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Chapter 1

Model Categories

1.1 Model Categories

The following definition [Hov99] is a modification of one due to Quillen [Qui67].

Definition 1.1.1. Let C be a category having all (small) limits and colimits. A model structure on
C consists of three subcategories of C called weak equivalences, cofibrations and fibrations and two
functorial ways of factoring maps f in C, either as f = α ◦ β where α is a weak equivalence and a
fibration and β is a cofibration, or as f = γ ◦ δ where γ is a fibration and δ is a weak equivalence
and a cofibration.

These data have to satisfy the following axioms:

1. If f, g are morphisms in C such that gf is defined, then if any two of f, g, gf are weak equiv-
alences, so is the third. (2-out-of-3 property)

2. If f is a retract of g and g is a weak equivalence, cofibration or fibration, so is f .

3. If, in the solid commutative diagram

A

i

��

// X

p

��
B

>>

// Y

the map i is a cofibration and the map p is a fibration, and at least one of these two maps is
also a weak equivalence, then there exists a dotted arrow making the diagram commute.

Notation 1.1.2. A map that is a weak equivalence and a (co)fibration will be called a trivial (co)fibration.
Weak equivalences will be written A ∼→ B, cofibrations will be written A � B and fibrations will
be written A� B.

A category equipped with a model structure will be called a model category.
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Notation 1.1.3. In the diagram
A

i

��

// X

p

��
B

>>

// Y

if the dotted arrow exists, we say that A → B has the left lifting property with respect to X → Y
and that X → Y has the right lifting property with respect to A→ B.

Remark 1.1.4. The model structure axioms are dual with respect to fibrations and cofibrations, in
that if C is a model category, then Cop is a model category as well, with the opposite of the category
of cofibrations functioning as fibrations and vice versa. This duality manifests frequently in the
theory, in that it is often sufficient to prove something for cofibrations and then say the case of
fibrations is dual.
Remark 1.1.5. The fibrations are exactly the maps having the right lifting property with respect
to trivial cofibrations, and the trivial cofibrations are exactly the maps having the right lifting
property with respect to cofibrations. Therefore, in a given model category, the weak equivalences
and cofibrations determine the fibrations. Dually, the weak equivalences and fibrations determine
the cofibrations.
Remark 1.1.6. A pushout of a (trivial) cofibration is a (trivial) cofibration, since we can detect (triv-
ial) cofibrations by means of a left lifting property. The dual statement for fibrations and pullbacks
also holds.
Example 1.1.7. Let Top denote the category of topological spaces and continuous maps. We say a
map f : X → Y in this category is a weak equivalence if

f∗ : πn(X,x)→ πn(Y, f(y))

is an isomorphism (of pointed sets, groups or abelian groups) for all x ∈ X and all n ∈ {0, 1, . . . }.
Let J denote the set of all inclusionsDn → Dn×I sending x to (x, 0) for all n. We say f : X → Y

is a Serre fibration if it has the left lifting property with respect to all maps in J .
There are two ways of defining Serre cofibrations. In the first place, we can define a Serre cofi-

bration as a map A → B having the left lifting property with respect to all maps having the right
lifting property with respect to the inclusions ∂Dn → Dn (yes, really).

Alternatively, we can define a relative cell complex to be a map f : B → A such that there is a
sequence B = B0 ⊆ B1 ⊆ B2 ⊆ . . . where Bi+1 is obtained from Bi by attaching cells and such
that A = colimBi. A map is a Serre cofibration if it is a retract of a relative cell complex. It is not
proved here that these two definitions are equivalent, you can look at [Hov99, Chapter 2]

This gives us a model structure on Top, called the Quillen or classical model structure.
The main purpose of a model structure is to allow one to form and work with an associated

homotopy category.

Definition 1.1.8. Let C be a model category. Then the homotopy category, Ho C, of C is the category
with the same objects as C and with morphisms obtained by adjoining (formal) inverses to weak
equivalences. The definition is made more fully and precisely as [Hov99, Definition 1.2.1].

Remark 1.1.9. The first problem with Ho C is that we do not know that Ho C(X,Y ) is a set. The
second, and related problem, is that it is hard to calculate Ho C(X,Y ). The role of the fibrations
and cofibrations in the model structure is to solve these two problems.
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Definition 1.1.10. Write ∅ for the colimit of the empty diagram and pt for the limit.
An object X of a model category C is cofibrant if the unique map ∅ → X is a cofibration. It is

fibrant if X → pt is a fibration.

Example 1.1.11. In the ordinary model structure on Top, the retracts of CW complexes are precisely
the cofibrant objects. All objects are fibrant.

Example 1.1.12. We can factor any map ∅ → X as ∅� QX
∼
� X . ThenQX is cofibrant and weakly

equivalent to X . Any cofibrant object weakly equivalent to X is called a cofibrant replacement. The
dual concept is of fibrant replacement X

∼
� RX � pt. Observe that the fibrant replacement of

a cofibrant object is cofibrant and vice versa. This means we can write down cofibrant–fibrant
replacements.

In the standard model structure, we have no need for fibrant replacements, but we know cofi-
brant replacements as “CW approximations”.

Proposition 1.1.13 (Ken Brown’s Lemma). Suppose C is a model category and D is a category with
weak equivalences (satisfying 2-out-of-3). Suppose F : C → D is a functor taking trivial cofibrations
between cofibrant objects to weak equivalences, then F takes all weak equivalences between cofibrant objects
to weak equivalences.

The dual statement for fibrations and fibrant objects also holds.
In fact, as [Hov99] uses this lemma, it is necessary only for C to satisfy the axioms of a model

category and to contain finite coproducts (or finite products in the fibrant case).

Proof. This proof is slightly tricky.
Suppose f : X → Y is a weak equivalence of cofibrant objects. Factor X

∐
Y → Y into a

cofibration q : X
∐
Y � Z followed by a trivial fibration p : Z

∼
� Y . Each of the two inclusion

maps i1 : X → X
∐
Y and i2 : Y → X

∐
Y . is a cofibration. Each of the two composite maps

X,Y → Z is a weak equivalence (2-out-of-3) and a cofibration. Both F (q ◦ i1) and F (q ◦ i2) are
weak equivalences, as is F (p ◦ q ◦ i2) = F (idY ), so that F (p) is a weak equivalence, and so too is
F (f) = F (p ◦ q ◦ i1).

Notation 1.1.14. Let Ccf denote the full subcategory of C consisting of cofibrant–fibrant objects.
This may not be a model category, since it may not be complete or cocomplete. Nonetheless, we
can talk about Ho Ccf , the category obtained from Ccf by formally inverting weak equivalences,
and Ken Brown’s lemma applies to Ccf . It is not difficult to see ([Hov99, Prop 1.2.3]) that the
obvious functor Ho Ccf → Ho C is an equivalence of categories.

1.1.1 Homotopy

Definition 1.1.15. Let X be an object in a model category. A cylinder object on X is a factorization
of the fold map X

∐
X → X as

X
∐

X � CylX
∼→ X.

Note that we do not require this to be the specific functorial factorization of the model structure,
although it certainly provides a cylinder object. A left homotopy between two morphism f, g : X →
Y is a mapH : CylX → Y that yields f, g when composed with the two inclusionsX → X

∐
X →

CylX .
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Example 1.1.16. In the standard model structure on spaces, the inclusionX
∐
X → X×I , including

the copies of X at either end, is a cofibration (it’s a relative cell complex). Therefore the definition
of CylX is a cylinder object in this model structure, and a left homotopy is just what we would
ordinarily call a “homotopy”.

Remark 1.1.17. Let X be an object in a model category. A path object, PX , on X is a factorization of
the diagonal X → X ×X as

X ' PX � X ×X.

A right homotopy between f : Y → X and g : Y → X is a map H : Y → PX that composes to give
f or g in the analogous way. For instance, if X is a topological space, we can form PX as XI in
the compact-open topology, with evaluation at 0 and 1 being the maps to X . Using the adjunction
between maps Y → XI and Y ×I → X , we see that here again we have recovered the usual notion
of homotopy, but in a slightly harder-to-visualize way.

Proposition 1.1.18. IfX is cofibrant and Y is fibrant then the relations of left- and right-homotopy between
maps X → Y agree. Moreover, this relation is an equivalence relation.

Proof of a selected part of this statement. Among the more technical parts of this statement is the as-
sertion that left-homotopy is a transitive relation on maps X → Y when X is cofibrant. Let’s do
this, as an example of the sort of argument that model categories require. Suppose we have three
maps f1, f2 and f3 : X → Y , and left homotopies H1 : X ′ → Y and H2 : X ′′ → Y where X ′ and
X ′′ are cylinders for X .

Form Z as the pushout

X
i1 //

i′0
��

X ′

��
X ′′ // Z

and we get a factorization of the fold map X
∐
X

j0+j1→ Z
t→ X . We remark that if X is cofibrant,

then X → X ′ (or X → X ′′) is a cofibration, being the pushout of a cofibration. It is also a weak
equivalence, due to the 2-out-of-3 property. Therefore, since X is cofibrant, the map X ′′ → Z is a
trivial cofibration.

Unfortunately, the map j0 +j1 may not be a cofibration, although t is necessarily a weak equiv-
alence, since X ′′ → Z is a trivial cofibration and Z → X fits in a factorization of the identity
X

∼→ X ′′
∼
� Z → X so that 2-out-of-3 implies Z → X is a weak equivalence. Now take

X
∐
X → Z and factor it as a cofibration followed by a trivial fibration: X

∐
X � Z ′

∼
� Z.

The object Z ′ is a cylinder object for X and it supports a left homotopy from f1 to f3.

Proposition 1.1.19. There is a well-defined functor Ccf → Ccf/ ∼ sending objects to objects and sending
a map f : X → Y to the homotopy class of f .

The proof is not given here. See [Hov99, Section 1.2].

Proposition 1.1.20. Let Y be a cofibrant–fibrant object and let C/ ∼ (Y, ·) : Ccf → Set denote the
functor taking an object X to the set of homotopy classes of maps C(X,Y )/ ∼. Then C/ ∼ (Y, ·) sends
weak equivalences to bijections.
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Proof. By Ken Brown’s lemma (using isomorphisms of sets as weak equivalences in that category),
it’s sufficient to prove that it sends trivial fibrations to isomorphisms. That is, if X

∼
� Z is a trivial

fibration, we want to show that C(Y,X)/ ∼→ C(Y,Z)/ ∼ is a bijection. Since X
∼
� Z is a trivial

fibration, we can lift any map Y → Z to a map Y → Z. This establishes surjectivity.
To show injectivity, suppose we have two maps f, g : Y → X that become (left) homotopic

when we compose with X → Z. Choose a left homotopy H : Y ′ → Z between them and consider

Y
∐
Y

f+g //

��

X

��
Y ′ // Z

the obvious lift gives us a homotopy between f and g.

Proposition 1.1.21. A map f : X → Y between cofibrant–fibrant objects is a homotopy equivalence if and
only if it is a weak equivalence.

Proof. The previous result says that if f : X → Y is a weak equivalence, then the induced map
C(Y, Y )/ ∼→ C(Y,X)/ ∼ is a bijection. The class of the identity map then maps to a homotopy
class of maps g : Y → X , any one of which is a homotopy inverse for f—admittedly we are
skipping many details here.

The converse statement that a homotopy equivalence is a weak equivalence is surprisingly
intricate. First observe that a map that is left homotopy equivalent to a weak equivalence is a
weak equivalence. This follows from the diagram

A

∼

"" !!
CylA // B

A

∼
<<

∼

==

and the 2-out-of-3 property.
Now suppose f : X → Y is a homotopy equivalence between cofibrant–fibrant objects. We can

factor this as g : X
∼
� Z followed by p : Z � Y . It suffices to show that p is a weak equivalence.

Note that Z is cofibrant–fibrant and that g is therefore known to be a homotopy equivalence. Let
f ′ and g′ be homotopy inverses for f and g, and let H : Y ′ → Y be a left homotopy from ff ′ to
idY . Define H ′ as a lift

Y

i0
��

gf ′ // Z

p

��
Y ′ //

H′
>>

Y

and let q = H ′i1 : Y → Z. The map q has been produced specifically so that pq = idY , and so that
H ′ is a left homotopy from gf ′ to q. Then qp ∼ gf ′p ∼ gf ′pgg′ = gf ′fg′ ∼ idZ .
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In particular, we have reduced the problem to showing that p is a weak equivalence when
p : Z → Y is the retraction map of a deformation retract. This is relatively easy:

Z

p

��

Z

qp

��

Z

p

��
Y

q // Z
p // Y

and the middle map is a weak equivalence, so the outer map is as well (weak equivalences being
closed under retracts).

Corollary 1.1.22 (Whitehead’s theorem). If X → Y is a weak equivalence of CW complexes, then it is a
homotopy equivalence.

Now we come to the point of the whole discussion:

Corollary 1.1.23. The equivalent categories Ho Ccf ≡ Ho C are equivalent to the category Ccf/ ∼.

This means we have a method of calculating Ho C(X,Y ): namely, replace X and Y by weakly
equivalent cofibrant-fibrant objects X ′ and Y ′, then calculate C(X ′, Y ′)/ ∼.

In fact, you can do a bit better

Corollary 1.1.24. Let X ′ → X be a cofibrant replacement of X in C and Y → Y ′ a fibrant replacement.
Then Ho C(X,Y ) = C(X ′, Y ′)/ ∼.

This follows from [Hov99, Proposition 1.2.5] and the previous corollary.

Example 1.1.25. There is another model structure on Top, the Strøm model structure, established
in [Str72], in which the role of the weak equivalences is played by the homotopy equivalences of
spaces, the fibrations are the maps satisfying the right lifting property with respect to the inclu-
sions X → X × I for all spaces X and the closed topological cofibrations.

Example 1.1.26. This example is [Hov99, Section 2.3]. Let R be a ring, and work in the category
of left R-modules. We assume you know what a complex of R-modules is (with homological
grading), and what a map of complexes looks like. A map f : A• → B• is a quasi-isomorphism if
f∗ : Hi(A•)→ Hi(B•) is an isomorphism for all i.

For any integer n, let Sn denote the complex that hasR in the nth position and 0 elsewhere. Let
Dn+1 denote the complex that has R in the n-th and the n+ 1st position, and where the nontrivial
differential is an identity. There is an inclusion map of complexes in : Sn → Dn+1.

Call a map of complexes a fibration if it has the right lifting property with respect to all maps
0→ Dn, and a cofibration if it has the left lifting property with respect to all maps having the right
lifting property with respect to the inclusions in.

This produces a model structure on the category of chain complexes of R-modules. Some
claims, all of which are proved in [Hov99]:

1. The fibrations are precisely the levelwise surjective maps.

2. A map is a trivial fibration if and only if it has the right lifting property w.r.t. the in.

3. A bounded-below chain complex of projective modules is cofibrant. Any cofibrant object
is levelwise projective, but there exist unbounded, levelwise projective and non-cofibrant
objects.
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1.2 Quillen adjunctions

According to the experts, the “right” notion of a morphism between model categories is the fol-
lowing.

Definition 1.2.1. Suppose C and D are model categories (i.e., categories and model structures).
Then a functor F : C → D is a left Quillen functor if it has a right adjoint U and F preserves
cofibrations and trivial cofibrations. A functor U : D → C is a right Quillen functor if it is a right
adjoint and preserves fibrations and trivial fibrations.

Proposition 1.2.2. Let F a U be an adjoint pair in which F is left Quillen or U is right Quillen. Then F
is left Quillen and U is right Quillen.

Remark 1.2.3. Ken Brown’s lemma implies that a left Quillen functor preserves weak equivalences
between cofibrant objects, and a right Quillen functor preserves weak equivalences between fi-
brant objects.

This means that we can form derived functors of Quillen functors.

Construction 1.2.4. Suppose F : C → D is a left Quillen functor. The total left derived functor LF
of F is the functor

Ho C→ Ho D

that on objects X ∈ C is F (QX)—Q being the cofibrant replacement functor. The total right derived
functor RU of U is defined dually.

Remark 1.2.5. We haven’t quite justified the assertion that this functor is defined, and we’re not
going to do so explicitly. You can do it yourself.

Proposition 1.2.6. If F a U is a Quillen adjunction, with F : C → D, then the pair of functors QF :
Ho C � Ho D : RU is an adjoint pair of functors.

Proof. We wish to establish a natural isomorphism of sets

Ho D(FQX, Y )
∼=−→ Ho C(X,URY ).

It is enough to establish a natural isomorphism

D(FQX,RY )/ ∼
∼=−→ C(QXURY )/ ∼

which looks a lot like the adjunction we already had between F and U , applied to the objects
QX and RY . The only question is whether this adjunction isomorphism (for C, D) preserves the
relation “is homotopic to”. Call the adjunction isomorphism φ.

Suppose f, g : FX → Y are two maps in D, where X is cofibrant and Y fibrant. Let’s show
that if φf is homotopic to φg, then f is homotopic to g. The other argument is dual (using right
instead of left homotopy). So suppose X ′ is a cylinder object for X and H a left homotopy H :
X ′ → UY between φf and φg. Then FX ′ is a cylinder object for FX , since F preserves coproducts,
cofibrations and trivial cofibrations, and φ−1H is a left homotopy from f to g.

Definition 1.2.7. A Quillen adjunction F a U is a Quillen equivalence if the following holds: For all
cofibrant X ∈ C and all fibrant Y ∈ D, the map f : FX → Y is a weak equivalence if and only if
the adjoint map X → UY is a weak equivalence.

Remark 1.2.8. The derived functors of a Quillen equivalence are equivalences of categories.
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Chapter 2

Simplicial Sets

2.1 Definition

Let ∆ denote the simplicial category where the objects are

[n] = {0, 1, . . . , n}

for n ≥ 0 and the maps ∆([n], [k]) are the set of weakly order-preserving maps of sets.

Lemma 2.1.1. Every map f in ∆ can be factored uniquely as a surjection followed by an injection.

Definition 2.1.2. Let di : [n − 1] → [n] denote the injective map [n − 1] → [n] skipping i ∈
{0, 1, . . . , n}. This is called the i-th (standard) coface map. Let si : [n]→ [n− 1] be the surjective map
identifying i and i+ 1, the i-th (standard) codegeneracy map.

Lemma 2.1.3. Every injective map in ∆ can be factored as a composite of coface maps, and every surjective
map can be factored as a composite of codegeneracy maps. Consequently, every map in ∆ is a composite of
coface and codegeneracy maps.

Lemma 2.1.4. The following relations all hold

djdi = didj−1 i < j

sjdi = disj−1 i < j

sjdi = id i = j, i = j + 1

sjdi = di−1sj i > j + 1

sjsi = si−1sj i > j

and suffice to generate all relations in the simplicial category.

Definition 2.1.5. Let C be a category. A simplicial object in C is a functor X• : ∆op → C. The
notation Xn is used for X•([n]). The images X•(di) : Xn+1 → Xn are written di and are called face
maps. Similarly, X•(si) = si are called degeneracy maps. These are subject to the simplicial identities
which are the duals of the relations of Lemma 2.1.4.
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A map of simplicial objects is a natural transformation of functors, or equivalently, a sequence
of levelwise maps Xn → Yn compatible with the simplicial maps. The category of simplicial
objects in C will be written sC.

Lemma 2.1.6. If C is a category with limits and colimits, then so is sC; limits and colimits being formed
objectwise.

Example 2.1.7. The category of simplicial sets, sSet is particularly important. If X• is a simplicial
set, then we can distinguish two kinds of element in Xn: those that are in the image of some
degeneracy map the degenerate elements, and those that are not.

Let us define some standard objects in this category. In the first place, there is ∆[n] which sends
[k] to ∆([k], [n]). This is a the (simplicial) n-simplex. There is also ∂∆[n], which is the subobject of
∆[n] consisting of all those maps [k]→ [n] that are not surjective.

For each r, there is Λr[n] that can be constructed as follows: Let D be the category where the
objects are non-identity injective maps [k] → [n] where the image contains r. Each map yields a
map ∆[k]→ ∆[n] of simplicial sets, then Λr[n] is the colimit over D of the ∆[k].

When we draw a picture of a simplicial set, we usually draw the non-degenerate simplices only.
There are several reasons why degenerate simplices are included in the structure. For instance,
∆[1]×∆[1] has two nondegenerate 2-simplices that arise from the degenerate simplices of ∆[1].

Definition 2.1.8. A cosimplicial object in C is a functor X• : ∆ → C. A cosimplicial object is a
sequence of objects in C equipped with coface and codegeneracy maps satisfying the relations of
Lemma 2.1.4.

Example 2.1.9. There is a standard cosimplicial topological space. This is given on objects by

∆n
t =

{
x ∈ Rn+1 :

n∑
i=0

xi = 1, xi ≥ 0, ∀i

}
.

The i-th coface map ∆n−1
t → ∆n

t is given by including (x1, . . . , xn)→ (x1, . . . , 0, . . . , xn), inserting
a 0 in the i-th position, and the i-th codegeneracy map is given by the map ∆n

t → ∆n−1
t sending

x 7→ (x0, x1, . . . , xi + xi+1, . . . , xn).

Construction 2.1.10. Let C be a category with all colimits and let A• be a cosimplicial object in C.
We can construct a functor

| · |A : sSet→ C (realization)

in the following way:
Suppose X• is a simplicial set. Let ∆X denote the category where the objects are maps ∆[n]→

X (i.e., elements of Xn) and a map from a ∈ Xn to b ∈ Xm is a commuting triangle

∆[n] //

!!

∆[m]

||
X

This is called the category of simplices in X . (Added later: watch out for the variance in this
diagram. You could easily reverse the arrows here, i.e., consider the opposite category of the
category of simplices).
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Tautologically, colim(∆[n]→X)∈∆X ∆[n] = X . The A-realization functor is then

|X| = colim
(∆[n]→X)∈∆X

An.

In the case where C = Top (or similar) and A = ∆•t , this construction is called the geometric
realization of the simplicial set X•, and is written |X•|.

Remark 2.1.11. In order to produce |X•|, it is sufficient to consider the nondegenerate simplices of
X•.

Construction 2.1.12. Let C be a category with all colimits and let A• be a cosimplicial object in sC.
We can construct a functor SingA : C → sSet by setting SingA(Y )n = C(An, X). The cosimplicial
structure maps in A• then immediately yield the simplicial structure maps in SingA(Y )•.

When A = ∆•t , this is a familiar construction: SingA(Y )n = Top(∆n
t , Y ) is the collection of

singular n-simplices in Y . This is the basis for the free abelian group C
sing
n (Y ) used to calculate

singular homology.

Proposition 2.1.13. Let C be a category having all colimits. Then the two constructions above form an
adjoint pair of functors | · |A a SingA.

Proof.

