HOMEWORK 2

Due on 24 February 2020.

(1) Let **C** be a category with a set of objects and a set of morphisms. For a given integer $m \ge 0$, let $N\mathbf{C}_m$ be the set of sequences

$$c_0 \xrightarrow{f_1} c_1 \xrightarrow{f_2} c_2 \xrightarrow{f_3} \dots \xrightarrow{f_m} c_m$$

of composable morphisms in **C**. The set $N\mathbf{C}_0$ consists of the objects of **C**. Define face maps $d_i : N\mathbf{C}_m \to N\mathbf{C}_{m-1}$ by omitting c_i . In the case of i = 0 or i = m, we omit f_1 or f_m as well. In the other cases, replace the maps $c_{i-1} \stackrel{f_i}{\to} c_i \stackrel{f_{i+1}}{\to} c_{i+1}$ by the composite $c_{i-1} \stackrel{f_{i+1} \circ f_i}{\to} c_{i+1}$. Define degeneracy maps $s_i : N\mathbf{C}_m \to N\mathbf{C}_{m+1}$ by adding an identity map id_{c_i} in the sequence in the obvious place.

- (a) Verify that NC_{\bullet} forms a simplicial set.
- (b) Show that $N\mathbf{C}_{\bullet}$ is a quasicategory.
- (c) Prove that if every morphism in \mathbf{C} is an isomorphism (\mathbf{C} is a groupoid), then $N\mathbf{C}_{\bullet}$ is a Kan complex.
- (2) Suppose X_{\bullet} is a Kan complex and $x \in X_2$ is a nondegenerate 2-simplex. Prove X contains a nondegenerate 3 simplex.
- (3) You may assume that for any k-space, the natural map $|\operatorname{Sing} X| \to X$ is a weak equivalence.
 - (a) Give an example of a simplicial set A and a weak equivalence of simplicial sets $B \to B'$ such that $\operatorname{Map}(A, B) \to \operatorname{Map}(A, B')$ is not a weak equivalence.
 - (b) Show that if B and B' are also assumed to be Kan complexes, then $Map(A, B) \rightarrow Map(A, B')$ is a weak equivalence. Deduce that Map(A, B) is weakly equivalent to Map(A, Sing |B|)—this whole question should just be an exercise in Quillen adjunctions.
 - (c) Show that if B is a Kan complex, then Map(|A|, |B|) is weakly equivalent to |Map(A, B)| (i.e., there is an isomorphism in the homotopy category between these two objects).
- (4) Identify S^1 with the set of unit complex numbers. Let $L : \mathbf{K} \to \mathbf{K}$ denote the free loop space functor, that is, $LX = \operatorname{Map}(S^1, X)$. Show that $LS^1 \simeq \mathbb{Z} \times S^1$. Hint A: maps $S^1 \to S^1$ admit a pointwise multiplication fg(x) := f(x)g(x), which satisfies $\operatorname{deg}(fg) = \operatorname{deg}(f) + \operatorname{deg}(g)$ you can use singular homology to prove this. This allows you to show that LS^1 decomposes into homeomorphic subspaces, each corresponding to a different degree. Hint B: you can find a homotopy fibre sequence relating LS^1 , ΩS^1 and S^1 .