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Homework 2
2026-02-02

1. This problem is not to be handed in.

Let X be a topological space. Recall that 7¢(X) denotes the set of path components of X: the set
of equivalence classes of points x € X where x ~ y if there exists a path y : I — X with y(0) = x and
Yy =y.

Write Zmy(X) for the free abelian group with 7¢(X) as a basis. By constructing homomorphisms
each way and checking they are inverses, prove there is an isomorphism between Zmy(X) and
Ho(X; 2).

We construct homomorphisms both ways, and check they are inverse to each other.

The group Sy(X) is the free abelian group with basis consisting of maps A’ — X. This basis is in
obvious bijection with the set of points of X itself, all such maps being constant. Therefore we may
identify Sp(X) and Z X, the free abelian group with X itself as a basis. There is a function X — 7y(X) given
by sending x to its equivalence class. Therefore there is a homomorphism f : Sy(X) — Zmy(X), extending
the function between the bases. Note that f(x — y) = 0 if x, y are points in the same path component of
X.

If 0 € Sin; (X), then ¢ is a path in X, and do = y — x is the formal difference of the endpoints of this
path. Since x, y lie in the same path component, do is in the kernel of f. The map Sy(X) — Zmo(X)
therefore factors through the quotient of Sy(X) = Zy(X) by imd = By(X), giving us a homomorphism

f:1Ho(X;2) — Zmp(X).

For any x € X, the element f(x +imd) is the path component of x.

We can construct a homomorphism the other way as well. Pick a family of representative points {y;},
one from each path component. Define a homomorphism g : Zmy(X) — Hy(X;Z) by sending each path
component to its corresponding y; +imd.

Applied to Y € 7y(X), the composite f(g(Y)) picks out the path component of a representative ele-
mentof Y, i.e., Y itself. Therefore f o g is the identity.

Applied to x +imd € Hy(X; Z), the composite g(f(x +imd)) gives us y; +imd where y; is the repre-
sentative element of the path component of x € X. There is some path ¢ : A! — X that starts at x and
ends at y, so that y —x € imd, so that x +imd = y+imd. This says that go f is also the identity, which is
what we needed. o



2. Suppose we are given a commutative diagram of abelian groups:

Ay =% A —L5 A, % 4

bbb

B, d>Bs d B; > Bi1.

~

Suppose further that the rows are exact sequences, the homomorphisms f; and f; are injective, and
fa is surjective. Prove that f is injective.

Suppose a € A, is an element in the kernel of f,. We will show a = 0.

Apply d to aand use fj od = do f> to deduce d(a) is in the kernel of the injective map fi. Therefore,
d(a) = 0. As a consequence, there exists a’ € Az for which d(a’) = a. Considering do f3(a') = fod(a’) =
f2(a) = 0, we deduce that d annihilates f3(a’). Therefore we can find b € By for which d(b) = f3(a’), and
using surjectivity of f; we find some a” € A4 for which do fy(a”) = f3(a’). Using commutativity of the
leftmost square, we see that f3od(a”) = f3(a’), and using injectivity of f3, we see that d(a”) = a’. This
implies that d(a’) = d?(a") = 0, which is what we wanted. D

3. This is part of Exercise 8.8 of Miller’s notes. Suppose

ivpLyc—3o0

0 > A

is a short exact sequence of abelian groups. As we often do, we will identify A with its image under i.
Show that the following are equivalent.

(a) There exists a homomorphism s: C — B such that pos=idc.
(b) There exists a homomorphism ¢ : B — A such that toi =id 4.

Prove that if s exists as above, then the homomorphism f: A® C — B given by f(a,c) = a+ s(c) is an
isomorphism.

Since i(a) = a, we generally drop i from the algebra.

Suppose s is as in 1. We define ¢ : B — A by the formula #(b) = b — s(p(b)). We verify directly that
applied to a € A this gives i(a) — s(p(a)) = a, as required by 2.