C(colim
∆X

An, Y ) = lim
∆X

C(An, Y ) = lim
∆X

SingA(Y )n = lim
∆X

sSet(∆[n],SingA(Y )•) = sSet(X•,SingA(Y )•)

Definition 2.1.14. Let K denote the category of compactly generated spaces, also known as “Kelly
spaces”. The category K is a subcategory of Top and the inclusion K → Top is left-adjoint to
a “Kellification”, functor so that K is closed under all colimits in Top. It is notably not closed
under ordinary products of spaces, instead there is a product in K given by replacing X×Y by its
Kellification—this has the same underlying set, but possibly different closed subsets.

Lemma 2.1.15. The geometric realization functor | · | : sSet→ K preserves finite products.

Outline of proof. That is, we assert |X1 × X2| ≈ |X1| × |X2|. Observe that there is a map in the
forward direction here, and it suffices to prove it is a homeomorphism.

It is a feature of both the category of sets and of K that there is a functor · × A that is a left
adjoint—see the Appendix to Gaunce Lewis’ thesis for a proof of this for K. In particular, finite
products commute with all colimits in both categories.

Moreover, | · | is a left adjoint, and commutes with all colimits. We consequently have a reduc-
tion

|X1 ×X2| = | colim
∆X1

∆[n]×X2| = colim
∆X1

|∆[n]×X2| = colim
∆X1,∆X2

|∆[n]×∆[m]|

and
|X1| × |X2| = colim

∆X1,∆X2

|∆[n]| × |∆[m]|

so it suffices to prove that the natural map

ν : |∆[n]×∆[m]| → |∆[n]| × |∆[m]|
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is a homeomorphism. The target here is clearly compact.
One sees that the nondegenerate simplices of ∆[n]×∆[m] correspond to totally ordered subsets

of the partially-ordered set [n] × [m]. There are only finitely many of these, so |∆[n] × ∆[m]| is
compact. Therefore it suffices to show ν is bijective.

It then suffices to show that every point in |∆[n]| × |∆[m]| arises from realizing one of the
maximal (i.e., n+m-dimensional) nondegenerate simplices in ∆[n]×∆[m]. This is done in the last
part of [Hov99, Lemma 3.1.8].

2.2 The model structure on simplicial sets

2.2.1 Summary

Definition 2.2.1. A map f : X → Y is a weak equivalence of simplicial sets if |f | is a weak equivalence
of topological spaces. Since |X| and |Y | are CW complexes, this is the same as being a homotopy
equivalence of spaces.

Example 2.2.2. Note that the three spaces |Λ2
i | are all homeomorphic as spaces, but the Λ2

i are
pairwise non-isomorphic as simplicial sets.

Definition 2.2.3. A map f : X → Y is a cofibration of simplicial sets if it is levelwise injective.

Definition 2.2.4. A map f : X → Y is a fibration of simplicial sets or a Kan fibration if it has the
following right lifting property

Λi[n]

��

// X

f

��
∆[n]

==

// Y

(2.1)

for all n and all i ∈ {0, . . . , n}.

Notation 2.2.5. A simplicial set K such that K → ∆[0] is a fibration (i.e., a fibrant object in this
structure) is called a Kan complex.

Remark 2.2.6. A simplicial set X• such that X• → pt satisfies the lifting property in (2.1) for all n
and all i ∈ {1, . . . , n− 1} is called a quasicategory. We may return to this definition later.

Theorem 2.2.7. The weak equivalences, cofibrations and fibrations defined above form a model structure.

2.2.2 Cofibrant generation

We won’t prove this in full detail, since we’ve allotted no more than two lectures to it. Here are
the main ideas. The full proof can be assembled from [Hov99, Section 2.1] and [Hov99, Section
3.2-3.6].

Notation 2.2.8. Let I be a collection of maps in a category C having all colimits. The notation
I − inj denotes the collection of maps that have the r.l.p. with respect to the maps in I . Let I − cof
denote the set of maps having the l.l.p. w.r.t. I − inj. Let I − cell (the relative I cell complexes)
denote the smallest collection of maps that is

12



1. closed under direct colimits and

2. closed under coproducts (this actually follows from the other two axioms)

3. contains all pushouts of maps in I .

Lemma 2.2.9. Any retract of a map in I − cof is in I − cof .

Lemma 2.2.10. Any map in I − cell is in I − cof .

Definition 2.2.11. Let I be a collection of morphisms in a category C. An object X ∈ C is small
(relative to I) if, for all direct systems Y1 → Y2 → . . . of maps in I , the map

colim
i

C(X,Yi)→ C(X, colim
i

Yi)

is a bijection.

Remark 2.2.12. The small objects in the category of sets are the finite sets. The small objects in sSet
are the simplicial sets having finitely many nondegenerate simplices.

Remark 2.2.13. There is a generalization of smallness to κ-smallness, where the direct systems are
indexed over other ordinals than ω.

Theorem 2.2.14 (The small object argument, finite version). Let C be a category having all colimits,
and that I is a set of maps. Suppose the domains of the maps in I are small relative to I − cell. There is a
functorial factorization of all maps f in C into δ(f) ◦ γ(f) where δ(f) is in I − inj and γ(f) is in I − cell
(and in particular, in I − cof).

There is also a version of this for more general notions of smallness.

General idea of proof. Let f : X → Y be a map in C. We want to produce a factorization X → X ′ →
Y where X → X ′ is in I − cell and X ′ → Y has the r.l.p. w.r.t. I . To what extent does X → Y fail
to have that lifting property already? Suppose there is a diagram

A

��

// X

��
B // Y

where A → B is in I . There may not be a lift along X → Y , but we can replace X by X ′, the
pushout of B ← A → X . Then there is a factorization X → X ′ → Y where the first map is
I-cellular and the second map is closer to being in I − inj because at least in the diagram

A

��

// X ′

��
B // Y

where A is the composite A→ X → X ′, there is a lift.
The “small object argument” is an argument that says some (infinitely repeated) application of

this idea does actually lead to a functorial factorization.
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Lemma 2.2.15 (The Retract Argument). Suppose f = pi is a factorization of a map in a category where
f has the l.l.p. w.r.t. p. Then f is a retract of i.

Proof. Write i : A→ B and p : B → C and consider the lift in

A
i //

f

��

B

p

��
C

r

??

C

Then the diagram
A

f

��

A

i

��

A

f

��
C

r
// B

p
// C

does the job.

Lemma 2.2.16. Assume I is small relative to I − cell. Any map in I − cof is a retract of a map in I − cell.

Proof of lemma. Let f : X → Y be a map in I − cof . Using the small object argument, we can factor
it as a composite X → X ′ → Y where the first map is in I − cell (and so in I − cof) and the second
is in I − inj. Then use the retract argument.

Theorem 2.2.17 (Cofibrantly generated model structures). Let C be a category containing all limits
and colimits. Let W be a subcategory of weak equivalences closed under retracts and satisfying the two-out-
of-three property. Let I and J be two sets of map in C. Suppose the domains of the maps in I and J are each
small relative to I − cell, J − cell respectively, and further that

1. J − cell ⊆W ∩ I − cof

2. I − inj = W ∩ J − inj

Then there is a model structure on C where I−cof are the cofibrations, J− inj are the fibrations and I− inj
are the trivial fibrations.

Remark 2.2.18. A model category admitting this sort of description is called cofibrantly generated.

Partial proof. For notational convenience, set I − cof to be the cofibrations and J − inj to be the
fibrations. It is also easy to show that these are closed under composition. The hypotheses ensure
that I − inj is exactly the trivial fibrations.

It is easy to verify that cofibrations and fibrations are closed under retracts—this is just a dia-
gram chase in each case.

The small-object argument can be applied to give functorial factorizations of any map f into a
map in J − cell followed by one in J − inj, and similarly for I . The first of these is the functorial
∼
� ·� factorization. The second is the � ·

∼
� factorization.

Finally we turn to the lifting axioms.
A cofibration has the l.l.p. w.r.t. I− inj, the trivial fibrations, by hypothesis. The case of a trivial

cofibration is a little worse. A trivial cofibration f : A
∼
� B can be factored into a map h : A

∼
� A′

14



in J − cell, followed by a trivial fibration g : A′
∼
� B. Since f has the lifting property w.r.t. the

trivial fibration g, the retract lemma tells us that f is a retract of h, a map in J − cell. It follows that
f is in J − cof , so has the lifting property against fibrations. It even follows that J − cof consists of
precisely the trivial cofibrations.

2.2.3 Cofibrant generation of the structure on simplicial sets

Now we have to outline why the structure on simplicial sets fits into this structure.

Notation 2.2.19. Until further notice, I will denote the set of all canonical inclusions ∂∆[n] ↪→ ∆[n],
and J the set of all the canonical inclusions Λr[n]→ ∆[n].

Proposition 2.2.20. The following are equivalent:

1. I − cof .

2. Relative I-cell complexes

3. Injective maps of simplicial sets

Proof. It is easy to verify that relative I-cell complexes are injective, and it is easy also to verify that
retracts of injective maps are injective. Since every element of I − cof is a retract of a relative cell
complex, this implies that all the maps we are considering here are injective.

To finish the argument suffices to show that any injective map is actually a relative cell complex.
This is routine enough, and is done in detail in [Hov99, 3.2.2]

We now try to apply Theorem 2.2.17.

Remark 2.2.21. For convenience, let us recapitulate the hypotheses of that theorem:

1. C contains all limits and colimits—done.

2. W is closed under retracts and satisfies 2-out-of-3—obvious.

3. Smallness—satisfied (the domains have only finitely many nondegenerate simplices in each
case).

4. J − cell ⊆W ∩ I − cof .

5. I − inj = W ∩ J − inj.

Proposition 2.2.22. Axiom 4 is satisfied.

In fact, more is true. The maps in J − cof are called anodyne extensions, and they are all trivial
cofibrations.

Proof. Since J ⊆ I − cof , it is formal that J − cof ⊆ I − cof − cof = I − cof .
It remains to show that anodyne extensions are weak equivalences. It is formal from the | · | a

Sing adjunction that the realization of an anodyne extension is in |J | − cof , where |J | denotes the
geometric realization of the maps in J . But the maps in |J | − inj are exactly the Serre fibrations,
and so |J | − cof are the trivial Serre cofibrations, in particular, they are weak equivalences.

So only Axiom 5 remains. This would take a long time to prove, so we will not do it.
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Proposition 2.2.23 (Hovey 3.2.6). If f ∈ I − inj, then f is a trivial fibration.

You can look in [Hov99] for a proof of this. Proving f is a fibration does not require anything
that we haven’t done already, since we can produce the maps J as I-cell complexes, against which
f has the r.l.p. Proving that f is a homotopy equivalence is not difficult either, but it does involve
the long exact sequence of a fibration (in classical homotopy theory), which we will discuss later.

Proposition 2.2.24. If f is a trivial fibration, then f is in I − inj.

Heavy combinatorics (i.e., the theory of minimal fibrations [Hov99, Definition 3.5.5] or [GJ99,
Section I.10]) is used to reduce this to a statement about homotopy groups of simplicial sets. We
will therefore devote some time to homotopy groups later, and you will have to trust me that the
argument can be made in a not-circular way.

In the process of proving this, one proves most of the following theorem

Theorem 2.2.25. The realization and singular functors

| · | : sSet � K : Sing

form a Quillen equivalence.

Proof. To see this is a Quillen adjunction, we concentrate on the right adjoint, Sing. Suppose f :
X → Y is a Serre fibration, and there is a diagram

|Λi[n]| //

��

X

��
|∆[n]| // Y

.

Since the left hand vertical map is a cellular inclusion and a weak equivalence, there is a lift in this
diagram, and so, after applying the adjunction, we get a lift in

Λi[n] //

��

SingX

��
∆[n]

;;

// Sing Y

.

The same argument also applies to ∂∆[n] → ∆[n] when f is a trivial Serre fibration. This handles
the “Quillen adjunction” part of the theorem.

For the equivalence, letK be a simplicial set andX be a k-space, we have to show that |K| → X
is a weak equivalence if and only if K → SingX is a weak equivalence. This is means showing
that |K| → X is a weak equivalence if and only if |K| → |SingX| is a weak equivalence, which in
turn is equivalent to showing that the natural map |SingX| → X is a weak equivalence. This is
true, but we will postpone explaining why until after we describe homotopy groups.

Remark 2.2.26. As part of this Quillen equivalence, there is the statement that if f is a cofibration,
then |f | is a cofibration. In fact, if f is a cofibration, then by 2.2.20, it is a relative cell complex (in
what we called I − cell) and we can see directly that |f | is a relative cell complex of topological
spaces.
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In particular, Ho sSet is an equivalent category to Ho K.
Two further facts about realizations of simplicial sets that we will not prove are given.

Theorem 2.2.27. The realization functor | · | preserves all finite limits, i.e., limits of finite diagrams.

Sketch of proof. This appears as [Hov99, Lemma 3.2.4]. The idea is that all finite limits can be con-
structed by iterating finite products (for which we already know this result) and equalizers.

Definition 2.2.28. Let f, g : A → B be two maps in a category. The equalizer of f, g is the limit of
the diagram A⇒ B.

To show that | · | preserves equalizers, argue as follows. Let f, g : A → B be two maps of
simplicial sets, letK be the simplicial set equalizer. This is a subobject ofA. LetZ be the topological
equalizer of |f |, |g|. That is, this is the subspace of |A| on which the two cellular maps |f | and |g|
agree. The space Z is a closed CW subspace of |A|, and the functorial inclusion |K| → |A| factors
through Z. It suffices to verify that the inclusion |K| → Z is surjective, and this can be done on a
simplex-by-simplex basis.

Theorem 2.2.29 (Quillen). If f : X → Y is a Kan fibration of simplicial sets, then |f | is a Serre fibration.

This appears as [GJ99, Theorem 10.10].
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Chapter 3

Homotopy theory of simplicial sets
and spaces

3.1 Pointed model categories

Notation 3.1.1. Every model category has an initial object ∅ and a terminal object pt. A model
category is said to be pointed if ∅ → pt is an isomorphism. In particular, this implies that every
object X is equipped with a unique map x0 : pt→ X called the basepoint of X .

Construction 3.1.2. If C is a model category, then we can form the associated pointed model category
C+ where the objects are pairs (X,x0), with X ∈ C and x0 : pt → X being a morphism (i.e., a
choice of basepoint). Morphisms in C+ are required to send basepoints to basepoints. Weak equiv-
alences (resp. cofibrations, fibrations) are the maps that are weak equivalences (resp. cofibrations,
fibrations) after forgetting the basepoint.

There is a functor C → C+ given by sending the object X to X
∐

pt, pointed at the disjoint
basepoint, and a forgetful functor C+ → C, forgetting basepoints. These functors form a Quillen
adjunction.

Remark 3.1.3. Frequently, when working in a pointed category, we will write X but mean (X,x0).

Remark 3.1.4. The Quillen equivalence of sSet and K extends to an equivalence of pointed cate-
gories.

3.2 Cartesian structure

Definition 3.2.1. Let X and Y be simplicial sets. Let Map(X,Y )• denote the simplicial set hav-
ing sSet(X × ∆n, Y ) as its n-th level. Since ∆• form a cosimplicial set, this makes sense. The
construction Map(X,Y ) is functorial in both variables (contravariantly in the first).

Proposition 3.2.2. For a fixed simplicial set Y , the functors · × Y a Map(Y, ·) form an adjoint pair.

Proof. Exercise.
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The following theorem sets a pattern for many similar theorems in homotopy theory, and is
very useful.

Theorem 3.2.3 (Mapping theorem). Suppose i : K → L is a cofibration (injective map) and p : X → Y
is a fibration of simplicial sets, then the induced map

Map(L,X)→ Map(K,X)×Map(K,Y ) Map(L, Y )

is a fibration. It is a trivial fibration if either i or p is also a weak equivalence.

Construction 3.2.4. Note that Map(X,pt) = pt. There is a pointed version of Map, denoted Map+

given by a pullback
Map+(X,Y ) //

��

Map(X,Y )

��
Map(pt,pt) // Map(pt, Y )

.

The morphism pt = Map+(X,pt) → Map+(X,Y ) gives Map+(X,Y ) the structure of a pointed
simplicial set. It is contravariantly functorial in the first variable and covariantly in the second.

The functor Map+(X, ·) from sSet+ to itself is right adjoint to a functor ·∧X , the smash product.
You can construct the pointed space X ∧ Y as the pushout

X × y0

∐
x0 × Y //

��

pt

��
X × Y // X ∧ Y

.

Remark 3.2.5. The analogue of Theorem 3.2.3 holds in the pointed case.
Remark 3.2.6. An entirely analogous story can be told about the usual model structure on K (i.e.,
the restriction of the structure on Top). Here we have an internal mapping object Map(X,Y ) =
C(X,Y ), a pointed analogue, Map+(X,Y ) and the smash product X ∧ Y . The mapping theorem,
3.2.3, also applies in this case.

Corollary 3.2.7 (Corollary of Theorem 3.2.3). Work in either the category of simplicial sets or the usual
model structure on K. Let L be a cofibrant object. Then the adjoint functors · × L and Map(L, ·) form a
Quillen adjunction.

Similarly, in the pointed cases, · ∧ L and Map+(L, ·) form a Quillen adjunction.

Proof. Apply the theorem with i : ∅ → L and p : X → Y a (trivial) fibration. This suffices to show
that Map(L, ·) preserves (trivial) fibrations, and so is a right Quillen functor. The pointed case is
an exercise.

In particular, the adjunction descends to an adjunction on homotopy categories.

Proposition 3.2.8. Suppose i : L → K is a weak equivalence of simplicial sets, then the natural transfor-
mation Map(K, ·)→ Map(L, ·) is a natural weak equivalence.

This relies on Ken Brown’s lemma and the fact that all simplicial sets are cofibrant. There is a
dual statement for the other variable in the mapping space, but it applies only when the objects
are Kan complexes.
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Example 3.2.9. Let Sn denote the usual n-sphere in K with a basepoint x0. For a pointed topological
space X , define ΣnX = X ∧ Sn and ΩnX as Map+(Sn, X). Similarly, for a pointed simplicial sets
X , define Sn = ∆[n]/∂∆[n] and then ΣnX = X ∧ Sn and ΩnX = Map+(Sn, X). These are called
the n-fold (reduced) suspension and n-fold loop space of X , respectively.

There are adjunctions in the pointed homotopy category [ΣnX,Y ]+ = [X,ΩnY ]+ in each case.
In both cases, there is a weak equivalence Sn ∧ S1 → Sn+1 and similarly in the simplicial set case
(in the topological case, this is actually a homeomorphism). This implies that ΣiΣjX ' Σi+jX
and ΩiΩjX ' Ωi+jX .

Remark 3.2.10. If A and B are simplicial sets, we know that |A × B| ≈ |A| × |B| and similarly
|A ∧B| ≈ |A| ∧ |B|. Clearly |∂∆[n+ 1]| ≡ Sn. This is sufficient to prove that |ΣnA| ≈ Σn|A|.

A homework assignment asks you to show that |Map(A,B)| is related by a chain of weak
equivalences (in either direction) to Map(|A|, |B|) provided B is a Kan complex. A variation on
this argument shows that |ΩnZ| ' Ωn|Z| provided Z is Kan.

3.3 Simplicial model categories

This section is just general building up of vocabulary. It contains no real theorem.

Definition 3.3.1. A simplicial category is a category C equipped with three extra pieces of structure:

1. A simplicial enrichment: between any two objects X,Y there is a simplicial set S(X,Y ) of
maps, such that S(X,Y )0 = C(X,Y ) and satisfying the usual associative composition ax-
ioms.

2. A simplicial tensor structure: for any objectX and any simplicial setK there is an objectX⊗K
in C, functorial in both variables, and so that there is a natural isomorphism: X⊗(K×K ′) ∼=
(X ⊗K)⊗K ′.

3. A simplicial cotensor structure: for any object X and any simplicial set K, there is a mapping
object XK in C.

These structures must further be related by natural isomorphisms

sSet(K,S(X,Y )) ∼= C(X ⊗K,Y ) ∼= C(X,Y K).

Remark 3.3.2. In the above circumstances, S(X,Y )n = C(X ⊗ ∆[n], Y ), so that S(X,Y ) is deter-
mined by the rest of the structure.

Note also that · ⊗K and X ⊗ · are both left adjoints, so both preserve colimits and in particular
preserve initial objects.

Definition 3.3.3. A simplicial model category C is a category equipped with a simplicial structure
and a model structure and so that given a cofibration f : U → V and cofibration g : W → X in
sSet, the induced map

f�g : (V ⊗W )
∐
U⊗W

(U ⊗X)→ V ⊗X

is a cofibration which is trivial if either f or g is.
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Remark 3.3.4. This definition has consequences for the adjoints of ⊗. For instance, it follows that
for a fixed cofibrant X , the functors X ⊗ · and S(X, ·) form a Quillen adjunction.
Example 3.3.5. The model structure on sSet is simplicial. Both the cotensor and the simplicial
mapping object are given by Map.

A more interesting example is given by K. This is made into a simplicial model structure by
defining

X ⊗A := X × |A|
S(X,Y )n := K(X[n], Y )

XA := Map(|A|, X).

The pointed versions of these simplical model structures also have simplicial structures. For
instance, when X is a pointed space, X ⊗A is X ∧A+. The mapping space S(X,Y ) is a simplicial
set already (forgetting the basepoint) and XA is given by Map+(A+, X) (which is just Map(A,X),
forgetting the basepoint.
Remark 3.3.6. There are model categories that are not simplicial (or at least, carry no obvious sim-
plicial structure), but we will not encounter these in this course.

3.4 Homotopy groups

Notation 3.4.1. We work throughout in the category of pointed simplicial sets, but we will gen-
erally not mention the basepoints. It will be enough to know they are there. The basepoint of a
simplicial set K will be denoted k. We will say a map f : X → Y is “constant” if it factors through
y → Y .

The notation {0} and {1}will be used for the two vertices of ∆[1].

Definition 3.4.2. Let K be a simplicial set, and let ka, kb ∈ K0. We say that ka ∼ kb if there is a
1-simplex j ∈ K1 such that d0j = ka and d1j = kb. If K is a Kan complex, then ∼ is an equivalence
relation on K0, and we define π0(K) = K0/ ∼. This is a set. If ka ∈ K0 is a particular element of
K0, then π0(K0, ka) is the set π0(K0) where the class of ka is a distinguished element.

Remark 3.4.3. π0 is a functor.
Remark 3.4.4. There is a map of spaces K0 → |K|, and this map induces a bijection π0(K) →
π0(|K|).

