HOMEWORK 1

Due on 10 February 2020.

- (1) Give an example, with proof, of a map of topological spaces $f : X \to Y$ that is a weak equivalence but not a homotopy equivalence. In order to prove a map is not a homotopy equivalence, it may be helpful to know about the Strøm model structure on compactly generated weak Hausdorff spaces ([BR13, Section 2]).
- (2) Suppose **C** is a model category. A pointed object of **C** is an object X and a map $x_0 : * \to X$ (a basepoint). A map of pointed objects is a map $f : (X, x_0) \to (Y, y_0)$ such that $f(x_0) = y_0$. There is a category \mathbf{C}_+ of pointed objects in **C**. There is a forgetful functor $U : \mathbf{C}_+ \to \mathbf{C}$, and a disjoint-basepoint functor $P : X \mapsto X \coprod *$. Put a model structure on \mathbf{C}_+ where the weak equivalences, fibrations and cofibrations are weak equivalences, fibrations and cofibrations in **C**. You do not have to verify that this is a model structure (it is not a particularly difficult proof, [Hov99, Proposition 1.1.8]) Prove that P, U form a Quillen adjunction.
- (3) Let $f: R \to S$ be a map of (unital) rings, and let $\mathbf{Ch}(R)$ and $\mathbf{Ch}(S)$ denote the categories of nonnegatively grded chain complexes of left R- and S-modules. There exists a model structure on $\mathbf{Ch}(R)$ where the weak equivalences are the quasi-isomorphisms, the fibrations are the levelwise surjective maps and the cofibrant objects are the complexes that are levelwise projective. This is a variant of the structure in [Hov99, Section 2.3]

There is an adjoint pair of functors $\epsilon : R\mathbf{Mod} \rightleftharpoons S\mathbf{Mod} : \rho$ given by extension $\epsilon(M) = S \otimes_R M$ and restriction $\rho(M)$ of scalars. The *R*-module $\rho(M)$ agrees with *M* as an abelian group and the *R*-structure is given by $r \cdot m = f(r)m$. Prove that ϵ and ρ induce an adjoint pair of functors between $\mathbf{Ch}(R)$ and $\mathbf{Ch}(S)$. Prove that ρ is a right Quillen functor, and describe what the total derived functor of ϵ does to objects (it's enough to give the isomorphism class of $L\epsilon(X)$ when X is a chain complex—don't worry about functoriality of the construction).

Note: a version of this construction also makes sense for unbounded complexes, but it is harder to describe the cofibrant objects in that case, so I have not assigned this as a problem.

(4) The simplicial set $\Delta[n]$ has $\binom{n+1}{k+1}$ nondegenerate k simplices, each corresponding to a subset of $\{0, 1, \ldots, n\}$. Consider the 0-simplices of $\Delta[n] \times \Delta[1]$. These can be identified with $\{0, 1, \ldots, n\} \times \{0, 1\}$. Write $(i, 0) = i_0$ and $(i, 1) = i_1$, so that the 0-simplices of $\Delta[n] \times \Delta[1]$ are $\{0_0, \ldots, n_0, 0_1, \ldots, n_1\}$. Describe the nondegenerate n + 1 simplices of $\Delta[n] \times \Delta[1]$, specifically, how many are there and what are their 0-simplicies?

References

- [BR13] Tobias Barthel and Emily Riehl. On the construction of functorial factorizations for model categories. Algebraic & Geometric Topology, 13(2):1089–1124, 2013.
- [Hov99] Mark Hovey. Model Categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.