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1. This problem is not to be handed in.
Let X be a topological space. Recall that π0(X ) denotes the set of path components of X : the set

of equivalence classes of points x ∈ X where x ∼ y if there exists a path γ : I → X with γ(0) = x and
γ(1) = y .

Write Zπ0(X ) for the free abelian group with π0(X ) as a basis. By constructing homomorphisms
each way and checking they are inverses, prove there is an isomorphism between Zπ0(X ) and
H0(X ;Z).

We construct homomorphisms both ways, and check they are inverse to each other.
The group S0(X ) is the free abelian group with basis consisting of maps ∆0 → X . This basis is in

obvious bijection with the set of points of X itself, all such maps being constant. Therefore we may
identify S0(X ) andZX , the free abelian group with X itself as a basis. There is a function X →π0(X ) given
by sending x to its equivalence class. Therefore there is a homomorphism f̄ : S0(X ) →Zπ0(X ), extending
the function between the bases. Note that f̄ (x − y) = 0 if x, y are points in the same path component of
X .

If σ ∈ Sin1(X ), then σ is a path in X , and dσ = y − x is the formal difference of the endpoints of this
path. Since x, y lie in the same path component, dσ is in the kernel of f̄ . The map S0(X ) → Zπ0(X )
therefore factors through the quotient of S0(X ) = Z0(X ) by imd = B0(X ), giving us a homomorphism

f : H0(X ;Z) →Zπ0(X ).

For any x ∈ X , the element f (x + imd) is the path component of x.
We can construct a homomorphism the other way as well. Pick a family of representative points {yi },

one from each path component. Define a homomorphism g : Zπ0(X ) → H0(X ;Z) by sending each path
component to its corresponding yi + imd .

Applied to Y ∈ π0(X ), the composite f (g (Y )) picks out the path component of a representative ele-
ment of Y , i.e., Y itself. Therefore f ◦ g is the identity.

Applied to x + imd ∈ H0(X ;Z), the composite g ( f (x + imd)) gives us yi + imd where yi is the repre-
sentative element of the path component of x ∈ X . There is some path σ : ∆1 → X that starts at x and
ends at y , so that y − x ∈ imd , so that x + imd = y + imd . This says that g ◦ f is also the identity, which is
what we needed. □
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2. Suppose we are given a commutative diagram of abelian groups:

A4 A3 A2 A1

B4 B3 B2 B1.

f4

d

f3

d

f2

d

f1

d d d

Suppose further that the rows are exact sequences, the homomorphisms f3 and f1 are injective, and
f4 is surjective. Prove that f2 is injective.

Suppose a ∈ A2 is an element in the kernel of f2. We will show a = 0.
Apply d to a and use f1 ◦d = d ◦ f2 to deduce d(a) is in the kernel of the injective map f1. Therefore,

d(a) = 0. As a consequence, there exists a′ ∈ A3 for which d(a′) = a. Considering d ◦ f3(a′) = f2 ◦d(a′) =
f2(a) = 0, we deduce that d annihilates f3(a′). Therefore we can find b ∈ B4 for which d(b) = f3(a′), and
using surjectivity of f4 we find some a′′ ∈ A4 for which d ◦ f4(a′′) = f3(a′). Using commutativity of the
leftmost square, we see that f3 ◦d(a′′) = f3(a′), and using injectivity of f3, we see that d(a′′) = a′. This
implies that d(a′) = d 2(a′′) = 0, which is what we wanted. □

3. This is part of Exercise 8.8 of Miller’s notes. Suppose

0 A B C 0i p

is a short exact sequence of abelian groups. As we often do, we will identify A with its image under i .
Show that the following are equivalent.

(a) There exists a homomorphism s : C → B such that p ◦ s = idC .

(b) There exists a homomorphism t : B → A such that t ◦ i = idA .

Prove that if s exists as above, then the homomorphism f : A⊕C → B given by f (a,c) = a + s(c) is an
isomorphism.

Since i (a) = a, we generally drop i from the algebra.
Suppose s is as in 1. We define t : B → A by the formula t (b) = b − s(p(b)). We verify directly that

applied to a ∈ A this gives i (a)− s(p(a)) = a, as required by 2.
Suppose t is as in 2. We attempt to define a homomorphism s : C → B in the following way. For any

c ∈C , there exists at least one b ∈ p−1(c). Define s(c) = b − t (b). At first glance, this appears to depend on
the choice of b ∈ p−1(c), but if b′ is some other choice, then b −b′ ∈ A so that

b −b′ = t (b −b′)
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and rearranging gives
b − t (b) = b′− t (b′).