Definition 3.4.5. If C is a pointed category with limits and colimits, and f : X → Y is a map, then
the fibre of f is the pullback

F //

��

X

f

��
pt // Y

and the cofibre is the pushout

X

��

f // Y

��
pt // C
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Remark 3.4.6. The cofibre doesn’t require a pointed category for its definition, but it is a pointed
object. For a given map f , changing the basepoint in Y yields different fibres.

Definition 3.4.7. Suppose K is a pointed Kan complex, with basepoint k. Let n ≥ 1 be an integer.
Give ∆[n] a basepoint at 0, and apply this to subobjects of ∆[n]. There is a fibration of fibrant
objects Map+(∆[n],K) → Map+(∂∆[n],K). The basepoint of Map+(∂∆[n],K) is the map send-
ing all of ∂∆[n] to k. Let F denote the fibre of Map+(∆[n],K) → Map+(∂∆[n],K), and define
πn(K, k) = π0(F ).

Remark 3.4.8. I think there is a gap in the argument proving [Hov99, Proposition 3.6.3], in that he
has not established the group structure on the higher homotopy groups, but does seem to use it.
So as not to spend our lives worrying about group structures, let us refer to [GJ99, Theorem 7.2]
for a proof that πn(K, k) is a group when n ≥ 1.

Proposition 3.4.9. This defines a functor from pointed Kan complexes to pointed sets, and to groups if
n ≥ 1.

Remark 3.4.10. There are many different ways of defining πn(K, k), all of them ultimately equiv-
alent. What we are really defining is [∆[n]/∂∆[n],K] in the pointed homotopy category. The
definition just given is the easiest to work with before you know you’ve set up a model structure
on sSet.

We defined the homotopy groups using a specific homotopy relation on maps, essentially a left
homotopy in the unpointed category. To get a different construction, we can produce a different
cylinder object for ∆[n]/∂∆[n] in sSet+. This is what is behind the following technical lemma
[Hov99, Lemma 3.4.5], which is proved in the source without assuming there is a model structure.

Lemma 3.4.11. Let K be a Kan complex, with basepoint k. Let s : ∆[n] → K be a map that is constant
on the boundary. Then the class of s is trivial if and only if there is a map x : ∆[n + 1] → K such that
x ◦ dn+1 = s and x ◦ di is constant for all other i.

Proof. We do the “only if” direction here. You can look up the “if” direction yourself. Suppose
there is a homotopy s̃ : ∆[n]×∆[1]→ K that is constant on ∂∆[n]×∆[1] and on ∆[n]× {1}.

We define G : ∂∆[n+ 1]×∆[1]→ K to be constant when restricted to Λn[n]×∆[1], and to be s̃
on the other face of the prism. Then we have a commutative diagram

∂∆[n+ 1]×∆[1]
∐
∂∆[n+1]×{1}∆[n+ 1]× {1}

G
∐
k //

��

K

��
∆[n+ 1]×∆[1] // pt

Since K is Kan, this admits a lift F : ∆[n + 1] × ∆[1]. Then the n + 1-simplex F |∆[n+1]×{0} :
∆[n+ 1]× {0} → K is the required n+ 1-simplex.

Definition 3.4.12. Let C be a pointed model category. A fibre sequence in C is a pair of maps
F

i→ E
p→ B where p is a fibration of fibrant objects and F is the pull back in

F
i //

��

B

p

��
pt // B.
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Construction 3.4.13. Suppose F i→ E
p→ B is a fibre sequence, and σ ∈ B is an element of

πn(B, ba). Then σ is represented by a map s : ∆[n] → B sending ∂∆[n] to ba. The following
diagram is commutative

Λn[n]
ea //

��

E

p

��
∆[n]

s // B

and therefore we may produce a lift s̄ : ∆[n]→ E. The boundary of ∆[n] is mapped to F , and most

of it (all of Λn[n]) is mapped to ea. The exception is the composite ∆[n − 1]
dn→ ∆[n]

s̄→ E, which
is a nontrivial map from ∆[n − 1] to F , sending ∂∆[n − 1] to ea, the basepoint of F . Therefore it
allows us to define a class ∂s in πn−1(F, ea).

The class of ∂s depends only on σ. There is a proof of this in [Hov99, Lemma 3.4.8] that is
honest, in that it doesn’t rely on having shown that sSet has a model structure. Let us give a
dishonest argument.

Suppose we have two representative maps s, s′ : ∆[n] → B, both representative of σ. There
is a homotopy between them, which is to say, a map H : ∆[n] × ∆[1] → B restricting to s and
s′ at either end. Let s̄, s̄′ : ∆[n] → E be lifts of s and s′ as maps Λn[n] → B. Then consider the
commutative diagram

Λn[n]×∆[1]
∐

Λn[n]×∂∆[1] ∆[n]× ∂∆[1]
f //

��

E

��
∆[n]×∆[1]

H // B

The map f sends Λn[n] × ∆[1] to the basepoint, and restricts to s̄, s̄′ on ∆[n] × ∂∆[1]. The left
vertical map is a trivial cofibration, so there is a lift, H̃ : ∆[n] ×∆[1] → E, having image entirely
in the fibre F , which yields the required homotopy between ∂s and ∂s′.

This argument is dishonest, because we used the model structure to produce H̃ . In [Hov99,
Lemma 3.4.8] (relying on a lot of prior work) this map is produced from scratch.

Remark 3.4.14. Again, to avoid getting entirely bogged down in technicalities, let us refer to [GJ99,
Lemma 7.3] to tell us that the map ∂ is a group homomorphism when n ≥ 2. In the case of n = 1,
there is an action of the group π1(B, b) on π0(F, e) such that the map π0(F ) → π0(E, e) identifies
elements if and only if they lie in the same orbit.

Definition 3.4.15. Suppose A
f→ B

g→ C are maps of pointed sets. Let c0 ∈ C be the basepoint of
C. The sequence g ◦ f is exact if g−1(c0) = im(f).

Remark 3.4.16. A notable subcategory of the category of pointed sets is the category of groups,
where the identity elements are the basepoints. A sequence G → G′ → G′′ of groups is exact in
the sense of sets if and only if it is exact in the usual sense.

Proposition 3.4.17. Suppose F i→ E
p→ B is a fibre sequence of pointed simplicial sets. Then there is a

natural long exact sequence (of groups and pointed sets)

πn(F, e)
i∗→ πn(E, e)

p∗→ πn(B, b)
∂→ πn−1(F, e)→ . . .

→ π1(B, b)→ π0(F, e)→ π0(E, e)→ π0(B, b)
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Proof. There are a number of parts to this, and they are mostly uninteresting. There are three pairs
of maps to consider:

1. p∗◦i∗. This composite is constant, essentially by construction. To show that p−1
∗ is exactly the

image of i∗, consider a map s : ∆[n] → E such that i ◦ s is homotopic to the trivial element.
There is a lifting argument

∂∆[n]×∆[1]
∐
∂∆[n]×1 ∆[n]× 1

e //

��

E

��
∆[n]×∆[1] //

H̃

55

B

and at the endpoint 0, the lifted map H̃ : ∆[n]× 0→ E gives us a representative for the class
of s having image in F .

2. ∂ ◦ p∗. An analysis of the construction of ∂(σ) shows that if σ is in the image of p∗ then ∂σ
is trivial. To see that this is an if-and-only-if is a little more difficult. The argument here
is shamelessly taken from [Hov99, Lemma 3.4.9]. Suppose ∂(σ) is trivial. Choose a map
s : ∆n → B representing the class of σ. There is a lift in

Λn[n] //

��

E

��
∆n s //

γ

<<

B

and there’s a homotopy H : ∆[n− 1]×∆[1]→ F from dnγ to the constant map at e. We can
use that homotopy to define the commutative diagram

∂∆[n]×∆[1]
∐
∂∆[n]×{0}∆[n]× {0}

f //

��

E

��
∆[n]×∆[1]

s◦proj1 // B.

Define f to be γ on ∆[n] × {0}, to be i ◦H on the n-th face of ∂∆[n] ×∆[n] and constant on
the rest of ∂∆[n] ×∆[1]. There is a lift in this diagram, and at ∆[n] × {1} (the far end) gives
a class τ in πn(E, e) such that p∗(τ) = σ.

3. i∗ ◦ ∂. Showing this is null is exactly the “if” direction of Lemma 3.4.11. To show exactness,
suppose i∗(s) is trivial. Then by means of the “only-if” direction of Lemma 3.4.11, we can
extend s : ∆[n] → F to a map t : ∆[n+ 1] → E, that is constant on all but one face, where it
agrees with s. Then compose to get a map p◦ t : ∆[n+ 1]→ B, which represents a homotopy
class. By construction, ∂(p ◦ t) is the class of s.

Remark 3.4.18. Similar arguments show that in the model category of spaces, a fibre sequence
F

i→ E
p→ B gives rise to a long exact sequence of homotopy groups:

πn+1(B, b)→ πn(F, e)→ πn(E, e)→ πn(B, b)→ πn−1(F, e)→ . . . .
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In this case, we also know that πn(X,x) is a group when n ≥ 1 and an abelian group when n ≥ 2.
The morphisms appearing in the long exact sequence are group homomorphisms.

Corollary 3.4.19. Let K be a pointed Kan complex. Then the map given by realization πn(K, k) →
πn(|K|, |k|) is an isomorphism of groups.

Hovey is careful enough to do this without yet having established a model structure. We will
not be so careful. In fact, we will assume quite a number of results we haven’t proved here. You
can consult [Hov99, Proposition 3.6.3] if you want to see this done correctly—but beware you also
will need the group structure on the homotopy groups from [GJ99, I.§7]

Dishonest proof. We can factor the inclusion of the basepoint k → K into a trivial cofibration fol-
lowed by a fibration PK

∼
� K. The object PK is fibrant and weakly equivalent to a point. It

is not difficult to prove directly that the simplicial homotopy groups of a fibrant object weakly
equivalent to a point are trivial. Let WK denote the fibre of PK → K.

The realization of a fibration is a fibration, so |PK| → |K| is also a fibration, and |PK| is
contractible. Write Ω|K| for the fibre of this fibration. There are two long exact sequences and
commuting maps between them, yielding a commuting square:

π1(K, k)
∼= //

��

π0(WK, pk)

∼=
��

π1(|K|, k)
∼= // π0(Ω|K|)

(here the horizontal maps are bijections, due to the group action). The right vertical map is an
isomorphism for elementary reasons. Therefore the left vertical map is also an isomorphism. The
result now follows by iterating the construction, π2(K, k) = π0(WWK).

Example 3.4.20. The long exact sequence of a fibration is a very useful long exact sequence to have
around. We haven’t devoted a lot of effort to establishing fibrations yet, but here is an example.

Suppose X̃ → X is a universal covering space. Covering space theory tells us that πn(X,x) ∼=
πn(X̃, x) whenever n ≥ 2. This means that we know πn(S1, s) for all n. Since the universal cover
is contractible, the groups are trivial unless n = 1, in which case we get an infinite cyclic group, as
is well known.

There is a nontrivial fibration, the Hopf fibration, given by taking C2 \ {0}, and then taking a
quotient by the C× action, to get CP 1 ' S2. In fact, we could restrict attention to the unit sphere
in C2, and take a quotient by S1 ⊆ C×. In this case we get a fibration S3 → S2 with fibre S1: the
Hopf fibration.

The long exact sequence of a fibration then tells us that πn(S3)
∼=−→ πn(S2) when n ≥ 3, and in

low dimensions there is an exact sequence

0→ π2(S3)→ π2(S2)→ π1(S1)→ π1(S2)→ 0

It is well known that πi(Sn) = 0 if i < n, and πn(Sn) is infinite cyclic provided n ≥ 1. In particular,
we see that π3(S2) ∼= Z.
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Part II

Local homotopy theory
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Chapter 4

Sites and Sheaves

4.1 Sheaves on spaces

One of the most important purposes of a topology on a space is to define a sheaf on that space.
Unfortunately, this is often obscured in the disciplines of topology itself.

Definition 4.1.1. Let X be a topological space, and let Xord denote the category having as objects
the open subsets of X with the inclusion maps.

A presheaf (of sets) on X is a functor X
op
ord → Set. One can vary the target category here to get a

presheaf of e.g. groups, simplicial sets, rings etc.

Example 4.1.2. An example to keep in mind is the presheaf B on X that assigns to an open embed-
ding U → X the set of bounded continuous functions U → R. Note that B(∅) = ∗.

Definition 4.1.3. If {fi : Ui → X}i∈I is a family of open embeddings such that V =
⋃
i im fi, we

say the fi are a covering of V . Given such a family of maps, we can form all possible pullbacks

fi × fj : Ui ×X Uj → X.

This is a categorical way of writing a space that we all know already: Ui ∩ Uj . There are maps
Ui ∩ Uj → Ui and Ui ∩ Uj → Uj—the first and second inclusions. Therefore we can define two
systematic maps ∏

i∈I
F(Ui) ⇒

∏
i,j∈I2

F(Ui ×X Uj). (4.1)

An element in the source here consists of an element ofF(Ui) for each i ∈ I . The first rightward
map produces an element in each F(Ui ∩ Uj) (for all pairs i, j) by looking for the element we had
in Ui and applying F(·) to the first inclusion. The second rightward map does the same for the
second inclusion.

Definition 4.1.4. If we start with an element of F(V ), and use that to produce our elements of∏
i∈I F(Ui), and then use either the first or second map in (4.1), the answer in each case will be the

same. We will merely have restricted along the inclusions Ui ∩ Uj → V in both cases. We say that
F is a sheaf if the diagram

F(V )
q→
∏
i∈I
F(Ui) ⇒

∏
i,j∈I2

F(Ui,j) (4.2)
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is always an equalizer. That is, if the map q is an injection identifying F(V ) with the subset of∏
i∈I F(Ui) consisting of those I-tuples of elements for which the two ways of restricting further

agree.

Example 4.1.5. For instance, take B, bounded continuous functions, as before. LetX = R and let Ui
denote the open cover of all of R given by the open sets Un := (n−1, n+1) as n ∈ Z varies. Then an
element of

∏
n∈Z F(Un) means a family of bounded continuous functions ψn : (n− 1, n+ 1)→ R.

The two maps we defined to
∏
n,m∈Z2 F(Un ∩Um) are easy to figure out: for instance, the first one

produces a function on (n− 1, n+ 1)∩ (m− 1,m+ 1) by restricting φn. Note that most of the time,
but not always, this is the unique function ∅ → R.

Now consider an unbounded continuous function on R, e.g. ψ(x) = x2. Then we observe that
ρ gives rise to a family of restrictions ψn|(n−1,n+1) : (n−1, n+1)→ R ∈ B(Un), and the restrictions
of ψn to intersections Un ∩ Um always agree, but the ψn do not assemble to give an element of
B(R). Therefore, B is not a sheaf.

A little more thought shows that B(V ) →
∏
i∈I B(Ui) will always be injective, but it is not

generally the whole equalizer. Terminology fans may refer to B as a separated presheaf .
Remark 4.1.6. We will see later that there is a sheaf L that best approximates B, in that any map
of presheaves B → F where F is a sheaf must factor uniquely as B → L → B. The sheaf L is the
sheaf of locally bounded functions on R. The idea to bear in mind is that sheaves are the right thing
to think about when you are considering “local” behaviour, and it is not possible to answer the
question “is this function bounded?” by looking locally.

4.2 Sheaves on a site

Our reference for all this is [MLM92, Chapter III].

Definition 4.2.1. A presheaf on a category C is a functor F : Cop → Set.

Definition 4.2.2. Let C be a category having all pullbacks (i.e., limits of diagrams X ← Y → Z).
A basis for a Grothendieck topology or a pretopology on C is an assignment to each object X of C of a
collection Cov(X) of covering families with codomain X , satisfying the following axioms:

1. Any set consisting of a single isomorphism {f : X ′ → X} is in Cov(X).

2. if {fi : Xi → X}i∈I is in Cov(X), then for any g : Y → X , the pullbacks {g× fi : Y ×X Xi →
Y } are in Cov(Y )—coverings are closed under pullback.

3. If {fi ∈ Xi → X}i∈I is in Cov(X) and if, for all i ∈ I , we have elements {fij : Xij → Xi}j∈Ji
in Cov(Xi), then the massive composite family {fi ◦ fij}j∈Ji,i∈I is in Cov(X)—coverings are
closed under refinement.

A category with a basis for a Grothendieck pretopology will be called a site.

Definition 4.2.3. If C is a site, then a sheaf (of sets) on C is a presheaf Fon C with the further
property that for all X ∈ C and all {fi : Ui → X} ∈ Cov(X), the diagram

F(X)→
∏
i∈I
F(Ui) ⇒

∏
i,j∈I2

F(Ui ×XUj) (4.3)

is an equalizer.
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Remark 4.2.4. There is a minimal pretopology you can define, where only the isomorphisms are
covering. For this pretopology, all presheaves are sheaves.

Remark 4.2.5. It is possible to define a category of presheaves on C, denoted Pre(C), where a
morphism F → F ′ is a natural transformation of functors, i.e., maps F(U)→ F ′(U) for all objects
U such that the obvious squares commute. The sheaves for a pretopology are a special kind of
presheaf, and we can define a category of sheaves Sh(C) as the full subcategory where the objects
are sheaves.

Remark 4.2.6. We already have one example of a site, Xord, and here the sheaves are as we defined
them before. Here’s another example of a site: fix a finite group G and let GfSet denote the
category of finite sets with G action and G equivariant morphisms. Declare a family of maps
{fi : Ai → B} to be covering if B is the union of the images of the fi.

We will not give the proof of the following long theorem, but it is not difficult.

Theorem 4.2.7. Let C be a site. Then the inclusion of the category of sheaves in the category of presheaves
ι : Sh(C)→ Pre(C) has a left adjoint, a. Moreover, the functor a commutes with finite limits.

You can find a proof in [MLM92, Theorem III.5.1]. The idea is: given a presheafF , define a new
presheaf F+ by defining F+(V ) using equalizers. Somehow, doing this construction twice results
in a sheaf.

Example 4.2.8. If B is the presheaf of bounded continuous functions on a topological space X , then
aB is the sheaf of locally bounded functions.

Remark 4.2.9. When a category C is equipped with a pretopology, it is possible to endow it with
something called a Grothendieck topology, and the category of sheaves on C depends only on the
topology, not the pretopology. Grothendieck topologies themselves are hard to work with, and
people seldom bother—instead we work with the pretopology.

Remark 4.2.10. A monomorphism (injection) or epimorphism (surjection) of presheaves is detected
objectwise: e.g., F → F ′ is a monomorphism if and only if F(V )→ F ′(V ) is an injection for all V .
For sheaves, the story is more complicated. A map F → F ′ is a monomorphism of sheaves if it is
a monomorphism of presheaves, but it is an epimorphism of sheaves if, for all V and all elements
x ∈ F ′(V ), there exists some cover {Ui → V }i∈i for which the restrictions to F ′(Ui) of x are in the
images of F(Ui)→ F ′(Ui)—that is, epimorphisms are tested locally.

4.2.1 The Yoneda functor

Construction 4.2.11. Suppose X ∈ C is an object, then we can produce a presheaf ηX ∈ Pre(C)
using the rule

ηX(Y ) = C(Y,X).

This yields a functor η : C → Pre(C), and it is a lemma, the Yoneda lemma, that η is a full
and faithful functor, i.e., an embedding of categories. Consequently, we will frequently write X
instead of ηX . You can prove the Yoneda lemma yourself as an exercise.

Notation 4.2.12. Let C be a site, and let X be an object. It may be the case that the presheaf ηX is
actually a sheaf. We say that ηX is a representable sheaf . If all presheaves ηX are sheaves, we say the
pretopology on C is subcanonical.
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4.3 The étale and Nisnevich sites

Fix a field k. We assume you know about the category of smooth k-varieties. If k is a perfect field
(e.g., an algebraically closed field) then this is the same as the category of regular k-varieties. It
will be denoted Smk.

4.3.1 Étale maps of varieties

There are a number of different ways of defining étale maps of varieties or of schemes. Our aim
here is to be quick, and relatively explicit. This is not the best definition for all purposes.

Definition 4.3.1. A map of rings φ : R→ S is standard étale if it is isomorphic to the canonical map

R→
(
R[x]

(f)

)
g

where f ′ is a unit in
(
R[x]

(f(x))

)
g
.

Example 4.3.2. A good example to keep in mind is that C[t] → C[t, x]/(x2 − t) fails to be standard
étale because the derivative of x2 − t is 2x, which is not invertible. If we draw the affine varieties
(over C) associated to this map of rings, we get a double cover of A1, with a ramification at the
origin. If we discard that point, by inverting x, we get a standard étale map

C[t]→
(

C[t, x]

(x2 − t)

)
x

.

Definition 4.3.3. A map of schemes f : Y → X is étale if it is locally of finite presentation and, for
each x ∈ X , there exists an open affine neighbourhood SpecR 3 f(x) and SpecS 3 x such that
f(SpecS) ⊆ SpecR and the induced map of rings R→ S is standard étale.

Remark 4.3.4. If you don’t care about schemes, and only about varieties, then you should ignore
the phrase “locally of finite presentation”.

Remark 4.3.5. The image of an étale map is open.

Remark 4.3.6. There are many alternate definitions of what it means for a map to be étale. I rec-
ommend looking at the wikipedia article on the topic to start with, then following the references
there: [19].

We will give one alternative definition here, but we will not prove that the definitions are
equivalent. If A is a commutative ring, then a square-0 ideal I is an ideal I such that I2 = 0.
A map f : Y → X of schemes is formally étale if it satisfies the r.l.p. uniquely w.r.t. all maps
SpecA/I → SpecA for all rings A and all square-0 ideals I . That is, if a unique lift always exists in

SpecA/I //

��

X

f

��
SpecA

;;

// Y

A map of schemes is étale if it is locally of finite type and formally étale.
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If you don’t like general schemes, that’s fine. A map of affine varieties f : SpecS → SpecR is
étale if you can always find a unique lift in

R

��

// A

��
S

==

// A/I

where I is a square-0 ideal in A. This is just a condition on rings. A map of varieties f : Y → X
is étale if you can cover the target with affine schemes SpecS and the source with affine schemes
SpecR ⊆ f−1(SpecS) so that SpecS → SpecR corresponds to an étale map of rings.

We will not prove the equivalence of our two definitions of étale, since this would take us too
long. A proof exists in de Jong’s Stacks Project; start with [deJ17, Tag 025K] and work backwards
from there.

Proposition 4.3.7. If f : Y → X is an étale map of varieties and g : X ′ → X is a map, then the pullback
map Y ×X X ′ → X ′ is an étale map.

Proof. We can reduce this to the affine case. The pull-back of a map of finite presentation is again
of finite presentation, and pulling back preserves the lifting property.

Proposition 4.3.8. The composite of two étale maps is again étale.

