injection Z/(p%) — A implies that at least one element of A has order p?. Therefore
a+ b— k = max{a, b}, which is equivalent to k < min{a, b}.

As in the previous answer, it is possible to construct A for each value of k by means of
(1,0)— 1 and (0,1) — p?~k,

3. (Sketch of solution). There exists a functor Ext : Ab x Ab — Ab, the Ext-functor. Given
two abelian groups, the elements of Ext(A, B) are in bijection with isomorphism classes of
extensions of B by A, that is, the elements are in bijection with exact sequences

0 A X B 0

where two such exact sequences are equivalent if there is a commutative diagram

0 A X B 0
0 A X' B 0.

The general theory of Ext can be found in [Wei94, Chapters 2 & 3].

It should be noted that two extensions 0 - A— X - B—0and0 - A— X' - B —0
might satisfy the condition that X = X’ without being equivalent. For instance, if B =
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Z1(3) and X = X' = Z, there are two different maps X — B, given by 1 — +1. These two
maps yield inequivalent extensions 0 — Z — Z — Z/(3) — 0. Since we are interested in
isomorphism classes of groups A fitting in 0 — Z/(p*) — A — Z/(pb) — 0, this will be a
concern for us.

Our first calculation is that Ext(Z, B) = 0 for any abelian group A. This is because the group
Z is free, and any short exact sequence

0—-B—-X—-2Z—-0
splits: X = Be& Z.

The functor Ext(4,-) is a derived functor of Hom(A4, -) and Ext(:, B) is a derived functor of
Hom(-, B). This means, in our situation, that there is an exact sequence for calculating
Ext(Z/(pb), Z/(p%). Start with the usual presentation Z — Z — Z/(pb), then use the de-
rived functor property to obtain an exact sequence

b

0 — Hom(Z/(p"), Z/(p%)) —= Hom(Z, Z/ (p?)) —= Hom(Z, Z/(p®)) —

— EXt(Z/(pb), Z/(p*) —Ext(Z,Z/(p™) =0

We deduce from this exact sequence that

b aw~( £ /. b
Ext(Z/(p”),Z!(p™)) = 9 im(xp"”)

SO
Ext(Z/ (pb), ZI(p =zl (pmin{a,b}).

This is great as far as it goes, but it classifies isomorphism classes of extensions, rather
than simply of the group A. To classify isomorphism classes of the group A, we observe
that we can take any diagram

0—Z/(p*) —= A——=Z/(p?) —=0

|
| = = H
Y

0 —Z/(p*) —= A——=Z/(p?) —=0

without the dashed isomorphism and produce the dashed arrow. This implies that any
two extensions with isomorphic groups A are related by an automorphism of Z/(p%).
Therefore isomorphism classes of groups A are classified by equivalence classes of ele-
ments of Z/( pmin{“’b}) up to an induced action of Aut(Z/(p%)). That is, they are in bijec-
tion with {1, p, p?,..., p™™@bl} a set of cardinality min{a, b}. We have already constructed
a set of isomorphism classes of such A, so we have found all isomorphism classes.

In principle, it is possible to use the calculation of Ext(Z/(p®),Z/(p")) to construct the
different isomorphism classes of extension, but this is no more direct than simply writing
down the extensions in this case.



Bibliography

[Ark11]
[Hat10]

[Tho54]

[Wei94]

Martin Arkowitz, Basic Homotopy, Introduction to Homotopy Theory, 2011, pp. 1-33 (en). 18

Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2010 (English). 15, 16, 38, 43, 44,
49, 52

René Thom, Quelques propriétés globales des variétés différentiables, Commentarii Mathematici Helvetici
28 (December 1954), no. 1, 17-86 (fr). 153

Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics,
vol. 38, Cambridge University Press, Cambridge, 1994. 176

78



	CW Complexes
	CW Structures
	Products
	Categorical constructions
	CW complexes and Homotopy
	Sundries

	Cones, Cylinders, Quotients

	Cellular Homology
	Homological Algebra
	Brief resumé on functors
	Homology
	Infinite CW complexes and the Mapping Telescope
	The Eilenberg–Steenrod Axioms
	Degree
	The Cellular Chain Complex

	Singular Homology and Homological Algebra
	Definition
	Basic Homological Algebra
	Singular homology satisfies the Eilenberg–Steenrod axioms
	Functoriality of homology in the coefficients

	Further properties and uses of homology
	The Hurewicz map
	Euler Characteristic
	The Künneth Formula

	Cohomology
	Cohomology
	Eilenberg–Steenrod Axioms for Cohomology

	Cup Product
	The Cap Product
	Compactly supported cohomology
	Orientations and Fundamental Classes
	Poincaré Duality

	Category Theory
	Categories, Functors and Natural Transformations
	Functors and Natural Transformations
	Adjoint Functors
	Diagrams, Limits and Colimits

	Tensor Products, Tor and Ext
	Tensor Products
	Examples
	The Tor functor
	Ext

	Solutions
	Homework 2