Suppose f is as in 2. We attempt to define a homomorphism s : C — B in the following way. For any
c € C, there exists at least one b € p~1(c). Define s(c) = b— t(b). At first glance, this appears to depend on
the choice of b e p‘l (c), but if b’ is some other choice, then b— b’ € A so that

b-b =tb-b"



and rearranging gives
b—t(b)=Db'—t(b).

Therefore s is well defined. Consider p(s(c)) for ¢ € C. This is p(b) — p(t(b)) for any b € p~'(c). Since
p(t(b)) =0, we see that p(s(c)) = p(b) = c. Therefore s is of the form demanded by 1.

To prove that f is an isomorphism, we construct an inverse. First, define t(b) = b— s(p(b)). Then
define g(b) = (¢(b), p(b)) = (b—s(p(b)), p(b)). We calculate f o g(b) =b—s(p(b)) + s(p(b)) = b. The other
direction we get

goflac)=gla+s(c) =(a+s(c)—s(pla+s(c),pla+s(c)) =(a,c),

using p(a) =0 and p(s(c)) = c repeatedly. o

4. Recall that [X, Y] denotes the set of homotopy classes of continuous functions X — Y.

Let (X, xo) be a space X with a chosen basepoint xy and endow S! with the basepoint so = (1,0).
Recall that 7 (X, x¢) is the set of equivalence classes of basepoint-preserving maps (S, sp) = (X, xo)
where the homotopies also satisfy h(sg, t) = xp for all £ € [0, 1]. There is a natural transformation vy :
71 (X, xo) — [S', X] that forgets the basepoint-preserving nature of maps S' — X and homotopies
between them.

Using homotopy invariance of 71 (X, xp) (as presented in e.g., [1, Prop. 1.5, Lem. 1.19]), prove that
vx(y) = vx(6) implies that y,d are conjugate elements in ; (X, xp).

In an abuse of notation, write y,6 : S 1 _, X for functions that represent the elements of 7 (X, xo) with the
same name. Write 1 € 7, (S}, s) for the class of the identity, so that m; (81, sp) is identified with Z.

The functions y,5 induce homomorphisms y.,8. : m1(S!, s9) — 71 (X, xo) for which y.(1) = y and
0.(1)=06.

Suppose vx(y) = vx(6). That is, assume there is a homotopy between the functions y,§, ignoring
basepoints. Then [1, Lem. 1.19] implies the existence of a commutative diagram of groups:

71(X, Xo)

V

Z Bn
\5*}
m1(X, x0),

where f;, denotes conjugation by h, where £ is in turn the path traced by the basepoint sy under the
homotopy from y to §. Commutativity of the diagram implies that hyh~! = §, as required. o



Figure 1: The topologist’s sine curve, S.

5. The “topologist’s sine curve” S is a closed subset of R? defined as follows. Let G denote the
graph of the function f(x) = sin(1/x) on the domain (0, 1], indicated in blue in Figure 1. Let J denote
the interval {0} x [-1, 1], denoted in orange in Figure 1. The space S is defined to be the union GuU J.
The space S is well known to be connected, but to have two path components, G and J. Note that J
is a closed, contractible subspace of S.

There is a continuous function f : S — [0,1] defined by f(x,y) = x. Since f(j) =0 forall j € J,
we know that f factors through the quotient map p : S — S/J, i.e., we can write f = f o p where
f :S/J — [0,1] is a continuous function.

Prove that f is a homeomorphism. Deduce that p : S — S/J is not a homotopy equivalence.

The space S is compact, being closed and bounded in R?. Therefore the quotient space S/J is compact.

The map f : 8/J — [0,1] is a bijection, since for every x € (0,1] there is one and only one point
(x,sin(1/x)) € S, while the unique point in /] with preimage / maps to {0} under f.

Therefore f is a continuous bijection with compact source and Hausdorff target. It is a homeomor-
phism.

We know that Ho(S;2Z) = Zno(S) = 72, whereas Hy(S/J;Z) = Zno(S/J) = Z. Since they have non-
isomorphic homology, S and S/J are not homotopy equivalent. o
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