Proof. The composite of two ring maps of finite presentation is again of finite presentation, which
is just an exercise in ring theory. This handles the “locally of finite presentation” part. If two maps
are formally étale, then so is their composite.

Proposition 4.3.9. An open immersion (open embedding) of varieties is an étale map.

Proof. Locally an embedding takes the form SpecR→ SpecRf , which is standard étale.

Definition 4.3.10. A family of maps of k-varieties, {fi : Yi → X}, is an étale covering if each map is
étale and if, for each x ∈ X , there exists some fi : Yi → X such that x is in the image of fi, i.e., the
family is jointly surjective.

Remark 4.3.11. We say a family of maps {fi : Yi → X} is a Zariski covering if it is jointly surjective
and each map is an open immersion.

Definition 4.3.12. The big étale site (Smk, ét) (resp. big Zariski site (Smk,Zar)) of k is the site where
the objects are the k-varieties and the covering maps are the étale coverings (resp. Zariski cover-
ings).

Remark 4.3.13. One can also start with a different base scheme, S, and define the big étale site of
SmS , the category of finite type smooth S-schemes, in the obvious way, i.e., the covering maps are
the jointly surjective families of étale maps. One could also do this for the Zariski topology.

Remark 4.3.14. Given a variety S, one can also define the small étale site of S. Here the objects are
étale maps f : X → S of varieties. The covering families are defined the same way. This site is the
one most often considered for calculating étale cohomology, but in fact either site can be used for
that purpose: [Mil80].
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4.3.2 Nisnevich covers

Here is a somewhat unusual definition of a Nisnevich covering.

Definition 4.3.15. Let X be a noetherian scheme (variety). A Nisnevich covering is a family of étale
maps {fi : Yi → X}with the following property:

There exist closed subschemes ∅ = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn−1 ⊆ Zn = X such that for each
Ui := Zi \ Zi−1, there is some fi : Yi → X in the cover such that the pullback

f |Ui
: Ui ×X Y → Ui

has a section, i.e., a map g : Ui → Ui ×X Y such that f |Ui×XY ◦ g = idUi .

Example 4.3.16. Here is an example of an étale covering that is not a Nisnevich covering:

SpecC[t, t−1, x]/(t− x2)→ SpecC[t, t−1].

This is clearly standard étale, and you can verify that it is surjective.
To see that this is not a Nisnevich covering, argue as follows: any proper open subset of the

target here is of the form SpecC[t, t−1]f , and, in particular, has the same fraction field as C[t, t−1],
i.e., C(t) (This is a general feature of irreducible schemes). On the other hand, the fraction field
of C[t, t−1, x]/(t − x2) is C(x), where x = t2. The covering map induces the map C(t) → C(x)
on fraction fields, sending t 7→ x2. This map is not an isomorphism. If we could find a section
on a nonempty open subscheme of the target, then this map of fields would have an inverse, a
contradiction.

Remark 4.3.17. The usual definition of a Nisnevich covering is that it is an étale covering {fi : Yi →
X} such that for all x ∈ X , there exists some i and some y ∈ Yi such that the induced map on
residue fields κ(x)→ κ(y) is an isomorphism.

Remark 4.3.18. A Zariski covering is a kind of Nisnevich covering, and a Nisnevich covering is a
kind of étale covering. Therefore, it is the case that a sheaf for the étale topology is a sheaf for the
Nisnevich topology, and a sheaf for the Nisnevich topology is a sheaf for the Zariski topology.

Remark 4.3.19. We allow our varieties to be disconnected.

Lemma 4.3.20. Suppose a presheaf F : Sm
op
k → Set satisfies the sheaf condition for étale (resp. Nisnevich,

Zariski) covers {f : Y → X} consisting of a single map of varieties. Then F is an étale (resp. Nisnevich,
Zariski) sheaf.

Proof. A homework exercise asks you to show that if a presheaf satisfies the sheaf condition for an
(étale) covering {fi : Yi → X} then it satisfies descent for a covering {fi : Yi → X} ∪ {g : W → X}
(adding a single new map). In fact, this works however many new maps we add. The homework
assignment was written the way it was to keep the notation in check.

Now, if you have an étale covering of a variety {fi : Yi → X}, then to cover X (a topologically
compact space), it suffices to take finitely many of the open images of the maps fi. Therefore, there
is a finite étale subcover {fi : Yi → X}ni=1.

We then can engage in a notational swindle: write Y =
∐n
i=1 Yi and f =

∐n
i=1 fi. This replaces

the étale cover by a single surjective étale map.
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4.3.3 The functor of points

The Yoneda embedding η : Smk → Pre(Smk) is often called the functor of points in algebraic
geometry.

We cut a corner by assuming the following proposition:

Proposition 4.3.21. Let f : Y → X be a surjective étale map of varieties, and let g : Y → Z be a map
of varieties with the property that the two composites Y ×X Y ⇒ Y → Z agree. Then there is a map of
varieties g̃ : X → Z such that g̃ ◦ f = g.

Proof. This result is an application of FPQC descent for schemes. For the experts:

• an étale map is a flat map.

• a surjective flat map is faithfully flat

• a map of varieties is necessarily quasicompact.

and then we can apply FPQC descent. This constructs the map g̃ assuming f is faithfully flat (FP)
and quasicompact (QC). I worked through a proof of this the last time I taught this course, so you
can find an outline in the old notes, but it’s not very relevant to the rest of the material, so I’ll skip
it.

Corollary 4.3.22. Let X be a smooth variety. The presheaf ηX defined by ηX(Y ) = Smk(Y,X) is an étale
(and therefore a Nisnevich, Zariski) sheaf on Smk.

Proof. To test if something is an étale sheaf, you just have to look at surjective étale maps f : Y →
X . The presheaf ηX satisfies this due to the proposition.

Notation 4.3.23. If F is a presheaf and SpecR is an affine scheme, we will sometimes write F(R)
instead of F(SpecR). Recall that we will sometimes write X instead of ηX .

Lemma 4.3.24. Suppose φ : F → G is a map of Zariski sheaves on Smk such that φ : F(SpecR) →
G(SpecR) is a bijection for all affine varieties SpecR, then φ is an isomorphism.

Proof. First note that if {fi : Yi → X} is a Zariski cover of X by affine k-schemes, then F(X) ⊂∏
i∈I F(Yi).

Now, suppose {fi : Yi → X} is a Zariski cover of X by affine k-schemes, and for each pair
Yi ×X Yj , let {Zij`}`∈Lij be an affine cover of Yi ×X Yj . Then there is an equalizer diagram

F(X)→
∏
i∈I
F(Yi) ⇒

∏
i,j∈I2

∏
`∈Lij

F(Zij`)

from which we can deduce the result by means of uniqueness of equalizers.

This lemma implies that it’s often enough to consider the values F(R) as R varies over the
coordinate rings of affine varieties.

Example 4.3.25. Here are some examples of varieties and the (étale) sheaves they represent, indi-
cated by applying to affine varieties:

1. A1
k(R) = Smk(SpecR,Spec k[t]) = k −Alg(k[t], R) = R.
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2. Ank (R) = Rn (the Yoneda functor preserves products).

3. Define Gm = Spec k[t, t−1] = A1
k \ {0}. Then Gm(R) = R×.

4. Ank \ {0} for n ≥ 2 will appear in the homework.

5. Pnk (R): this is slightly harder to figure out directly. An element of this set is an isomorphism
class of exact sequences

Rn+1 // L // 0

where L is a projective module of rank 1. The isomorphisms are diagrams of R-modules

Rn+1 // L //

��

0

Rn+1 // L′ // 0

If R is a ring for which every rank-1 projective module is free, then we can replace L by
R, and the surjective map Rn+1 → R is actually the data of an n + 1-tuple of elements
[r0 : r1 : · · · : rn] in R, such that the ideal these elements generate is all of R, taken up to the
equivalence relation

[r0 : r1 : · · · : rn] ∼ [λr0 : λr1 : · · · : λrn], λ ∈ R×.

Example 4.3.26. The functor of points is a very useful way to think of group schemes. For instance,
GLn is a scheme, the open subscheme determined by the invertibility of the determinant polyno-
mial in Matn×n ∼= An2

. But as a functor of points, it is very easy to understand. We all know what
GLn(R) is.

Since the Yoneda lemma gives us a full and faithful embedding and preserves products, the
fact that GLn(·) is a sheaf of groups defined on SmZ implies that GLn is a group object in the
category of schemes.

4.4 Nisnevich squares

The following idea shows up often in the literature about A1 homotopy, so we should devote a little
time to it. For instance, it appears in [MV99], in Section 3.1. Be warned, in [MV99], the publishers
made a mistake and numbered the propositions etc. within each chapter independently, but failed
to include the chapter numbers. Therefore there are several things numbered 3.1 etc. When you
refer to this paper, you should state the page number as well as the proposition number etc.

Definition 4.4.1. An elementary Nisnevich square in Smk is a caretesian square of the form

U ×X V //

��

V

p

��
U

j // X

where p is étale, j is an open embedding and such that p−1(X \U)→ X \U is an isomorphism (of
closed varieties).
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Proposition 4.4.2. Suppose F : Sm
op
k → Set is a presheaf. Then F is a Nisnevich sheaf if and only if it

converts every elementary Nisnevich square into a pullback square of sets.

Remark 4.4.3. Note that a presheaf satisfying this condition on elementary Nisnevich squares con-
verts disjoint unions to products.

The proof is taken from [MV99, p 96–97].

Proof. There are two parts to this. In one direction, the “if” direction, the argument is by induction.
Suppose F has the property for all elementary Nisnevich squares.

Recall that a Nisnevich cover {fi : Yi → X}i∈I of X is an étale covering (with finitely many
elements) such that there exists a stratification Z1 ⊆ · · · ⊆ Zn = X so that the cover has sections on
the locally-closed complements of the strata. We argue by induction on the length of the stratifica-
tion. If n = 1, then the cover is actually split and the cover contains an isomorphism as a subcover,
so we can conclude by a homework assignment.

Suppose n ≥ 2, and suppose F satisfies the sheaf condition for all covers having stratification-
length < n. We may assume we have a stratification of minimal length. Write f =

∐
fi for

convenience. Choose a splitting map s for f−1(Z1) → Z1. A split surjective étale map is an
isomorphism of a component onto its image (alg. geo exercise). There is therefore decomposition
f−1(Z1) = =(s)

∐
W for some closed complement W ⊆

∐
i Yi, Then set U = X \ Z1 and V =∐

i Yi \W . This U and V form an elementary Nisnevich square over X , and the pullback of f to
U has a splitting sequence of length n− 1. Therefore, by assumption on F and induction both the
sequences

F(X)→F(U)×F(V ) ⇒ F(U ×X V )

F(U)→
∏
i∈I
F(Yi ×X U) ⇒

∏
i∈I
F(Yi ×X Yj ×X U)

are equalizer sequences. The rest is reasonably elementary, and can be done by chasing elements.
For instance, we see that there is an inclusion F(X) →

∏
i∈I F(Yi ×X U) × F(V ). But this map

factors through F(X)→ F(
∐
i∈I Yi) (by virtue of the definition of V ) and so we see that F(X)→∏

i∈I F(Yi) is an inclusion. The other part of the equalizer condition is similar, but longer. We
give an outline here so that the reader can (ideally) reconstruct it in private: Suppose we have
an element of

∏
i∈I F(Yi) for which the two maps to

∏
i,j∈I2 F(Yi ×X Yj) agree. Then applying

restriction maps gives us an element of
∏
i∈I F(Yi×X U) satisfying exactly the gluing condition to

yield an element of F(U). We also get an element of F(V ) by restricting from F(
∐
i∈I Yi). Chase

a diagram to see that the two ways of producing an element of F(U ×X V ) agree. Therefore we
arrive at an element of F(X), as desired.

The “only if” direction goes as follows. Let F be a Nisnevich sheaf. Suppose U, V make up an
elementary Nisnevich square, then U

∐
V → X is a Nisnevich covering, and so we expect

F(X)→ F(U)×F(V ) ⇒ F(U ×X U)×F(U ×X V )×F(V ×X U)×F(V ×X V ) (4.4)

to be an equalizer. Some of the conditions imposed by the equalizer are unnecessary: U×X U = U ,
so that imposes no condition, and U ×X V and V ×X U impose the same condition. We want to
conclude that

F(X)→ F(U)×F(V ) ⇒ F(U ×X V )
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is an equalizer diagram, since this is the same as being a pullback. Therefore we have to conclude
that the equalizer constraint imposed by F(V ) ⇒ F(V ×X V ) is also redundant.

There is a diagonal map ∆ : V → V ×X V . This is actually an étale map, which is perhaps
surprising, but is a fun argument (and on the homework). Also, the map j : U ×X V ×X V →
V ×X V is an open immersion. We also see that {∆, j} forms a Nisnevich cover of V ×X V , so there
is an inclusion

F(V ×X V )→ F(V )×F(U ×X V ×X V ).

In particular, the two maps F(V ) ⇒ F(V ×X V ) from (4.4) impose a condition on elements of
F(V ) that can be restated as two conditions: the equalizer of F(V ) ⇒ F(V )—both maps being the
identity, so no condition—and the equalizer of F(V ) ⇒ F(U×X V ×X V ) given by two projections
onto U ×X V ⊆ V .

Now suppose (α, β) ∈ F(U) × F(V ) are such that the restrictions to F(U ×X V ) of α and β
agree. Then the two restrictions of β to F(U ×X V ×X V ) that you get by projecting away from
the second or third factors must agree with the pullbacks of α along the first projection F(U) →
F(U×XV ×XV ). So they agree. This means that the equalizer conditionF(V ) ⇒ F(U×XV ×XV )
is vacuous in (4.4), and we conclude.

4.5 Stalks

Stalks are a useful way of working with sheaves on a site.
A good place to find more than you knew you wanted to know about stalks is [GK15]. We’ll

use this as a starting point.

Definition 4.5.1. Let S be a category. Then a functor p∗ : S → Set is called a fibre functor if p
commutes with finite limits and all colimits. If S is a category of sheaves on a site, then p∗ will
automatically have a right adjoint p∗, and the pair p = (p∗, p∗) is called a point of S, and p∗F is
called the stalk of F at p.

Definition 4.5.2. A category of sheaves Shvτ (C) has enough points if there exists a set of points
{pi}i∈I for which the following condition holds:

“A map F → G of sheaves is an isomorphism if and only if p∗iF → p∗iG is a bijection for all
i ∈ I .”

The family {pi}i∈I is said to be a conservative family of points.

Remark 4.5.3. You can detect both epimorphisms and monomorphisms with a conservative family
of points. For instance, a map φ : F → G is an epimorphism of sheaves if and only if the pushout
map G → G

∐
F G is an isomorphism. Applying p∗ preserves pushouts, so that φ is an epimor-

phism if and only if p∗G → p∗G
∐
p∗F p

∗G is a bijection as p ranges over a conservative family of
points, which is the case if and only if p∗F → p∗G is onto for all p.

Proposition 4.5.4 (Deligne). Suppose C is a site having all fibre products and τ is a Grothendieck topology
in which all covering families have finite subfamilies that are also covering. Then Shvτ (C) has enough
points.

This implies that the étale, Nisnevich and Zariski sites all have enough points. Regrettably,
there are sites without enough points, but we will not encounter them in this course.

36



4.5.1 Calculating stalks

Definition 4.5.5. A category I is said to be pseudofiltered if it satisfies the following conditions:

1. For every two morphisms f : i → j and g : i → j′ with common domain, there exists an
object k and morphisms u : j → k and v : j′ → k so that u ◦ f = v ◦ g.

2. For every two parallel morphisms f : i → j and f ′ : i → j, there exists some morphism
w : i→ l such that w ◦ f = w ◦ f ′.

A category is said to be filtered if it is filtered and has exactly one path component, i..e, it’s not
empty and for any two objects, there’s a zig-zag of maps between them.

A category I is said to be cofilitered if the opposite category is filtered. Sometimes we mess up
and say filtered instead of cofiltered.

Proposition 4.5.6. Let I be a filtered small category and let J be a finite category. Let X : I × J → Set
be a diagram of sets: objects in this diagram are indexed Xij (for fixed i, the diagram Xi∗ is finite, and for
fixed j, the diagram X∗j is filtered). Then there is a bijection

colim
i∈I

lim
j∈J

Xij → lim
j∈J

colim
i∈I

Xij .

This is [ML98, Theorem 1, p 211].

Proof. This can be reduced to checking two cases for J. Either it is a very boring category with
two objects and no non-identity morphisms (in which case the limit is just a finite product) or it is
•⇒ •, in which case the limit is an equalizer.

These two cases are left as exercises.

Construction 4.5.7. Here’s a way of constructing stalks for topological spaces. IfX is a topological
space, then Xord denotes the category where the objects are open subsets of X and the morphisms
are inclusions. Let V be a nonempty object of this category, and let v ∈ V .

We will try to associate an adjoint pair of functors p∗ a p∗ between Pre(Xord) and Set to v.
We’ve deliberately made this a little harder for ourselves by specifying v ∈ V : if we just wanted
to do this construction, we’d say “v ∈ X” and get on with it. But later, we’ll be looking at cases
where there’s no perfect analogue for X , so we give ourselves extra flexibility.

First, let’s try to construct the functor p∗ : Set → Shv(Xord). For a given set S, the name for
the (pre)sheaf p∗S is the skyscraper sheaf with value S at v. Here’s a slightly longwinded way of
constructing it:

Let X(V, v) denote a category where the objects are maps i : U → V in Xord such that v is in
the image of i. If there is such a map i : U → V , then clearly there is a unique such map. There is
also an obvious forgetful functor X(V, v)→ Xord where you take i : U → V and forget everything
except for U .

Let us produce a presheaf pc∗S on X(V, v) by always declaring the value to be S and all restric-
tion maps to be identities. Now we perform what is called a “right Kan extension” of pc∗ along the
forgetful functor. That is, to define

p∗S(U) = lim pc∗S(V ′ → V )

taking a limit over all V ′ → V such that there exists a map V ′ → U .

37



The effect of all this work is that p∗S(U) = ∗ (a limit over an empty diagram) if there is no open
set containing v and contained in U , i.e., if v 6∈ U , and p∗S(U) = S if v ∈ U .

We didn’t specify what p∗ does on maps of sets, but it’s obvious.

We can also construct a left adjoint p∗ : Pre(Xord) → Set. Here’s how: given a presheaf F we
can “restrict” F to X(V, v) in the obvious way. Then we take a colimit

p∗F = colim
V ′∈X(V,v)

F(V ′).

It is an exercise to verify that p∗ is a left adjoint to p∗. The main idea is as follows: suppose p∗F → S
is a map of sets, then for every V ′ → V , a neighbourhood of v, we get a map F(V ′)→ S, and these
maps are all compatible with one another and restrictions. Then we get a natural transformation of
functorsF → pc∗S on the category X(V, v), and the Kan extension gives us a natural transformation
F → p∗S. This construction is reversible, so that given a map F → p∗S, we get a map p∗F → S,
and it’s easy to verify that the two constructions are inverse to one another.

The skyscraper sheaf is actually a sheaf: you can verify directly it satisfies the gluing condition.
It is therefore formal that p∗ a p∗, which we constructed as an adjoint between presheaves and sets
actually restricts to an adjunction

p∗ : Shv(Xord) � Set : p∗

It is also formal that p∗F → p∗aF is a bijection (here a is the associated sheaf functor).

Since p∗ is a left adjoint, it preserves all colimits. Since p∗ is formed as a colimit over a filtered
category X(V, v), it commutes with finite limits.

Definition 4.5.8. We may require the following general definition later. Let X be an object of
Smk and let Z → X be a subscheme. Then a Nisnevich neighbourhood of Z in X is an étale map
f : Y → X and a closed subvariety Z ′ → Y such that f |Z′ : Z ′ → Z is an isomorphism.

The most commonly arising case of this is when Z = {x} is a single point—including possibly
nonclosed points. Then {x} is an irreducible closed subvariety and a Nisnevich neighbourhood
of (X,x) is an étale map f : Y → X and a section on a dense open subset of {x}. More scheme-
theoretically, the Nisnevich neighbourhood is a pair (f : Y → X, y) where f is étale and f(y) = x,
and f induces an isomorphism on residue fields κ(y)→ κ(x).

Notation 4.5.9. Let’s say (f : Y → X, y) is a simple Nisnevich neighbourhood or SNN if it is a
Nisnevich neighbourhood of x = f(y) and f−1(x) consists only of y.

Construction 4.5.10. Now we can do something similar but for Smk with the Nisnevich topology.
I’m not aware of anywhere where this construction is actually explicitly done: usually the “small
Nisnevich site” is considered and perhaps some change-of-site arguments. At any rate, the big
Nisnevich site is a little more challenging that Xord, but similar.

Let X ∈ Smk be a nonempty k-variety and let x ∈ X be a point (of the Zariski topological
space). Let us define a category C where the objects of C are simple Nisnevich neighbourhoods
(f : Y → X, y) of (X,x).

The category C is filtered, and has an obvious forgetful functor to Smk. Given a set S, we define
pc∗S as before: it’s the constant presheaf with value S. Then we Kan extend as before. It’s helpful
to do this Kan extension in two steps. First, let’s extend to Smk/X : we define p∗S(h : U → X) as a
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limit over all SNNs Y → X, y that map to U over X . One sees that p∗S(h : U → X) =
∏
j∈h−1(x)′ S

where h−1(x)′ is the subset of points in h−1(x) such that h induces an isomorphism of residue
fields. Then we Kan extend along the forgetful functor Smk/X → Smk. This means that

p∗S(U) = lim
U←Y h→X

∏
h−1(x)′

S.

This is right adjoint to a functor p∗F that takes a presheaf F to colimC F(Y ). As before, p∗
produces sheaves—in this case, Nisnevich sheaves—so that p∗ preserves colimits of presheaves
and of sheaves, and p∗F → p∗aF is a bijection. Moreover, p∗, being defined as a filtered colimit,
preserves finite limits.

Remark 4.5.11. As x ∈ X ranges over all points in all objects of Smk, this furnishes a conservative
set of points. We won’t prove this, but it’s essentially just an exercise.

4.5.2 Hensel’s lemma

Definition 4.5.12. Let (A,m) denote a local ring. We say A satisfies Hensel’s lemma or is henselian if
the following (known as Hensel’s lemma, [Eis95, Theorem 7.3]) holds:

Given a polynomial f(x) ∈ A[x] and an “approximate root” a ∈ A such that f(a) ≡ 0 (mod )f ′(a)2m,
then there exists b ∈ A such that f(b) = 0 and b ≡ a (mod m), and furthermore, if f ′(a) is not a
zero divisor, then b is unique with this property.