Therefore s is well defined. Consider p(s(c)) for c ∈ C . This is p(b)− p(t (b)) for any b ∈ p−1(c). Since
p(t (b)) = 0, we see that p(s(c)) = p(b) = c. Therefore s is of the form demanded by 1.

To prove that f is an isomorphism, we construct an inverse. First, define t (b) = b − s(p(b)). Then
define g (b) = (t (b), p(b)) = (b − s(p(b)), p(b)). We calculate f ◦ g (b) = b − s(p(b))+ s(p(b)) = b. The other
direction we get

g ◦ f (a,c) = g (a + s(c)) = (a + s(c)− s(p(a + s(c))), p(a + s(c))) = (a,c),

using p(a) = 0 and p(s(c)) = c repeatedly. □

4. Recall that [X ,Y ] denotes the set of homotopy classes of continuous functions X → Y .
Let (X , x0) be a space X with a chosen basepoint x0 and endow S1 with the basepoint s0 = (1,0).

Recall that π1(X , x0) is the set of equivalence classes of basepoint-preserving maps (S1, s0) → (X , x0)
where the homotopies also satisfy h(s0, t ) = x0 for all t ∈ [0,1]. There is a natural transformation vX :
π1(X , x0) → [S1, X ] that forgets the basepoint-preserving nature of maps S1 → X and homotopies
between them.

Using homotopy invariance of π1(X , x0) (as presented in e.g., [1, Prop. 1.5, Lem. 1.19]), prove that
vX (γ) = vX (δ) implies that γ,δ are conjugate elements in π1(X , x0).

In an abuse of notation, write γ,δ : S1 → X for functions that represent the elements of π1(X , x0) with the
same name. Write 1 ∈π1(S1, s0) for the class of the identity, so that π1(S1, s0) is identified with Z.

The functions γ,δ induce homomorphisms γ∗,δ∗ : π1(S1, s0) → π1(X , x0) for which γ∗(1) = γ and
δ∗(1) = δ.

Suppose vX (γ) = vX (δ). That is, assume there is a homotopy between the functions γ,δ, ignoring
basepoints. Then [1, Lem. 1.19] implies the existence of a commutative diagram of groups:

π1(X , x0)

Z

π1(X , x0),

βh

γ∗

δ∗

where βh denotes conjugation by h, where h is in turn the path traced by the basepoint s0 under the
homotopy from γ to δ. Commutativity of the diagram implies that hγh−1 = δ, as required. □

3



J
G

Figure 1: The topologist’s sine curve, S.

5. The “topologist’s sine curve” S is a closed subset of R2 defined as follows. Let G denote the
graph of the function f (x) = sin(1/x) on the domain (0,1], indicated in blue in Figure 1. Let J denote
the interval {0}× [−1,1], denoted in orange in Figure 1. The space S is defined to be the union G ∪ J .
The space S is well known to be connected, but to have two path components, G and J . Note that J
is a closed, contractible subspace of S.

There is a continuous function f : S → [0,1] defined by f (x, y) = x. Since f ( j ) = 0 for all j ∈ J ,
we know that f factors through the quotient map p : S → S/J , i.e., we can write f = f̃ ◦ p where
f̃ : S/J → [0,1] is a continuous function.

Prove that f̃ is a homeomorphism. Deduce that p : S → S/J is not a homotopy equivalence.

The space S is compact, being closed and bounded in R2. Therefore the quotient space S/J is compact.
The map f̃ : S/J → [0,1] is a bijection, since for every x ∈ (0,1] there is one and only one point

(x, sin(1/x)) ∈ S, while the unique point in S/J with preimage J maps to {0} under f̃ .
Therefore f̃ is a continuous bijection with compact source and Hausdorff target. It is a homeomor-

phism.
We know that H0(S;Z) = Zπ0(S) ∼= Z2, whereas H0(S/J ;Z) = Zπ0(S/J ) ∼= Z. Since they have non-

isomorphic homology, S and S/J are not homotopy equivalent. □
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