Remark 4.5.13. Complete local rings are henselian. For instance, power series rings over fields are
henselian. Given a noetherian local ring (R,m), one can produce a map of local rings R → R∧,
the m-completion. Therefore every noetherian local ring R maps to a henselian local ring. In fact,
there is an initial such ring, the henselization Rh of R (defined up to unique isomorphism). It is
different from the completion in general, e.g., for reasons of cardinality. See [Eis95, Chapter 7] for
more.

Remark 4.5.14. Suppose F is a representable sheaf, ηZ , written as simply Z. Then in the diagram
over which we take the colimit,

p∗Z = colim
C

Z(Y )

we may restrict to a (cofinal) subcategory C′ of C, consisting of maps with affine source SpecR→
X . Then we are calculating

p∗Z = colim
C′

Z(R).

It is proved in [Gro67, §18.6] that

p∗Z = Z(Ohx,X).

It is also the case that all sheaves are colimits of representable sheaves, and p∗ commutes with
colimits, so insofar as one can make sense of F(Ohx,X), this symbol denotes p∗F .

Notation 4.5.15. A local ring (R,m) is strictly henselian ifR/m is separably closed. Strictly henselian
rings are related to stalks for the étale topology in the same way that henselian rings are related to
the stalks for the Nisnevich topology.
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Chapter 5

Local Homotopy Theory

5.1 Simplicial Presheaves

Definition 5.1.1. A simplicial presheaf X in a category C is a presheaf X : Cop → sSet or, equiv-
alently, a simplicial object in the category of presheaves of sets. There is an obvious category of
simplicial presheaves, sPre(C), endowed with all limits and all colimits. If C is a site, then there
is a subcategory of simplicial sheaves, sShv(C), again having all limits and colimits.

Remark 5.1.2. There is an embedding Pre(C) → sPre(C) where you view a presheaf as a sim-
plicial presheaf having nondegenerate 0-simplicies only. There is an embedding of sheaves in
simplicial sheaves as well.

Remark 5.1.3. There is an embedding sSet → sPre(C), sending K to the constant simplicial
presheaf U 7→ K.

Remark 5.1.4. As a special case of having all limits, sPre(C) has products. This has a right adjoint,
Map(X ,Y). In order to determine what Map(X ,Y) actually is, we use the following corollary of
the Yoneda lemma

Z(U)n = sPre(ηU ×∆[n],Z).

Therefore
Map(X ,Y)(U)n = sPre(ηU ×∆[n]×X ,Y).

There is a simplicial structure on sPre. The actionX⊗K is given byX×K; the simplicial mapping
object S(X ,Y) has n-simplices sPre(X ×∆[n],Y). The cotensor object XK is given by Map(K,X ).

Remark 5.1.5. There are also pointed versions of all the above. A (global) basepoint of a simplicial
sheaf X is the same as a map ∗ → X where ∗ is the terminal object. The terminal object ∗ ∼= ∆[0],
and when we are dealing with sPre(Smk), the terminal object is isomorphic to Spec k.

Example 5.1.6. In contrast to what happens with simplicial sets, there can be nonempty sim-
plicial presheaves without globally defined points. For example, consider the R-variety X =
SpecR[x2]/(x2 + 1) = SpecC, viewed as a discrete simplicial set. If R is a ring, then X(R) is
the set of square roots of −1 in R, viewed as a simplicial set. Since R itself has no square root of
−1, there is no map ∗ = SpecR→ X , but X(C) = {±i}, so X is not empty.
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5.1.1 Weak equivalences

Definition 5.1.7. A global orobjectwise weak equivalence is a map f : X• → Y• such that for all U ∈ C,
the map f(U) : X•(U)→ Y•(U) is weak equivalence of simplicial sets.

Definition 5.1.8. Let C be a site and X• a simplicial presheaf. It is possible to define πpre
0 (X•), a

presheaf of sets on C, by means of the rule

π
pre
0 (X•)(U) = π

pre
0 (X•(U))

Then we define π0(X ) as the associated sheaf.

You might rush headlong at this point to try to define πn(X•), but there’s a problem with
basepoints. For instance, in sPre(Smk), the object SpecC×∆[1]/∂∆[1] should have nontrivial π1,
but it has no basepoints.

Construction 5.1.9. Fix an integer n ≥ 1. Suppose X is a simplicial presheaf on C, and U ∈ C, and
x0 ∈ X (U). Let C/U denote the category where the objects are maps j : V → U in C. For any such
map, there is a basepoint j∗(x0) ∈ X (V ). This allows us to define a presheaf on C/U given by

πpre
n (X , x0) : V 7→ πn(X (V ), j∗x0)

The category C/U inherits a pretopology from C, and so it makes sense to take an associated sheaf
πn(X , x0) on C/U . The construction of πn(X , x0) is functorial in X .

Definition 5.1.10. Let C, τ be a site. A morphism of simplicial sheaves f : X• → Y• is a local weak
equivalence (sometimes called a simplicial weak equivalence if

1. f∗ : π0(X•)→ π0(Y•) is an isomorphism and

2. for all n > 0, all U ∈ C and all x0 ∈ X (U), the morphism f∗ : πn(X , x0)→ πn(Y, f(x0)) is an
isomorphism of sheaves on C/U .

Proposition 5.1.11. A global weak equivalence is a local weak equivalence.

To prove the next major result, we need some technical facts about filtered colimits simplicial
sets:

Lemma 5.1.12. Let I be a small filtered category and let X and Y be I-shaped diagrams of simplicial sets
(having Xi, Yi as objects), and let f : X → Y be a natural transformation. If f : Xi → Yi is a fibration
(resp. trivial fibration) of simplicial sets for each i ∈ I , then f : colimiXI → colimi Yi is a fibration
(resp. trivial fibration) of simplicial sets.

A proof is to be found in the notes of Hirschhorn on Homotopy Colimits.

Lemma 5.1.13. Let I be a small filtered category and let X be a I-shaped diagram of simplicial sets (hav-
ing Xi as objects) and let K be a simplicial set having finitely many nondegenerate simplices. Then
colimi∈I sSet(K,Xi) = sSet(K, colimi∈I). Consequently, colimi∈I Map(K,Xi) = Map(K, colimi∈I Xi).

The proof follows from the analogous fact in the category of sets.
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Proposition 5.1.14. Let p be a point of C, and X a simplicial presheaf taking values in Kan complexes.
Then the natural map

π0(p∗X )→ p∗π0(X )

is an isomorphism.

The proof assumes that p∗ is formed as a filtered colimit over neighbourhoods. Fortunately,
this is always the case, but unfortunately we haven’t established this. In the case we care about
(the Nisnevich site of Smk), we know this is the case.

Proof. Note that since X (U) is Kan for every U , it follows from Lemma 5.1.12 that p∗X is a Kan
complex.

Since X (U) is a Kan complex, we can define π0(X (U)) as the coequalizer of X1(U) ⇒ X0(U).
Then p∗π0(X ) is naturally isomorphic to the coequalizer of p∗X1 ⇒ p∗X0, which is π0(p∗X ).

Proposition 5.1.15. Let X be a simplicial presheaf taking values in Kan complexes, and let x0 ∈ X (U)0

be an element. Let p be a point of C/U . Then for all n, the natural map πn(p∗X , x0)→ p∗πn(X , x0) is an
isomorphism.

Again, we assume points are given by filtered colimits over neighbourhoods.

Proof. First of all, we see that

Ωnp∗X = Map+(Sn, colim
U
X (U))

= colim
U

Map+(Sn,X (U)) = p∗ΩnX .

Next, observe that π0(Ωnp∗X ) = πn(p∗X , p∗x0), whereas π0(p∗ΩnX ) = p∗π0(ΩnX ) = p∗πn(X , x0).

Proposition 5.1.16. Let C, τ be a site such that for all U ∈ C, the slice category C/U has enough points
and let f : X → Y be a map of simplicial presheaves. Then f is a local weak equivalence if and only if
p∗f : p∗X → p∗Y is a weak equivalence of simplicial sets for all points p ∈ P .

Proof. First we can replace X and Y by globally equivalent simplicial presheaves taking values in
Kan complexes.

The map π0(X )→ π0(Y) is an isomorphism of sheaves if and only if π0(p∗X )→ π0(p∗Y) is an
isomorphism for all points.

Moreover, if U ∈ C is an object, then the induced site C/U has enough points, and any point of
this category induces a point of C by composition. Let x0 ∈ X (U), then πn(X , x0)→ πn(Y, f(x0))
is an isomorphism of sheaves on C/U if and only if for all points p, the map πn(p∗X , p∗x0) →
πn(p∗Y, p∗f(x0)) is an isomorphism. Therefore if p∗f is an equivalence for all p, the map f is
a local weak equivalence. Conversely, if f is a local weak equivalence, then for any basepoint
x0 ∈ p∗X , we can find some U such that x0 lifts to x̃0 ∈ X (U), and since the maps of sheaves
πn(X , x̃0)→ πn(Y, f(x̃0)) are isomorphisms, the same holds for the stalks.

Corollary 5.1.17. The associated sheaf functor X → aX is a natural local weak equivalence.

Some sources prefer to work with sPre(Smk) and others with sShv(Smk). This corollary tells
us that either will lead us to the same homotopy category.

Here’s something that local weak equivalences do for us.

42



Construction 5.1.18. Suppose C, τ is a site and that U = {fi : Ui → X}i∈I is a covering family.
Then we can make a simplicial object, the nerve of U in sPre(Smk) as follows. If i = (i0, . . . , in) ∈
In is an n-tuple of elements in the indexing set, then define

Ui = Ui0 ×X Ui1 × · · · ×X Uin .

Define
NUn =

∐
i∈In
Ui.

This coproduct is taken in the category of presheaves on C. These presheaves assemble to make a
simplicial presheaf NU• in which the face maps are given by projections and the degeneracy maps
by diagonals.

The objectX yields a simplicial presheaf, havingX in each dimension and having only identity
maps. There is a map NU• → X , since each object appearing in the disjoint unions of each level of
NU• are objects over X .

Proposition 5.1.19. If U = {fi : Ui → X}i∈I is a covering family, then the map NU• → X is a local
weak equivalence.

The proof of this is on the homework.

5.1.2 The local injective structure

Theorem 5.1.20. Let C, τ be a site. Then there is a cofibrantly generated simplicial model structure, called
the injective model structure on sPre(C) in which:

• the weak equivalences are the local weak equivalences,

• the cofibrations are the monomorphisms,

• the fibrations are defined by their lifting properties.

We will not give the proof of this. It appears as [JSS15, Theorem 5.8]. I have also been negligent
and have not defined something:

Definition 5.1.21. A model category C is left proper if the pushout of a weak equivalence along a
cofibration is a weak equivalence. Dually, it is right proper if the pullback of a weak equivalence
along a fibration is a weak equivalence. It is proper if it is both.

Remark 5.1.22. If every object in a model category is cofibrant, then Ken Brown’s lemma implies
that the structure is left proper.

Remark 5.1.23. The injective model structure on sPre(C) is proper.

Notation 5.1.24. A fibration in the injective local model structure will be called an injective fibration.
The injective fibrations are somewhat difficult to work with.
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Chapter 6

Left Bousfield Localization

Bousfield localization is a very useful idea in homotopy theory, to the extent that there is a whole
book about it [Hir03]. The big idea is the following: suppose we have been given a model category
M equipped with a class of weak equivalences W, cofibrations Cof and fibrations Fib. SupposeA
is a set of maps in M that we would like to make into weak equivalences. Then there is a universal
model category, the left Bousfield localization of M at A, which is another model structure on M,
having the same category of cofibrations, such that the maps in A have been turned into weak
equivalences (along with the maps in W) and with a smaller category of fibrations. Write LAM
for this model category—it has the same underlying category as M. Then the identity functors
give us a Quillen adjunction

id : M � LAM : id

and any Quillen adjunction φ : M → N such that the maps in A are sent to weak equivalences in
N factors through LAM.

6.1 Definitions

Definition 6.1.1. Let M be a simplicial model category andA a set of maps in M. An objectm ∈M
is A-local if, for all maps f : a→ a′ in A, the induced map

S(Qa′, Rm)→ S(Qa,Rm)

is a weak equivalence.

Remark 6.1.2. Variations on this definition exist. For instance, [Hir03] requires m to be fibrant,
but [MV99] do not. We can also use other mapping spaces to make this definition: this allows
[Hir03] to make the definition for non-simplicial model categories by constructing a different kind
of mapping object.

Definition 6.1.3. Let M be a simplicial model category andA a set of maps in M. A map f : x→ y
is an A-equivalence if the induced map

S(Qy,Rm)→ S(Qx,Rm)

is a weak equivalence for all A-local objects m.
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Remark 6.1.4. TheA-equivalences include the weak equivalences, have the 2-out-of-3 property and
are closed under retracts.

Definition 6.1.5. Let M be a simplicial model category and A a set of maps in M. We can define
the left Bousfield localization of M at A to be a model category LAM having the same underlying
category as M, and the same cofibrations. The weak equivalences of LAM are the A-equivalences.
The fibrations are defined to be the maps having the r.l.p. w.r.t. trivial cofibrations.

Proposition 6.1.6. In LAM, the morphisms of A are weak equivalences.

The proof is obvious.

Proposition 6.1.7. Let M be a simplicial model structure and A a set of maps. Then the identity functor
in each direction yields a Quillen adjunction

id : M � LAM : id.

The proof is obvious.

Proposition 6.1.8. Let M be a simplicial model structure and A a set of maps. Then LAM is a simplicial
model structure, the tensor, cotensor and simplicial mapping object being the same as in M.

Proof. The underlying categories of M and LAM are the same, so the required adjunctions all hold.
What remains to be proved is that the various adjunctions are Quillen adjunctions.

Fix a cofibrant object X ∈ LAM. We wish to show that the functors

· ⊗X : sSet � LAM : S(X, ·)

form a Quillen adjoint pair. To do this, it suffices to show that · ⊗ X preserves cofibrations and
trivial cofibrations. There is nothing to do here.

Fix a simplicial set K. We wish to show that the functors

K ⊗ · : LAM � LAM : (·)K

form a Quillen adjunction. To do this, it suffices to show that K ⊗ · preserves cofibrations (already
done) and trivial cofibrations. This last step is not already done, because trivial cofibrations are
not the same in LAM as they were in M, there are more. Therefore, suppose X → Y is a trivial
cofibration in LAM. We want to show that K ⊗X → K ⊗ Y is an A-equivalence. To do this, we
test (a cofibrant replacement of) it against (the fibrant replacement of) an arbitrary A-local object
RZ.

S(K ⊗QY,RZ)→ S(K ⊗QX,RZ)

Map(K,S(QY,RZ))→ Map(K,S(QX,RZ))

where the two lines are equivalent by adjunction. The second line consists of mapping spaces in
sSet, and by hypothesis the target objects are weakly equivalent simplicial sets. They are Kan
complexes by a diagram chase we probably should have considered long ago, but we leave here
as an exercise.

The difficulty with localizations is that we lose control over the fibrant objects.
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Proposition 6.1.9. Suppose M is a simplicial model category, and A is a set of maps in M. Then an object
X of LAM is fibrant if and only if X is fibrant in M and A-local.

Proof. First of all, suppose W is fibrant in LAM. Then X is fibrant in M. Let us show it is A-local.
Suppose f : X → Y is a map in A. This is a weak equivalence in LAM, and so is Qf : QX → QY ,
the cofibrant replacement. Since W is fibrant in LAM, and the model structure is simplicial, the
functor S(·,W ) sends trivial cofibrations to trivial fibrations. By Ken Brown’s lemma, it sends
weak equivalences between cofibrant objects to weak equivalences. So S(QY,W )→ S(QX,W ) is
a weak equivalence, indicating that W is A-local.

Conversely, suppose W is A-local and fibrant in M. We wish to show W → pt has the
r.l.p. w.r.t. maps X → Y that are cofibrations and A-equivalences. An unassigned exercise (a
diagram) implies it’s sufficient to establish this when X → Y is a cofibration of cofibrant objects
and an A-equivalence. But then S(Y,W ) → S(X,W ) is a fibration and, since W is A-local, also a
weak equivalence of simplicial sets. In particular, it is surjective on 0-simplices. That implies that
any map Y →W admits a lift to a map X →W , as required.

Remark 6.1.10. Many other things can be said about left Bousfield localization. All of [Hir03, Chap-
ter 3] is on this topic, as is much of the book.

6.2 Homotopy limits and colimits

Example 6.2.1. Consider the diagram pt → I ← pt including a point at each end of the closed
unit interval. A moment’s thought shows that the limit of this diagram is the empty space. Now,
replace either of the two inclusions by the identity map id : I → I , which is isomorphic in the
homotopy category. Now the limit consists of a single point.

This shows that the homotopy type of a limit can depend on more than the homotopy classes
of the objects.

Notation 6.2.2. If I is a category, and i ∈ I an object, the notation I/i denotes the slice category of I
over i, where the objects of I/i are morphisms f : j → i and the morphisms of I/i are commuting
triangles.

Notation 6.2.3. If C is a small category, then NC denotes the nerve of the category. This is a
simplicial set where the n simplicies consist of n-tuples c0 → c1 → · · · → cn.

Example 6.2.4. For instance, if C is the cospan • → • ← •, then NC is a simplicial set with three
0-simplices and two nondegenerate 1-simplices.

Remark 6.2.5. Suppose F : C → D is a functor between small categories. Then F induces a map,
NF , of simplicial sets.

You can prove that N(C×C′) ≈ NC×NC′. There is no unexpected step.
If ν : F → G is a natural transformation of functors, then ν can be conceptualized as a functor

ν : catC × (0 → 1) → D. Here ν(x, 0) = F (x) and ν(x, 1) = G(x) and ν(f : x → y, 0 → 1) is
the morphism νy ◦ F (f) (or G(f) ◦ νx, these agree by naturality). Therefore ν induces a homotopy
between NF and NG.

Corollary 6.2.6. If C is a small category with an initial or a final object, then NC is contractible.
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Proof. Since NC ≈ NCop, it suffices to do one case. Let us suppose ∅ is an initial object of C. Then
the constant functor ∅ : C→ C has a natural transformation to id : C→ C. Therefore N id = id is
homotopic to the constant map at ∅.

Construction 6.2.7. This construction shows how to produce the homotopy limit of a diagram in
a simplicial model category. It is a kind of derived limit, as can be made precise (but will not be
made precise here, because we haven’t got forever).

Let M be a simplicial model category and let I be a small category. LetX : I→M be a diagram.
The homotopy limit, holimIX is defined as an equalizer of two maps:∏

i∈I

(Xi)
N(I/i) ⇒

∏
i→j

(Xj)
N(I/i)

The two maps are reasonably obvious: given any i→ j, we can get two maps, the first by compos-
ing Xi → Xj :

X
N(I/i)
i → X

N(I/i)
j

and the second because there is an evident “forgetful” functor I/i → I/j, and therefore a con-
travariant map

X
N(I/j)
j → X

N(I/i)
j .

Then we can assemble these to get an equalizer diagram as asserted.

Remark 6.2.8. If you replace N(I/i) in this definition by pt, you get a construction of the ordinary
limit. This gives us a natural transformation for any diagram limD → holimD. This map is
generally not an equivalence.

Construction 6.2.9. The homotopy colimit is exactly dual. That is
Let M be a simplicial model category and let I be a small category. LetX : I→M be a diagram.

The homotopy colimit, hocolimIX is defined as a coequalizer of two maps:∐
i→j

(Xi)⊗N(j/I)op ⇒
∐
i∈I

(Xj)⊗N(i/I)op

Remark 6.2.10. Dually to the case of limits, there is a map from hocolimD → colimD.

Remark 6.2.11. These definitions have been taken from [Hir03, Chapter 18]. They are based on
[BK72, Ch XI], from what is probably the most influential book in homotopy theory.

Some sources require all the objects in a homotopy limit construction to be fibrant, and all
objects in a hocolim to be cofibrant, but we do not.

Example 6.2.12. The majority of homotopy limits and colimits encountered, like the majority of
ordinary limits and colimits, are pushouts and pullbacks.

Here is an unwinding of the homotopy limit of a diagram X
f→ Y

g← Z. For concreteness,
assume this is a diagram of simplicial sets, but the idea works in any simplicial category. This is a
functor from a category 0→ 1← 2. Now let us consider the nerves of I/i for each of these objects.
For 0 and 2, the nerve is ∆[0], whereas for 1 it consists of the simplicial set L := 0 → 1 ← 2. (We
remark in passing that these are all contractible).

The homotopy pullback of X → Y ← Z is an equalizer. That is, it is a subobject of the triple
X × Y L × Z. The precise subobject is not hard to explain. Fix an n. An n-simplex x ∈ X maps
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to f(x) ∈ Y and a simplex z ∈ Z maps to g(z) ∈ Z. An n-simplex of Y L is a kind of ‘path’ of
n-simplices in Y , parametrized by 0 → 1 ← 2, in particular it has a 0-end and a 2-end. An n-
simplex of the homotopy pullback is the data of an n-simplex x of X , an n-simplex z of Z and an
L-paramatrized path from x to z.

Example 6.2.13. Entirely dually, the homotopy colimit of

Z //

��

// X

Y

i.e., the homotopy pushout, is given by a two-sided mapping cylinder.

Definition 6.2.14. If X and Y are two objects in a simplicial model category, the join X ∗ Y of X
and Y is the homotopy pushout of the diagram

X × Y

��

// Y

X

in which both maps are projection maps.

Here is an important feature of homotopy (co)limits that we will not prove.

Theorem 6.2.15. LetD,D′ : I→M be two diagrams of fibrant objects in a simplicial model category, and
let Φ : D → D′ be a natural transformation between them that is an objectwise weak equivalence. Then the
induced map holimD → holimD′ is a weak equivalence.

You can find this in [Hir03, Section 18.5].
Here is another useful result.

Proposition 6.2.16. Suppose M is a simplicial model category. Suppose X : I → M is a small diagram
and Y ∈M. Then there is a natural isomorphism of simplicial sets

S(hocolim
I

Xi, Y )
∼=−→ holim

Iop
S(Xi, Y )

Proof. The proof is an exercise in adjunctions and unravelling the definition.

Notation 6.2.17. Let M be a (simplicial) model category. Say that a diagram D in M is homotopy
commutative if the image ofD in Ho M is commutative. Other sources may use this term differently,
so beware.

Example 6.2.18. Suppose
A //

��

B

��
C // D
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is a homotopy commutative diagram such that D is fibrant and A is cofibrant. Then the homotopy
commutativity condition amounts to the statement that there is a (left) homotopy φ : A⊗∆[1]→ D
from A→ B → D to A→ C → D. Fix φ.

Then we have maps A → B and A → C and a map A ⊗∆[1] → D. This third map can easily
be extended to a map A⊗N(• ← • → •) = A⊗Λ0[2] that is φ on one of the legs and a degeneracy
of the constant map A→ B → D on the other (i.e., it’s a trivial homotopy).

We have exactly the data now to construct a map A → holim(B → D ← C). If this map is a
weak equivalence, then we say the original diagram is homotopy cartesian.

The theory of homotopy cocartesian diagrams is entirely dual.

Remark 6.2.19. The geometric realization of a homotopy cartesian diagram of simplicial sets is
homotopy cartesian.

Proposition 6.2.20. Suppose
A //

��

B

f

��
C

g // D

is a homotopy cartesian diagram of pointed spaces (or pointed simplicial sets). Then there is a homotopy
Mayer–Vietoris sequence

. . . // πi(A, a0) // πi(B, b0)⊕ πi(C, c0)
f∗⊕−g∗// πi−1(ΩD, d0) // . . .

Proof. This is in the homework.

6.3 Fibrancy conditions

6.3.1 Global injective, objectwise, and local fibrations

For concreteness, everything in this section is about Smk with the Nisnevich topology, unless
otherwise stated.

There are four concepts of “fibrancy”. They are listed here in strictly increasing order of
strength. Any map having a property in the list has all preceding properties:

1. local fibration (see Definition 6.3.5)

2. objectwise fibration (see Definition 6.3.3)

3. global injective fibration (see Definition 6.3.1)

4. (local) injective fibration (see Notation 5.1.24)

While no two of these classes of map agree, the lower two classes are somewhat obscure, and
examples are hard to come by.

Definition 6.3.1. A map f : X → Y is a global injective fibration (as distinct from a local injective
fibration, simply called an injective fibration) if it has the right lifting property w.r.t. maps that are
cofibrations (i.e., monomorphisms) and global weak equivalences.
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Proposition 6.3.2. A local injective fibration is a global injective fibration.

Definition 6.3.3. A map f : X → Y is a sectionwise, projective or objectwise fibration if f(U) : X (U)→
Y(U) is a fibration for all U .

Proposition 6.3.4. Suppose f : X → Y is a global injective fibration, and U ∈ Smk. Then f is an
objectwise fibration.

Proof. We want to show that f(U) : X (U)→ Y(U) has the r.l.p. w.r.t. horn inclusions.
The Yoneda lemma implies that S(ηU ,X ) = X (U). By adjunction, any diagram

Λr[n] //

��

X (U)

��
∆[n] // Y(U)

is equivalent to
Λr[n]× ηU //

��

X

��
∆[n]× ηU //

::

Y

where we have the lifting because the left hand arrow is an objectwise equivalence and a cofibra-
tion. Therefore by adjunction the hoped-for lift exists.

Definition 6.3.5. Suppose f : X → Y is a map of simplicial presheaves. We say f is a local fibration
if, for any covering {gi : Ui → Z}i∈I , and any horns Λj [n]→ ∆[n], you can find lifts

Λj [n]

��

// X (Z)
g∗i // X (Ui)

��
∆[n] //

55

Y(Z)
g∗i // Y(Ui)

.

We say it f is a local trivial fibration if it has the analogous lifting property as above with Λj [n] →
∆[n] replaced by ∂∆[n]→ ∆[n].

Remark 6.3.6. These are weaker condition than being objectwise fibrations or objectwise trivial
fibrations respectively.

Here is a theorem that is somewhat surprising, since it says that a condition you might regard
as weak (local trivial fibration) implies local weak equivalence.

Theorem 6.3.7. A map q : X → Y of simplicial presheaves is a local weak equivalence and a local fibration
if and only if it is a local trivial fibration.

You can find this topic covered extensively in [JSS15, Section 4.2]. For instance, the Theorem
above is Theorem 4.32.
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6.3.2 The Brown–Gersten property

As I will explain later, there are variations on this idea.

Definition 6.3.8. A simplicial presheaf Y has the Brown–Gersten property or BG property if Y(∅) ' ∗
and for any elementary distinguished square

U ×X V //

��

V

ét
��

U // X

the diagram
Y(X) //

��

Y(V )

��
Y(U) // Y(X)

is homotopy cartesian.

Remark 6.3.9. If Y is a simplicial sheaf, then the first condition is automatically satisfied.

Remark 6.3.10. If Y above is a simplicial sheaf, then Y(·) applied to an elementary Nisnevich square
yields a cartesian (but not necessarily homotopy cartersian) diagram. If, however, Y has the prop-
erty that it is a simplicial sheaf and also thatY(X)→ Y(U) is a fibration of fibrant objects whenever
U → X is a Zariski open embedding, then the cartesian square in question is homotopy cartesian
and so Y has the BG property (note that for a sheaf, Y(∅) = ∗).

The map U → X (or ηU → ηX , if you prefer) is a monomorphism, and therefore a cofibration.
Consequently if Y is injective fibrant, then the induced map Y(X) = S(ηX ,Y)→ S(ηU , Y ) = Y(U)
is a fibration of fibrant objects. In particular, we see that injective fibrant objects have the BG
property.

For the following proposition, we need a small technical lemma, which is essentially [Jar87,
Corollary 2.7].

Lemma 6.3.11. There is a model structure on the category of simplicial Nisnevich sheaves on Smk such
that the associated sheaf functor aNis : sPre(Smk) → sShv(Smk) is a left Quillen equivalence, and the
forgetful functor v is the right Quillen adjoint equivalence.

Remark 6.3.12. This implies that we can use a composite functor vRaNis as a fibrant replacement
for our simplicial presheaves, so that we may assume that the fibrant replacements are actually
simplicial sheaves.

Proposition 6.3.13. A simplicial presheaf Y has the BG property if and only if any local weak equivalence
Y → Y ′, where Y ′ has the BG property, induces an objectwise equivalence Y → Y ′.

Remark 6.3.14. This is a very useful result because the BG property does arise in practice and can be
checked. To say Y → RY is an objectwise weak equivalence is the next best thing to understanding
RY entirely. While for a particular model of RY , we might not know RY(U) explicitly, we know
it is weakly equivalent to Y(U).
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Proof of Proposition 6.3.13. For the ‘if’ direction: Note that we can always find a local weak equiv-
alence Y → RY where the target has the BG property—just take fibrant replacement and refer to
Remark 6.3.10. If this is an objectwise equivalence, then because RY has the BG property, so too
does Y .

The ‘only if’ direction takes work, and the full proof will only be sketched here. The full proof
is drawn from [MV99, pp. 100-102] and [BG73, Theorem 1’].

It is necessary to work from time to time in Smk/S where S is a variety. This category carries
a Nisnevich topology, of course. The BG property can also be defined here, and will be called the
“BG property over a base S”.

Suppose we have a weak equivalence Y → Y ′ of simplicial presheaves where both source and
target have the BG property. We want to show that this yields an objectwise equivalence after
sheafification.

First, we may assume Y → Y ′ is objectwise a Kan fibration of fibrant simplicial sets, and that
both have the property that Y(∅) = ∗ = Y ′(∅). The argument is to replace Y ′ by the functor

U 7→ Sing |Y ′(U)|

which is Kan, and takes ∅ to pt if Y ′ does. So we may assume Y ′(U) is a Kan complex for all U .
For each U , consider a functorial factorization of the maps Y(U)

∼
� Y ′′(U) � Y ′(U). Then

replace Y by Y ′′.

Lemma 6.3.15. Suppose F is a simplicial presheaf having the BG property over a base S and such that F
is Nisnevich locally contractible. Then F(X) is contractible provided it is not empty.

Proof. The proof requires a detour into scheme theory; that is, I spent a lot of time trying to explain
it using varieties exclusively, and I failed.

The proof is by induction on the dimension of X . If X has dimension 0, then X is a (disjoint
union of) fields. The scheme SpecE where E is a field is a point for the Nisnevich topology, and
so F(X) '

∏
∗ = ∗.

Then an argument in [MV99, Lemma 1.17, p. 101] says that F is Zariski-locally contractible.
This is where the scheme theory is needed, since it refers to SpecOX,x \ {x}, which is not a variety
as a rule. But the main idea is induction on the dimension of X and the use of the BG property.

Once we know F is Zariski-locally contractible, an argument of [BG73, Theorem 1’] finishes
the proof. The argument is not difficult, but it is long.

Lemma 6.3.16. Suppose F is a simplicial presheaf having the BG property over a base S, such that F(∅) =
∗ and such that F is Nisnevich locally contractible. Then F(X) is contractible for all X .

Proof. In light of the previous lemma, it suffices to show that F(X)0 is not empty.
Let U ⊆ X be a maximal open subvariety such that F(U) 6= ∅. Suppose for the sake of contra-

diction that s is the generic point of an irreducible component of X \ U . Since the stalk of F at s is
contractible, there must be some Nisnevich neighbourhood V of s ∈ X such that F(V )0 6= ∅. That
is, V → X is an étale map that has a section on some open subvariety W of {s}. Consider U ∪W
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and V ′, the restriction of V to U ∪W . Now there is an elementary distinguished square

U ×U∪W V ′ //

��

V ′

��
U // U ∪W

and applying F gives us (up to homotopy)

F(U ×U∪W V ′) //

��

F(V ′) ' ∗

��
F(U) ' ∗ // F(U ∪W )

Note that F(U ×U∪W V ′) ' ∗, since it cannot be empty (it admits a map from a nonempty object).
Then the homotopy-pullback square implies that F(U ∪W ) ' ∗, contradicting the maximality of
U . So U = X .

A more honest account than I have given here of all this can be found in [JSS15, Theorem 5.37].
We can finish the proof of the proposition. Suppose f : Y → Y ′ is an objectwise Kan fibration

of Kan complexes, and suppose both source and target have the BG property. Let y ∈ Y ′(S)0 for
some S and consider the pullback diagram

Fy //

��

Y

��
∗

y // Y ′

of simplicial presheaves defined on Smk/S. A diagram chase shows that F(·) satisfies the BG
property over S, and an argument at points shows thatFy is Nisnevich-locally contractible. There-
fore Fy(S) ' ∗ by Lemma 6.3.16—notably, Fy(S) 6= ∅. First, this implies that the induced map
π0Y(S) → π0Y ′(S) is surjective, since for any basepoint y ∈ Y ′(S) of the target, there is some
basepoint in the fibre.

If you fix any basepoint x ∈ Y(S), then the homotopy long exact sequence of a fibration
Ff(x)(S) → Y(S) → Y ′(S) shows that the induced map on all homotopy groups πn(Y(S), x) →
πn(Y ′(S), f(x)) (and π0) is an isomorphism, which is what we wanted to show.

Corollary 6.3.17. Let X be a simplicial presheaf on Smk. Then the following are equivalent:

• X is globally injective fibrant and satisfies the Brown–Gersten condition;

• X is (locally) injective fibrant.

Proof. We already know the second implies the first.
Now supposeX is globally injective fibrant, and satisfies BG. ThenX → RNisX is an objectwise

equivalence.
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Suppose i : A → B is a locally trivial cofibration. Since i is a cofibration, the induced map
S(B,X ) → S(A,X ) is a fibration (use the simplicial structure for the global injective model struc-
ture).

Similarly the maps S(A,X ) → S(A,RNisX) and similarly for B are weak equivalences, since
X → RNisX is an equivalence of globally injective fibrant objects. Finally, S(B, RNisX )→ S(A, RNisX )
is an equivalence, because A → B is a local equivalence and RNisX is locally fibrant.

From the diagram
S(B,X )

∼ //

����

S(B, RX )

∼
��

S(A,X )
∼ // S(A, RX )

we see that S(shB,X ) → S(A,X ) is a trivial fibration, and consequently induces a surjection on
0-simplices. Therefore any mapA → X admits an extension to B → X , soX is injective fibrant.

Remark 6.3.18. The BG condition has variations. What we described here is a BG condition for
any elementary Nisnevich square, and the conclusion we came to that X → RNisX induces an
equivalence X (U)→ RNisX (U) for all objects.

In [MV99], they actually define BG for what they call “Brown–Gersten” classes of objects. For
instance, one can restrict attention to diagrams where all objects are Zariski open subvarieties of
affine varieties (quasi-affine varieties). If a sheaf X has the quasi-affine BG property, then the map
X (U)→ RNisX (U) is an equivalence provided U is quasi-affine.

A similar result appears in [AHW17, Theorem 3.3.4]. The terminology used there is different
from the terminology we use here, but in our language they prove:

Suppose X satisfies the Brown–Gersten condition for elementary Nisnevich squares where all
terms are affine. Then X (SpecR)→ RNisX (SpecR) is an equivalence for all affine varieties SpecR.
This is more delicate than what we proved, because they can’t freely pass to open subobjects.
Example 6.3.19. The original example of the Brown–Gersten condition is in [BG73, Proposition 4]
(there they call it “pseudo-flasque”), where it is applied in the Zariski topology to a simplicial
sheaf P with the property that πi(P (X)) = Ki−1(X) where X is a smooth variety (they consider
nonsmooth objects as well, so they work with G-theory).

The main point of Nisnevich’s seminal paper [Nis89] is to show that P , as considered by
Brown–Gersten, has the BG property for what is now called the Nisnevich topology, but was
there called the cd-topology. The reference is to [Nis89, Example 4.5]. By 1989, when this paper was
written, people had moved on from sheaves of spaces to define K-theory to sheaves of spectra,
but the result is really the same.
Remark 6.3.20. There is an objectwise injective model structure on sPre(Smk), as we observed
above. It’s the “local” model structure for the trivial topology.

The reason all this material has been placed in the chapter on Bousfield localization is because
of the following result [Isa05, Theorem 4.9].

The injective local model structure on sPre(Smk) is the left Bousfield localization of the injec-
tive objectwise model structure at the class of maps

U
∐

U×XV

V → X

where U → X and V → X form an elementary Nisnevich square.
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Chapter 7

The Dold–Kan Correspondence

Our references for this material are [JSS15] and [Wei94, Chapter 8.4]. A pleasant account of the
case of abelian groups is to be found in [GJ99, Section III.2].

7.1 Generalities

At first, what we have to say works for any site, C. I will explain the theory for Z-modules, i.e.,
abelian groups, but variations exist for any ring R in place of Z, or even any presheaf R of rings
on C.

Notation 7.1.1. Let Ab(C) denote the category of presheaves of Z-modules on C. This is an
abelian category.

Notation 7.1.2. Let sAb(C) denote the category of simplicial presheaves of abelian groups. This
category admits two descriptions: either as simplicial presheaves where all presheaves of n-simplices
are abelian groups and the face and degeneracy maps are homomorphisms, or as abelian-group
objects in sPre(C).

There is also a sheaf version of this, Sh(C).

Notation 7.1.3. Suppose A is an abelian category Let Ch+(A) denote the category of non-negatively
graded chain complexes in A.

Construction 7.1.4. There is a free abelian group functor

Z : sPre(C)→ sAb(C)

taking a simplicial presheafX to the presheaf ZX where the n-simplices are the free abelian group
generated by Xn.

Write Z̃X for the associated sheaf to ZX .

Construction 7.1.5. Suppose A is an abelian category. Consider a simplicial object X• ∈ sA.
We can form a chain complex NX ∈ Ch+(A). called the normalized chain complex of X• in the

following way:
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First, form the unnormalized chainsCX by settingCXn = Xn for all n, and defining a differential

d̂n =

n∑
i=0

(−1)idi : Xn → Xn−1

You may wonder how you know this is a chain complex (i.e., that d̂n ◦ d̂n+1 = 0, but this is an ele-
mentary exercise. What’s more, you’ve already seen or done this, in defining singular homology.

Then define NXn ⊆ CXn by

NXn =

n−1⋂
i=0

ker di

Note that a simplicial identity didj = dj−1di for i < j shows that this indeed defines a sub-chain-
complex of CXn. Since most of the di vanish on NXn, observe that the differential on d̂n : NXn →
NXn−1 is given by d̂n = (−1)ndn.

The construction of N is functorial, so we obtain a functor

N : sA→ Ch+(A)

Proposition 7.1.6. Let X be a nonnegatively graded chain complex of abelian groups. Let DXi denote the
subgroup of Xi generated by degenerate simplices. Then DX∗ forms a subcomplex of CX∗ and the natural
map

NX∗ → CX∗ → CX∗/DX∗

is an isomorphism of complexes.

See [GJ99, Theorem III.2.1].

Construction 7.1.7. There is an inverse functor, denoted K. On objects, it is defined as follows.
Given a chain complex C∗, d̂ , define Kn(C) to be the direct sum

Kn(C) :=
⊕

surjections [n]→ [p]

Cp

(the direct sum contains one copy of Cp for every surjective map η : [n] → [p] in the simplex
category ∆)

Now we have Kn(C) for each n ≥ 0, we define simplicial structure maps. Suppose α : [m] →
[n] is a map in ∆. We must define α∗ : Kn(C) → Km(C). Each summand Cp[η] of the source
corresponds to a surjection η : [n] → [p]. Consider the composite η ◦ α : [m] → [p]. We can factor
this as ε ◦ η′ where η′ is surjective and ε is injective.

• If ε is the identity map, then define α∗ on the summand Cp[η] to be the identification of Cp[η]
with Cp[η′].

• If ε is the inclusion [p − 1] ⊂ [p] (what we long-ago called dp) then define α∗ to be the map
d̂p : Cp → Cp−1 in the chain complex.

• In all other cases, define the map on Cp[η] to be 0.
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You can verify that all this is really functorial in C.
You can also check that this really does define a simplicial object, i.e. that (α ◦ β)∗ = β∗ ◦ α∗.

This contains few surprises (you do have to use the fact that d̂2 = 0 at one point, of course), so we
don’t write it out here.

Remark 7.1.8. In an abelian category, a finite direct sum is isomorphic to the corresponding finite
direct product.

Proposition 7.1.9. The functors K and N form an inverse pair of functors, and K is left adjoint to N . In
particular, the categories sA and Ch+(A) are equivalent.

Proof. The verification that NKC ∼= C is routine.
It is somewhat technical to show that KNX• ∼= X•, and we refer to [Wei94, Section 8.4.4] for

the proof.
Proving that the functors are adjoint is then very easy.

Remark 7.1.10. A situation like this, where we have adjoint functorsK a N that are an equivalence
is called an adjoint equivalence. It is an easy exercise to show the functors have the other adjunction
relation as well: N a K.

Remark 7.1.11. Here comes a bunch of homological algebra I don’t want to cover in detail.
Suppose A is a category of sheaves on a site—including the case of presheaves when the topol-

ogy is trivial. Then there is a tensor product on chain complexes (defined in the usual way) and
there is a tensor product on sA, defined levelwise.

There are natural transformations

∆K,J : N(K ⊗ J)→ N(K)⊗N(J) the Alexander–Whitney map

(see [Wei94, Section 8.5]) and

∇K,J : N(K)⊗N(J)→ N(K ⊗K) the Eilenberg–Zilber map.

(see [May92, Def. 29.7], where he calls it the “Eilenberg–MacLane map”).
These two maps, ∇ and ∆, are somewhat inverse to each other: ∆ ◦ ∇ is the identity, while

∇ ◦∆ is chain-homotopic to the identity.

Proposition 7.1.12. Suppose f, g : K → J are two maps of simplicial sheaves of abelian groups, and
suppose there is a (left) homotopy f ' g. Then there is a chain homotopy N(f) ' N(g).

Proof. Write φ : K ×∆[1] → J for the homotopy. Since J is an abelian group object, this extends
to a map φ : K ⊗ Z∆[1] → J . Then apply N and the Eilenberg–Zilber map to obtain N(φ) :
N(K)⊗NZ∆[1] → NJ . But NZ∆[1] is a chain complex of constant sheaves 0 → Z → Z⊕ Z → 0
(with the expected differential 1 7→ (−1, 1)) and so N(φ) induces the desired chain homotopy.

Proposition 7.1.13. If f ' g : C → D are chain-homotopic maps between chain complexes of sheaves of
abelian groups, then K(f) ' K(g) are left homotopic.

We will not give the proof here: a construction is given in [Wei94, Section 8.4].
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Remark 7.1.14. Taken together, these two propositions imply that, not only are the two categories
of sAb(C) and Ch+(Ab(C)) equivalent, but that the two notions of homotopy in each induce the
equivalence relations on maps.

In particular, if A• is an objectwise fibrant simplicial sheaf of abelian groups on C (pointed at
0), then for any U ∈ C:

πn(A•(U)) = sSet(∆[i]/∂∆[n], A•(U))/ ∼= sAb(ΣnZ, A•(U))/ ∼
= Ch+(Z)(NΣnZ, NA•(U))/ ∼= Hn(NA•(U))

Remark 7.1.15. This goes some way to explaining why simplicial (pre)sheaves are not more pop-
ular; in the ‘abelian group’ case, they are equivalent to (nonnegatively graded) chain complexes.
Whenever you see a nonnegatively-graded chain complex of sheaves, as is frequently seen in al-
gebraic geometry, you now know this is a special case of simplicial sheaves. The simplicial objects
are more flexible, since they can describe non-abelian situations.
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Part III

A1-homotopy
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Chapter 8

The A1-homotopy theory

8.1 Definitions

Definition 8.1.1. The injective A1-model structure is the left Bousfield localization of the injective
local model structure on Smk at the set of maps p2 : A1 × U → U . The homotopy category is
called the motivic homotopy category or A1-homotopy category of k, and is denotedH(k). There is also
a pointed version of the model structure and a pointed homotopy categoryH(k)•.

Remark 8.1.2. This is automatically a simplicial model structure. It also happens to be proper:
[MV99, Theorem 2.7, p. 71].

Notation 8.1.3. An object X ∈ sPre(Smk) is A1-local if, for all U ∈ Smk, the map

p∗2 : S(U,RNisX )→ S(A1 × U,RNisX )

is a weak equivalence
This is different from the definition in [MV99], where they instead ask for

i∗0 : [Y × A1,X ]→ [Y,X ]

to be an isomorphism for all Y , the maps being calculated in the local homotopy category (denoted
Hs there). Note that they use i0 : pt→ A1, rather than the more canonical projection, because they
want to work with inclusions (i.e., cofibrations). But since pt → A1 → pt is a retraction, the 2-
out-of-3 property means their definition is equivalent to the obvious analogue using projection
maps.

Remark 8.1.4. The n-simplices of the simplicial mapping space S(U,RNisX ), are naturally isomor-
phic to sPre(Smk)(U ×∆[n], RNis). View the simplicial presheaf as a presheaf on Smk ×∆, and
apply the Yoneda lemma to the representable object U × ∆[n] to deduce that the n-simplices of
S(U,RNisX ) are naturally isomorphic to RNisX (U × ∆[n]) = RNisX (U)n. That is, S(U,RNisX ) =
RNisX (U).

Therefore, A1-locality can be recast as saying

RNisX (U)→ RNisX (U × A1)

is a weak equivalence for all U .
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The following result reconciles the two definitions of “A1-local”.

Proposition 8.1.5. The two definitions of A1-local objects agree.

Proof. Our definition is that X is A1-local if RNisX (U) → RNisX (A1 × U) is a weak equivalence
for all objects U ∈ Smk. Here the map is that induced by projection A1 × U → U . This map has
a section, given by inclusion at 0, denoted i0 : U → A1 × U . Then by 2-out-of-3, the object X is
A1-local (in our sense) if and only if i∗0 : RNisX (A1 × U) → RNisX (U) is a weak equivalence. Note
that this map is always a fibration, since RNisX is fibrant and i0 is a cofibration. The result now
follows from [MV99, Lemma 2.8, p72].

Remark 8.1.6. From the general theory of left Bousfield localizations, we know that an object is
A1-fibrant if and only if it is locally fibrant and A1-local.

Remark 8.1.7. Write RA1 (sometimes LA1 ) for a fibrant replacement functor in the A1-model cate-
gory. In our current presentation of the subject, the “A1-homotopy type” of an objectX is really the
information of the local homotopy type of RA1X , which in turn is actually the information of the
homotopy types of the simplicial sets RA1X (U) as U varies, and the maps RA1X (U)→ RA1X (V ).

The benefit of having an A1-local object X is that RA1X ' RNisX in that case.

Notation 8.1.8. We’ll write [X ,Y]A1 for the set of maps X → Y in the (unpointed) A1-homotopy
category. We will use [X ,Y]A1,• for the pointed case.

Example 8.1.9. There are relatively few A1-local objects that admit elementary description. Here’s
one: the Nisnevich sheaf Gm viewed as a discrete simplicial sheaf. The proof of this will be an
exercise.

Example 8.1.10. The concept of A1-equivalence is of major importance. Strictly speaking, it ap-
plies to maps of simplicial presheaves, but we’re often most interested in the case of representable
presheaves (i.e., varieties).

The following are examples of A1-equivalences:

1. All projection maps A1 × U → U (by definition)

2. All sections of projection maps U → A1 × U (by 2-out-of-3)

3. Both the above examples, but with A1 replaced by An (by induction).

4. Suppose p : Y → X is a map of varieties such that X has a finite Zariski cover {fi : Ui → X}
such that p|p−1(Ui) : p−1(

⋂
Ui)→

⋂
Ui is an A1-equivalence for all nontrivial intersections of

the Ui. Then p is an A1-equivalence.

In the case of two open sets, U, V , use the (homotopy) pushout square in the category of
simplicial Nisnevich sheaves

U ∩ V //

��

U

��
V // X

(since U → X is a monomorphism, this pushout square is a homotopy pushout square as
well).
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Then do the same with
p−1(U ∩ V ) //

��

p−1(U)

��
p−1(V ) // Y

The map p induces a map of homotopy pushout squares that is an objectwise A1-equivalence.
Therefore p : Y → X is an A1-equivalence.

5. You can modify this argument to apply when the covering is a Nisnevich covering. We leave
the details as an exercise.

6. The above theory applies when p : Y → X is a map such that there is a (finite) Zariski
cover {Ui} of X such that for all Ui, the map p−1(Ui) → Ui is isomorphic to a projection
Ui × An → Ui. In particular when p : Y → X is the map of a vector bundle map, it is an
A1-equivalence.

Notation 8.1.11. The object Gm = A1 \ {0} (given the basepoint 1 ∈ Gm) is called the Tate circle.
Sometimes we will write Sα for this.

Example 8.1.12. Work in the pointed A1-model structure. There is a (homotopy) pushout diagram

Gm //

��

A1

��
A1 // P1

This arises from a Zariski covering, and the same argument as before says it is both a pushout and
a homotopy pushout diagram in the local model structure on simplicial sheaves. (In presheaves,
by the way, the pushout A1

∐
Gm

A1 is not isomorphic to P1, but it is locally weakly equivalent to
it).

In A1 model structures, however, A1 ' ∗, so we see that P1 is the homotopy pushout of ∗ ←
Gm → ∗. But this is a construction for the suspension ΣGm = Gm ∧ S1. We conclude that in
A1-homotopy theory, ΣGm = P1.

Construction 8.1.13. Suppose X and Y are cofibrant objects in a simplicial model category. Then
the homotopy pushout of the diagram Y ← X × Y → X (the maps being projections) is called the
join of X and Y and is denoted X ∗ Y .

Suppose further that X and Y are pointed objects. Then consider the following diagram

X X × Y //oo Y

X

OO

��

X ∨ Y //

OO

��

oo Y

OO

��
∗ ∗oo // ∗.
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(all the maps being obvious ones). Take the homotopy colimits of the columns, to arrive at the
diagram:

∗ X ∧ Y //oo ∗ .

The homotopy pushout of this diagram is Σ(X ∧ Y ).
On the other hand, if we take the homotopy colimits of the rows, we get

X ∗ Y CX ∨ CYoo // ∗ .

The term CX ∨ CY , the wedge sum of the cones on X and Y , is contractible. Therefore the
homotopy pushout of this diagram is equivalent to X ∗ Y .

There is a ‘Fubini’ theorem for homotopy colimits, [CCS02, Theorem 24.9], which implies that
X ∗ Y ' Σ(X ∧ Y ).

Here is another classical examples of an A1-equivalence.

Example 8.1.14. Give An \ 0 the basepoint (1, . . . , 1).
There is a pushout diagram (in the category of (simplicial) Nisnevich sheaves)

A1 \ 0× An−1 \ 0 //

��

A1 × An−1 \ 0

��
A1 \ 0× An−1 // An \ 0

which is also a homotopy pushout diagram. Therefore An \ 0 is A1-equivalent to the homotopy
pushout of the diagram:

A1 \ 0× An−1 \ 0 //

��

A1 \ 0

An−1 \ 0

where both maps are projections. Therefore An\0 'A1 (A1\0)∗(An−1\0) ' Σ((A1\0)∧(An−1\0)).
By induction, we deduce that

An \ 0 'A1 Sn−1 ∧ (Gm)∧n.

This kind of object (An \ 0 or P1) is called a motivic sphere, since it is a smash product of simplicial
and Tate circles.

Definition 8.1.15. An (simplicial) presheaf X is A1-invariant if X (U) → X (A1 × U) is a weak
equivalence for all U—if X is just a presheaf, then ‘weak equivalence’ means ‘isomorphism’. Note
that A1-invariance is not comparable to A1-locality for simplicial presheaves.

Example 8.1.16. Suppose X is a simplicial presheaf satisfying the following two conditions:

• X has the Brown-Gersten condition.

• X is A1-invariant.
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By virtue of the Brown–Gersten condition, the natural map X → RNisX is an objectwise equiva-
lence. Therefore, for all U , the map RNisX (U × A1) → RNisX (U) is a weak equivalence (compare
with X ). Consequently, X is A1-local, and so RA1X is locally equivalent to RNisX . In fact, by using
the simplicial structure for instance, we see that S(U,RNisX ) → S(U,RA1X ), i.e., RNisX → RA1X
is an objectwise equivalence. But RNisX was objectwise equivalent to X itself. In conclusion,
X (U)→ RA1X (U) is a weak equivalence for all U .

Example 8.1.17. The example above applies, in particular, to K-theory. Suppose K is a simplicial
presheaf with the property that π0(skK(U)) = ∗ and πi(K(U)) ' Ki−1(U) for all i, for all smooth
k-varieties U . Then Brown & Gersten and Nisnevich proved that K has the Brown–Gersten con-
dition, and it is a well-known fact that K-theory of smooth schemes is A1-invariant. In particular,
we may assume K is A1-fibrant.

Fix a global basepoint for K. Then in the pointed A1-homotopy category, we have

[U+ ∧ Sn,K]A1,• = π0S+(U+ ∧ Sn,K) = π0(ΩnK(U)) = Kn−1(U)

Definition 8.1.18. Let A be a sheaf of abelian groups. We say A is strictly A1-invariant if the coho-
mology group functors

Hn
Nis(·,A) : Smk → Ab

are A1-invariant for all n.

Proposition 8.1.19. Let A be a sheaf of abelian groups. Then the following are equivalent:

• A is strictly A1-invariant.

• The spaces K(A, n) are A1-local for all n.

Proof. The objects RNisK(A, n) are simplicial presheaves of groups. Each path component of
RNisK(A, n)(U) is isomorphic to each other path component. Therefore A1-locality of K(A, n)
is equivalent to the combined assertions that

Hn
Nis(U,A) = π0(RNisK(A, n)(U))→ π0(RNisK(A, n)(A1 × U) ' Hn

Nis(U × A1,A)

is a bijection and

Hn−i
Nis (U,A) = πi(RNisK(A, n)(U), 0)→ πi(RNisK(A, n)(A1 × U), 0) = Hn−i

Nis (A1 × U,A)

is an isomorphism for all i > 0. This holds for all n if and only if A is strictly A1-invariant.
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Chapter 9

Naive A1-homotopy

9.1 Naive A1-homotopy

Definition 9.1.1. Suppose f, g : X → Y are two maps of simplicial presheaves. An elementary
A1-homotopy from f to g is a map H : X × A1 → Y such that X × {0} → X × A1 H→ Y is f and
X × {1} → X × A1 H→ Y is g.

Remark 9.1.2. This gives us a relation on maps that is symmetric and reflexive, but not generally
transitive. We say f and g are naively A1-homotopic if there exists some finite sequence of elemen-
tary A1 homotopies starting at f and ending at g.

Proposition 9.1.3. If f and g are naively A1-homotopic, then they induce the same morphism in the A1-
homotopy category.

Proof. It suffices to prove this in the case of a single elementary homotopy. In the A1-homotopy
category, the inclusion of X → X × A1 at 0 (or at 1) is an isomorphism with inverse given by the
projection p : X × A1 → X . In particular, in this category, both f and g admit description as p−1,
so they agree. Therefore so too do f = H ◦ p−1 = g.

Remark 9.1.4. We will see examples later where naı̈ve homotopy classes of maps X → Y do not
account for all maps [X ,Y]A1 , but it might take a few lectures.

9.2 The A1-Singular functor

Definition 9.2.1. Let ∆n
alg be the variety

∆n
alg = Spec

k[x0, . . . , xn]

1−
∑n
i=0 xi

∼= Ank .

The varieties ∆n
alg assemble to form a cosimplicial variety, i.e., a functor ∆→ Smk. On objects,

[n] 7→ ∆n
alg. For morphisms, consider a map f : [n]→ [m]. Define a map of rings

k[x0, . . . , xm]→ k[y0, . . . , yn]
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by xi 7→
∑
j∈f−1(i) yj . The empty sum is taken to be 0. You can see that

∑m
i=0 xi 7→

∑n
j=0 yj under

this rule, so that the map descends to one on quotient rings

k[x0, . . . , xm](
1−

∑m
i=0 xi

) → k[y0, . . . , yn](
1−

∑n
j=0 yj

)
and from there to a (covariant) map of varieties. This produces a cosimplicial smooth variety,
denoted ∆•alg.

We can use ∆•alg to produce an adjoint pair of functors

| · |alg a SingA1

directly modelled on the realization and singular functors from simplicial sets.

Construction 9.2.2. Specifically, |X |alg is defined as a coequalizer:∐
[n]→[m]

Xm ×∆n
alg ⇒

∐
[n]

Xn ×∆n
alg → |X |alg

and SingA1

Y is defined to be the right adjoint:

SingA1

Yn(U) = Map(∆n
alg,Y)(U)n = Mor(∆n

alg × U ×∆n,Y) = Y(∆n
alg × U)

(the last step uses the Yoneda lemma).
We leave it as an exercise in category theory to prove that this really is an adjoint pair.

Remark 9.2.3. Let X be simplicial presheaf and U a variety. The set π0(SingA1

X (U)) admits the
following description: It is the quotient of SingA1

X (U)0 by the equivalence relation generated by
the two face maps: d0, d1 : SingA1

X (U)1 → SingA1

X (U)0. What are these sets?

SingA1

X (U)0 = X (U ×∆0
alg)0 = X (U)0

and
SingA1

X (U)1 = X (U ×∆1
alg)1 ' X (U × A1)1.

The two face maps d0 and d1 are given as composites of other face maps denoted by the same
letters. For instance,

d0 = X (U × A1)1
e0 // X (U)1

d0 // X (U)0.

A similar statement is true about d1.
A particularly interesting case is whenX is concentrated in dimension 0, so all higher simplices

are degenerate. For instance, suppose F = X0 = X1 = . . . . In this case π0(SingA1

F(U)) consists of
the quotient of F(U) = sSet(U,F) by naive A1-homotopy.

The A1-singular functor, SingA1

has the following properties:

1. SingA1

preserves limits—this is by virtue of its being a right adjoint.
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2. SingA1

converts the map i0 : ∗ → A1 into a (left) homotopy equivalence.

3. There is a natural monomonorphism X → SingA1

X that is A1-equivalence for all X .

4. SingA1

preserves A1-fibrations.

These properties are enumerated on p87 of [MV99].

Remark 9.2.4. A trivial, but useful, consequence of the preservation-of-limits is that SingA1

(∗) = ∗.
You could prove this directly, of course.

Proposition 9.2.5. Suppose f, g : X → Y are two morphisms and H is an elementary A1-homotopy
between them. There exists a left (simplicial) homotopy from SingA1

(f) to SingA1

(g).

Proof. Apply SingA1

(·) to the diagram

X
id×i0

##
X × A1 H // Y

X

id×i1
;;

to get

SingA1

X
id×SingA1 i0

((

SingA1

X × SingA1

A1 SingA1 H // SingA1

Y

SingA1

X
id×SingA1 i1

66

.

Suppose we show that SingA1

i0 is left homotopic to SingA1

i1, i.e., that there is a map H ′ so the
diagram below commutes:

∗

0   

i0

))
∆[1]

H′ // SingA1

A1

∗

1
>>

i1

55

(9.1)
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Then we may multiply this diagram by SingA1

X and compose with H to get

SingA1

X

''

id×SingA1 i0

))

SingA1

X ×∆[1]
id×H′// SingA1

X × SingA1

A1 H // SingA1

Y

SingA1

X

77

id×SingA1 i1

55

The composite H ◦ (id×H ′) provides the required homotopy.
It suffices then to treat the case in diagram (9.1), i.e., that of i0, i1 : ∗ → A1. We need to find a

left homotopy between SingA1

(i0),SingA1

(i1) : ∗ → SingA1

(A1). What are these two maps from a
point to SingA1

(A1)? They are ∗ 7→ 0, 1 ∈ SingA1

(A1)0 = A1. What is a left homotopy? It’s a map
∆[1]→ SingA1

(A1), i.e., a global section of SingA1

(A1)1, i.e., a map H : A1 → A1. This map gives a
homotopy between d0 ◦H and d1 ◦H . In this case, taking H = id does the trick.

Corollary 9.2.6. For any X , the map j := SingA1

(i0) : SingA1

(X ) → SingA1

(A1 × X ) is a homotopy
equivalence.

Proof. That is, we want to produce a homotopy inverse map. Produce p by applying SingA1

to the
projection A1 ×X → X . Now we show that this is a homotopy inverse.

By functoriality, j ◦ p = id, so there is nothing to check here. We want to show that p ◦ j admits
a simplicial (left) homotopy to id

SingA1 (A1×X )
.

In light of the proposition, it’s sufficient to produce an elementary A1-homotopy between 0, id :
A1 × X → A1 × X . Such a homotopy is given by A1 × X × A1 → A1 × X given by ((r, x), t) 7→
(r(1− t), x)xs.

Remark 9.2.7. The obvious map X → SingA1

X is a monomorphism, since it is levelwise split.

Proposition 9.2.8. The map X → SingA1

X is an A1-equivalence.

Sketch. We claim that for any X and n, the canonical map j : X = Map(∗,X ) → Map(Ann,X )
is an A1-homotopy equivalences (and therefore A1-weak equivalences). There is a map e0 given
by evaluation at 0 which gives a left inverse for j, so it suffices to prove that j ◦ e0 is elementary
A1-homotopic to the identity map. An elementary A1 homotopy is given by

H : Map(An,X )× A1 → Map(An,X ), H(f, t)(u) = f(tu).

Observe that SingA1

Xn ∼= Hom(An,Xn).

Next, we exploit a well-known homotopy theory trick: SupposeX is a simplicial presheaf, then
we may consider X as a functor X : ∆op → Pre(Smk) ⊆ sPre(Smk). In particular, it is possible
to view this as a diagram of (simplicial) presheaves. Then we may construct the homotopy colimit:

hocolim
∆op

Xn
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and this turns out to be equivalent to X itself [BK72, XII 3.4].
Using this trick, the map X → SingA1

X is equivalent to a map between homotopy colimits

hocolim
∆op

Xn → hocolim
∆op

Map(An,Xn)

which is objectwise an A1-equivalence, so it’s an A1-equivalence as required.

Proposition 9.2.9. The functor SingA1

is a right Quillen endofunctor.

Sketch of sketch. Show that the adjoint | · |alg is left Quillen. To show it preserves cofibrations
(monomorphisms) is a direct calculation ([MV99, Lemma 3.10, p90]). Then to show that it pre-
serves A1-equivalences is [MV99, Lemma 3.12, p90]. Again, one uses a hocolim trick to reduce to
a special case of F ×∆[n] where F is a simplicial sheaf. Then it’s a calculation.

Example 9.2.10. The following appears as [MV99, Example 2.7, p107]. Take U0 = A1 \0, U1 = A0 \1
and U01 = A1 \0, 1. Choose a closed embedding j : U01 → A2, and define F = (U0×A2)∪U01

(U1×
A2), a pushout using j in the category of Nisnevich sheaves. Morel & Voevodsky use this example
because this pushout is relatively easy to calculate: if X is a connected smooth scheme, then

F(X) = Smk(X,U0 × A2) ∪Smk(X,U01) Smk(X,U1 × A2).

Since F is a sheaf in the Nisnevich topology, if we view it as a simplicial sheaf entirely concen-
trated in dimension 0, then it is a Nisnevich-fibrant object.

Now consider SingA1

F . Evaluated at a connected X , in level n this gives us

Smk(X × An, U0 × A2) ∪Smk(X×An,U01) Smk(X ×An, U1 × A2).

You can check Smk(X×An, U0) is equal to Smk(X,U0), and similarly forU1 andU01. Furthermore,
Smk(X×An, U0×A2) = Smk(X×An, U0)×Smk(X×An,A2). Taking all this together, one obtains
an isomorphism

SingA1

F = (U0 ∪U01 U1)× SingA1

(A2)× SingA1

(A2)

The right hand side is locally equivalent to A1, since SingA1

(A2) ' ∗.
On the other hand S(∗,A1) = k while S(A1,A1) = k[x], so that A1 itself is far from being

A1-local. This shows that even if F is Nisnevich fibrant, SingA1

F may not be A1-fibrant.

Remark 9.2.11. In [MV99, Lemma 2.6, p107], it is shown that RNis ◦ (RNis ◦ SingA1

)N ◦ RNisX is an
A1-local object for all X . Here you have to take a colimit to make sense of the ‘infinitely iterated’
functor. You might hope that in some cases, some finite and possibly small iteration of SingA1

and
RNis will lead to an A1-local object.
Example 9.2.12. In [AHW18], it is proved that if G is a finitely presented smooth k-group scheme
such that H1

Nis(·, G) is A1-invariant, then RNis SingA1

G is A1-fibrant (Theorem 2.3.2).
It is also proved that (under the same hypothesis on G) that if BNisG denotes the simpli-

cial presheaf that assigns to U the nerve of the category of (Nisnevich) G-torsors on U , then
RNis SingA1

BNisG is A1-fibrant (Theorem 2.2.5).
Remark 9.2.13. In fact, [AHW18, Theorem 2.2.5] asserts even more. If U = SpecR is affine, then

[U,BNisG]A1 = π0(BNisG(U)).

The left hand side admits a description as π0(RA1BNisG(U)).
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9.3 Jouanolou’s device

Example 9.3.1. This example is a case of Jouanolou’s device. The variety P1 represents a functor
that sends a scheme X to isomorphism classes of exact sequences

O2
X → L → 0

where L is a line bundle on X , i.e., a locally free module of constant rank 1. An “isomorphism”
between such sequences is a diagram:

O2
X

// L //

∼= φ

��

0

O2
X

// L′ // 0

Now consider the subvariety Q of Mat2×2 consisting of matrices A such that A2 = A and
Tr(A) = 1. This is a closed affine subvariety of Mat2×2. In light of the condition A2 = A, the
condition Tr(A) = 1 implies that A is a nontrivial idempotent (A 6= I2 and A 6= 0).

The variety Q represents the functor sending X to the set of nontrivial idempotents A : O2
X →

O2
X . Associated to such an idempotent, there is a short exact sequence

0→ kerA→ O2
X → imA→ 0

and this is split by the inclusion imA → O2
X . By forgetting the splitting and kerA, we obtain a

morphism Q→ P1.
The variety P1 can be covered by two open subvarieties isomorphic to A1. Any map A1 → P1

is given by the data of an exact sequence up to isomorphism

k[t]2
φ→ F → 0

where F is a projective module of rank 1 over A1 = Spec k[t]. Since every projective module over
a PID is free, we may fix an isomorphism F = k[t]. Then φ can be written as a unimodular pair
(f, g) of elements in k[t], and two such pairs are isomorphic if they differ by multiplication by
λ ∈ k[t]× = k×. The kernel of φ is generated by (−g, f)t ∈ k[t]2.

An open affine cover of P1 is given by the two maps corresponding to (1, t) and (t, 1).
Let i denote the first of these two maps and form the pullback square:

QA1 //

��

Q

��
A1 i // P1

.

A map SpecR→ QA1 leads to a distinguished element t ∈ R by composition with QA1 → A1. The
map SpecR → QA1 then parametrizes matrices A ∈ Mat2×2(R) along with elements t ∈ R such
that A2 = A, Tr(A) = 1 and (−t1)T ∈ ker(A). For a given choice of t, such a matrix takes the form

A =

[
1 + ty −t− t2y
y −ty

]
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where y ∈ R is arbitrary. This is by direct calculation. Applying to the identity map A1 =
Spec k[t] → A1, we see that QA1 → A1 is isomorphic to a projection A1 × A1 → A1. In partic-
ular, QA1 → A1 is an A1-equivalence.

A similar calculation applies to the second map as well. It follows that Q → P1 is an A1-
equivalence. The technical term for this is that Q is an affine vector bundle torsor over P1.

Remark 9.3.2. A similar story applies to Pn. Take Q to be the space of (n + 1) × (n + 1) matrices
satisfying A2 = A and Tr(A) = 1. Again you can cover Pn by Ans. The only thing that’s a little
more intricate is the determination of the fibres of QAn → An, but again they work out to be
isomorphic to An again.

Example 9.3.3. According to Asok-Hoyois-Wendt, you can calculate the set H1(SpecR,GLn) of
isomorphism classes of (Nisnevich) vector bundles of rank n on a smooth affine k-variety using
A1 homotopy theory. These are equivalent to rank-n projective modules. The calculation is

[SpecR,BNis GLn]A1 = H1(SpecR,GLn)

In fact, again by Asok–Hoyois–Wendt, you can calculate this set using naive A1-homotopy’:

π0(SingA1

BNis(SpecR)) = H1(SpecR,GLn).

Grothendieck has calculated the isomorphism classes of rank-n vector bundles on P1. Note that
P1 is not affine. Every rank-2 bundle is isomorphic to exactly oneO(a)⊕O(b) where a ≥ b. On the
other hand, over Q, the pullback of O(1)⊕O(−1) is free of rank 2. In particular, the induced map

π0(BNis GL2(P1))→ π0(BNis GL2(Q))

is not a bijection.
Therefore BNis GL2 is not A1-local.
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Chapter 10

The Purity Theorem

10.1 Preliminaries

Definition 10.1.1. Suppose X is a k-variety and n ≥ 1 is a natural number. A vector bundle of rank
n on X is a map p : V → X such that there exists a (Zariski) open cover {fi : Ui → X}i∈I , not part
of the data of the bundle, such that

1. For each i ∈ I , the inverse image Ui×X V → Ui is isomorphic to the projection Ui×An → Ui
via an isomorphism φi : Ui ×X V → Ui × An

2. On a double overlap (Ui ∩Uj), the composite map φi ◦φ−1
j : (Ui ∩Uj)×An → (Ui ∩Uj)×An

over Ui ∩ Uj is linear, i.e., a map Ui ∩ Uj → GLn.

Remark 10.1.2. Strictly, what we’ve defined is a Zariski-local vector bundle. There are other defi-
nitions, based on Nisnevich or étale covers, but it’s a theorem—Hilbert’s Theorem 90—that these
definitions are equivalent.

Remark 10.1.3. A trivial vector bundle is one isomorphic to the projection An ×X → X for some n.
Every vector bundle is (Zariski) locally trivial, but may not be globally trivial. As a consequence
of the local triviality, if p : V → X is a vector bundle map, then p is an A1-equivalence.

Remark 10.1.4. A vector bundle of rank n on X is a parametrized version of a vector space. There
are addition and scalar multiplication operations: + : V ×X V → V and · : A1 × V → V and a
zero-section z : X → V .

Remark 10.1.5. Suppose X = SpecR is an affine variety, and p : V → X is a vector bundle of
rank n. Then the set of sections s : X → V of p carries the structure of an R-module M . What’s
more, restricting to any affine open SpecR[1/f ] and doing the same construction yields M [1/f ] :=
R[1/f ] ⊗R M . Since V is locally free, in the geometric sense, it follows that there exists a set of
elements {f1, . . . , fr} of R, generating the unit ideal and such that M [1/fi] is free of rank n for all
i. This is equivalent to the statement that M is a projective module of rank n.

It is a theorem that this leads to an equivalence of categories:

projective R-modules of rank n ≡ rank-n vector bundles on SpecR.
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Definition 10.1.6. If p : V → X is a vector bundle, then define the Thom space ThX(V ) of V over X
as

ThX(V ) :=
V

V \ z(X)

in the category of (simplicial) presheaves.

Example 10.1.7. Consider Pn+1. This is a k-variety, and for any fieldE/k, one can describe Pn+1(E)
as the set of n+ 2-tuples (r0, . . . , rn+1) ∈ En+2 \ 0 considered up to multiplication by λ ∈ R×. The
notation for such an equivalence class is [r0 : · · · : rn+1].

There is an open embedding An+1 → Pn+1 given by sending (r1, . . . , rn) 7→ [1 : r1 : · · · : rn]—
this is what the map does on field-valued points. Justifying this map more rigorously takes work
which is left as an exercise.

There is also an open subvariety W of Pn+1 where the E-points look like [r0 : r1 : · · · : rn]
for which at least one of r1, . . . , rn is a unit (i.e., not 0). There is a map p : W → Pn given by
forgetting r0. Letting Wi denote the open subvariety of W where ri is not 0, we see that p is locally
isomorphic to A1 ×Wi →Wi (normalize to [r0/ri : r1/ri : · · · : 1 : · · · : rn/ri] then read off r0/ri.

The two open subvarietiesW and the image of An+1 inside Pn+1 intersect to give the open sub-
variety of An+1 consisting of points that can be described as [1 : r1 : · · · : rn] where (r1, . . . , rn) 6= 0.
In summary, there is a (homotopy) pushout diagram:

An+1 \ {0} �
� //

� _

��

An+1

��
W // Pn+1

It’s a formal consequence of such a pushout diagram that there is an isomorphism of quotients

An+1/(An+1 \ 0) ∼= Pn+1/W

but the quotient Pn+1/W is a pushout in

W

��

// Pn+1

��
∗ // Pn+1/W

which is also a homotopy pushout by virtue of W → Pn+1 being an inclusion. We can replace
W → Pn+1 by the A1-equivalent closed inclusion Pn → Pn+1 and we deduce that

An+1/(An+1 \ {0}) 'A1 Pn+1/Pn.

In fact, since An+1 'A1 ∗, the quotient on the left is A1-equivalent to the homotopy pushout of

A1n+1 \ 0 //

��

∗

∗

which is equivalent to ΣA1n+1 \ 0 'A1 Sn+1 ∧G∧n+1
m .

In other words, Pn+1/Pn 'A1 (P1)∧n+1.
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Remark 10.1.8. In [MV99], they define the Thom space of V to be

ThX(V ) =
P(V × A1)

P(V )
.

This is a parametrized version of the previous example (see [AE16, Section 4.7]).

Definition 10.1.9. Suppose X = SpecR is a smooth affine k-variety and I is an ideal defining a
closed smooth subvariety, Z. Then I/I2 has the structure of an R/I-module, and if I is smooth
over k this is a projective R/I-module. Then NZ(X), the normal bundle of Z in X is the vector
bundle associated to the dual module: HomR/I(I/I

2, R/I).
If X and Z are not affine, then the vector bundle NZ(X) can still be defined, by defining it on

each term of an affine cover and proving it glues together properly.

Remark 10.1.10. The normal bundle of Z in X has a geometric meaning: for a C-variety, for in-
stance, it is the vector bundle that assigns to a point z ∈ Z the vector space of all normal vectors to
Z in X at the point z.

Even outside of this, and importantly, the bundle NZ(X) on Z depends on the structure of X
‘near’ Z only. For instance: Suppose I ⊆ R is an ideal and f ∈ R is an element such that f is a unit
in R/I . Then f defines an affine open subvariety U ⊂ SpecR = X . It is the case that U ∩ Z = Z,
and there is a map NZ(U) → NZ(X), and this map is an isomorphism. This is elementary: it’s
because R/1→ R/I ⊗R R[1/f ] is an isomorphism.

10.2 Pushouts

We’re going to be using (homotopy) pushouts extensively.

Remark 10.2.1. Recall that if A → B is a cofibration in a (simplicial) proper model category, then
the colimit and the homotopy colimit of a diagram

A //

��

B

C

are weakly equivalent.

Example 10.2.2. In a simplicial pointed proper model category, the homotopy colimit of ∗ ← A→ ∗
(where A is cofibrant) is weakly equivalent to A ∧ S1.

Definition 10.2.3. In any category with a terminal object and all pushouts we can define the cofibre
of a map A→ B as the pushout

A //

��

B

��
∗ // B/A

.

Similarly, the homotopy cofibre is defined as a homotopy pushout.
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Remark 10.2.4. The formation of (homotopy) cofibres is functorial, so that if

A1
//

��

B1

��
A2

// B2

commutes, then there is an induced map B1/A1 → B2/A2.

Proposition 10.2.5. If a square
A1

//

��

B1

��
A2

// B2

is a pushout square, then B1/A1 → B2/A2 is an isomorphism. If the category is pointed, then the converse
is also true.

Proof. This is an exercise in chasing diagrams.

Corollary 10.2.6. In a simplicial proper model category, given a homotopy pushout

A1
//

��

B1

��
A2

// B2

the induced map on homotopy cofibresB1/hA1 → B2/hA2 is a weak equivalence. If the category is pointed,
then the converse also holds.

10.3 Blowing up

In the next section, we will be making use of the blowup of a variety at a closed subvariety. An
account of the theory of blowing up would take too long. We refer to [Har77, Section II.7] or
[Vak15, Chapter 22] for the general theory. For us, the following will have to suffice:

Proposition 10.3.1. If (X,Z) is a smooth pair, then BlZ X is smooth variety.

Proposition 10.3.2. Let Z be a closed subvariety of X . There is a map f : BlZ X → X such that
f−1(X \Z)→ X \Z is an isomorphism and such that f−1(Z) is of codimension 1 (it is an effective Cartier
divisor).

Construction 10.3.3. This construction is called “deformation to the normal cone”. Suppose Z ⊆
X is a smooth pair (where Z and X are connected, although the disconnected case can be handled
quite easily). Then it is possible to form BlZ×0(X × A1). This is equipped with a map to X × A1

and we view the A1 as a parameter space:

BlZ×0(X × A1)
f //

&&

X × A1

{{
A1

.
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Lying over all of A1 except 0, the map f is an isomorphism. Over 0, however, the fibre of BlZ×0(X×
A1) → A1 consists of two irreducible components. One of these is BlZ X . The other is the (fibre-
wise) projectivization of the normal bundle of Z in X , denoted P(NZX).

10.4 The Purity Theorem

The following proof is adapted from the presentation in [AE16].

Notation 10.4.1. A smooth pair of varieties (X,Z) consists of smooth k-variety X and a closed
smooth subvariety Z. A morphism of pairs f : (X,Z) → (X ′, Z ′) is a map f : X → X ′ for which
f(Z) ⊆ Z ′ and such that the square

Z //

��

X

��
Z ′ // X ′

is a pullback square.
A morphism is a Nisnevich map of smooth pairs if f : X → X ′ is an étale map and f(Z) → Z ′ is

an isomorphism.

Definition 10.4.2. A morphism f : (X,Z) → (X ′, Z ′) of smooth pairs is weakly excisive if the
induced square

Z //

��

X/(X \ Z)

��
Z ′ // X ′/(X ′ \ Z ′)

is a homotopy pushout in the A1-model structure.

Example 10.4.3. If (X,Z)→ (X ′, Z ′) is a map of smooth pairs such that the maps X → X ′, Z → Z ′

and X \ Z → X ′ \ Z ′ are all A1-equivalences, then the map is weakly excisive. This is the case if
X → X ′ is the structure map of a vector bundle, or a section of a vector bundle.

Example 10.4.4. If
U ×X V //

��

V

��
U // X

is an elementary Nisnevich square, and if we write Z = X \ U (and also Z = V \ (U ×X V )), then
(V,Z) → (U,Z) is weakly excisive. In fact, the square to be checked is the ENS itself, which is a
homotopy pushout.

Remark 10.4.5. Let (X,Z)
f→ (Y,W )

g→ (U, V ) be composable maps of smooth pairs. If f is weakly
excisive, then g is weakly excisive if and only if g ◦ f is. This is an easy exercise in homotopy
pushout squares.

If g and g ◦ f are weakly excisive and g induces an A1-equivalence W → V , then f is weakly
excisive. This is a little more complicated, but still left as an exercise.
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We will use the following version of [GR02, Exposé II, Théorème 4.10] without proof:

Theorem 10.4.6. Suppose (X,Z) is a smooth pair where Z is of codimension c in X . Then there exists a
Zariski cover {Ui → X}i∈I and a set of étale morphisms {gi : Ui → Ani}i∈I such that for all i the smooth
pair (Ui, Z ∩ Ui) is isomorphic to the pullback of an inclusion of a linear subspace (Ani ,Ani−c) along gi.

Lemma 10.4.7. Suppose P is a property of smooth pairs (X,Z) such that:

1. if {Ui → X}i∈I is a Zariski cover such that P holds for{(
⋂
j∈J Uj ,

⋂
j∈J Uj ∩ Z)} for all nonempty

subsets J ⊆ I , then P holds for (X,Z);

2. if (V,Z)→ (X,Z) is a Nisnevich morphism of smooth pairs, then (V,Z) has P if and only if (X,Z)
has P.

3. All pairs (An × Z,Z), given by inclusion at 0, have P.

Then all smooth pairs have P.

Proof. Using property 1, we may suppose the pair (X,Z) is equipped with an étale map g : X →
An such that Z = g−1(Am) for some embedded Am, where Z has codimension n−m in X .

Write c = n−m, and produce the product X ×An (Z ×Ac) where Z ×Ac → An is given by g|Z
on the first component, and Ac is included as the last c components of An.

There are étale maps as indicated

X ×An (Z × Ac)

p1ww
p2

&&
Z × Ac X.

That these are étale can be checked fairly easily, once you remember that the product of two étale
maps is again étale. We would be done if Z ×An Z mapped isomorphically down to Z under p1

and p2, but unfortunately, it need not.
It is the case that we can identify Z ×An Z = Z ×An−c×0 Z, which has the advantage that we

are taking a fibre product of étale maps
Similar to a homework exercise, however, Z×An−c Z → Z is an étale map that has the diagonal

∆ : Z → Z ×An−c Z as a section. Therefore there is some closed Y ⊆ Z ×An−c Z that such that
Z ×An−c Z = Z

∐
Y . If we modify X ×An (Z × Ac) by discarding the closed subvariety Y , we are

left with two Nisnevich maps of smooth pairs:

((X ×A1 (Z × Ac)) \ Y,Z)→ (X,Z)

((X ×A1 (Z × Ac)) \ Y,Z)→ (Z × Ac, Z).

Therefore using 2, we have reduced the general case to the case of 3.

Theorem 10.4.8. Let (X,Z) be a smooth pair. There is a natural isomorphism in the A1-homotopy category

X

X \ Z
' Th(NZX).
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Proof. We construct a zig-zag of maps. Construct

DZX := BlZ×{0}(X × A1) \ BlZ×{0}(X × {0})

which is natural in smooth pairs. This is equipped with a map to X ×A1 and therefore to A1. The
fibre at {0} is P(NZX ⊕ OZ) \ P(NZX) ∼= NZX . We can find an embedded Z × A1 as a closed
subvariety of DZX ; most fibres of DZX are just X again, while the fibre at 0 is ∼= NZX and here
the copy of Z is embedded as the 0-section.

Consider the smooth pair (DZX,Z × A1). There is a diagram

(X,Z)
i1→ (DZX,Z × A1)

i0← (NZX,Z)

and we claim that each of these two arrows is weakly excisive.
If we can prove this claim, then we can say that X/(X \ Z) → DZX/(DZX \ Z × A1) is an

A1-equivalence, and so too is NZX/(NZX \Z)→ DZX/(DZX \Z ×A1). Here, NZ/(NZX \Z) is
a presentation of Th(NZX), establishing the result.

Now we wish to show that both maps i0 and i1 are weakly excisive. Say a pair (X,Z) has
property P if this holds. We show that property P satisfies the condition of Lemma 10.4.7.

1. If {Ui → X}i∈I is a Zariski cover of X such that for each intersection Ui, the pair (Ui, Z ∩Ui)
has property P, then (X,Z) has property P. The proof of this is straightforward, but we
sketch it here anyway.

Let i be an n-tuple of elements in I . Let Ui = U1 ∩ U2 ∩ · · · ∩ Un and similarly for Zi, DZi
X .

Then there is a (homotopy) pushout square

Zi
//

��

Ui/(Ui \ Zi)

��
Zi × A1 // DZi

Ui/DZi
Ui \ (Zi × A1)

and these different squares assemble to produce a (homotopy) pushout square of simplicial
presheaves

Z• //

��

U•/U• \ Z•

��
Z• × A1 // DZ•U•/DZ•U• \ (Z• × A1)

which is homotopy equivalent to

Z //

��

X/(X \ Z)

��
Z × A1 // DZX/(DZX \ (Z × A1))

This establishes weak descent for i1. The argument for i0 is similar.
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2. We want to show that (V,Z) → (X,Z) is a Nisnevich map of smooth pairs such that (V,Z)
has property P, then (X,Z) has property P. Looking at the diagram

(V,Z)
i1 //

��

(DZV,Z × A1)

��

(NZV,Z)
i0oo

��
(X,Z)

i1 // (DZX,Z × A1) (NZX,Z)
i0oo

and using Remark 10.4.5, we see that it’s enough to show that the vertical maps are weakly
excisive. The vertical maps are Nisnevich maps of smooth pairs, so it’s sufficient to verify
that a Nisnevich map of smooth pairs is weakly excisive. This is example 10.4.4.

3. The last thing we have to show is that a pair (Z × AnZ,Z), where Z is embedded at 0, has
property P. This is not very difficult. The variety Z comes along for the ride, all the argument
is already inherent in the case of (An, 0). Recall the definition of DZ(Z × An) as a difference
of two blow-ups:

BlZ×0(Z × An × A1) \ BlZ×0(Z × An × 0),

The larger blow up here is the total space of an A1-bundle over Z×Pn, and the smaller is the
total space of the sub-bundle over Z × Pn−1. We may identify DZ(Z ×An) as the total space
of an A1-bundle over Z × An—in fact, this bundle is trivial.

The maps i1 : (Z×An, Z)→ (DZZ×An, Z×A1) and i0 : (NZZ×An, Z)→ (DZZ×An, Z×A1)
are both sections of this bundle, and are therefore weakly excisive. This concludes the proof.

Remark 10.4.9. This is a kind of excision result, since it says that the homotopy type of X/(X \ Z)
depends only on the structure of X ‘near Z’.
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Chapter 11

Motivic Cohomology

11.1 Ω-spectra

Throughout work in a pointed proper simplicial model category, M.

Definition 11.1.1. We say a sequence of fibrant objects {En}n∈N and maps sn : En → ΩEn+1 is an
Ω-spectrum if each of the maps sn is a weak equivalence.

Notation 11.1.2. Suppose E is an Ω-spectrum. Define a functor Ei : M→ Ab by

Ei(X) = [X,Ei]

Superficially, this takes values in sets, but in fact [X,Ei] = [X,Ω2Ei+2], which carries an abelian
group structure.

Remark 11.1.3. We see directly that there are suspension isomorphisms Ei(X) ∼= Ei+j(ΣjX). This
allows us to extend the definition to E−i(X) = E0(ΣiX) for negative values of i.

Proposition 11.1.4. Let E be an Ω-spectrum as above. Suppose f : X → Y is a map with homotopy
cofibre g : Y → Cf . Then there is a natural long exact sequence

· · · → Ei(Cf )→ Ei(Y )→ Ei(X)→ Ei+1(Cf )→ . . .

Proof. For simplicity, we assume all objects appearing are cofibrant. If they are not, replace f by
Qf : QX → QY and proceed from there.

First of all, the homotopy cofibre of g is equivalent to a map h : Cf → ΣX , and iterating this,
we get a map equivalent to −Σf : ΣX → ΣY .

The homotopy cofibre sequences we obtain in this way are called rotations of the original

Applying the simplicial mapping functor S(·, REi) to a homotopy cofibre sequence to get a
homotopy fibre sequence of simplicial sets:

S(Cf , REi)→ S(Y,REi)→ S(X,REi).

Apply π0 to get an exact sequence [Cf , Ei] → [Y,Ei] → [X,Ei]. Applying this to the various
rotations of the original sequence gives us the long exact sequence.

80



Proposition 11.1.5. There is an isomorphism

Ei
( ∨
α∈A

Xα

)
=
[ ∨
α∈A

Xα, E
]
∼=
∏
α∈A

Ei(Xα).

Remark 11.1.6. That is, the Ω-spectrum E defines a generalized cohomology theory on M.

Example 11.1.7. In the Quillen model structure on Kelly spaces, we may set Ei = K(A, i). Then
ΩEi+1 ' Ei, so we have an infinite loop space. The associated cohomology theory satisfies

Ei(Sn) =

{
A if i = n

0 otherwise.

That is, this is ordinary reduced cohomology with coefficients in A.

11.2 Motivic Cohomology

The construction of Motivic Eilenberg–Mac Lane objects in this manner really belongs to [Voe10].
This is not easy to read, however. The general idea is sketched in [VRØ07, p162–164], and we
attempt to explain that a little more.

Let k be a perfect field, i.e., one without finite inseparable extensions. Let c denote the expo-
nential characteristic of the field throughout. This is 1 if the field has characteristic 0 and p if it has
characteristic p.

To define motivic cohomology, we define an Ω-spectrum in the A1-homotopy theory. In fact,
we define a family of Ω-spectra.

Definition 11.2.1. Suppose X,Y ∈ Smk. A finite correspondence from X to Y is a finite formal sum∑n
i=1 aiZi where each ai ∈ Z and each Zi is a closed subvariety of X × Y such that the maps

induced by the projection Zi → X are finite and surjective onto a connected component of X .

Definition 11.2.2. Suppose Y is an object of Smk, and A is an abelian group. Define L(Y ) to be
the functor

L(Y ) : Sm
op
k → Set ⊆ sSet

given by
L(Y )(X) = finite correspondences X → Y .

In fact, this takes values in abelian groups. We define L(Y ;A) = L(Y )⊗Z A.

Remark 11.2.3. This really is functorial in X . If f : X1 → X2 is a map of varieties, the functoriality
in f is given by pulling finite surjective maps Z → X2 back along f .

Proposition 11.2.4. Fix an abelian group A. Then the construction Y 7→ L(Y ;A) is a functor

Smk → sPre(Smk)

Remark 11.2.5. It suffices to prove this when A = Z.

In fact, more is true. It is possible to define a category Cork,A having the same objects as
Smk but in which Cork,A(X,Y ) is the group of A-linear finite correspondences X → Y . The fact
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that there is actually a composition of correspondences is proved in [MVW06, Chapter 1]. The
composition is defined as follows:

Suppose Z0 ⊂ X0×X1 and Z1 ⊂ X1×X2 are finite and surjective over a component of X0 and
X1 respectively. One can pull Z0 and Z1 back to p∗3(Z0), p∗1(Z1), both closed in X0 ×X1 ×X2, then
intersect p∗3(Z0)∩p∗1(Z1), then take the image under the projection X0×X1×X2. The fact that this
all actually works out to give a well-defined operation is done in [MVW06, Chapter 1].

Now suppose f : Y → W is a map of varieties. Then the graph Γf ⊂ X × Y is a closed
subvariety, consisting of pairs (x, f(x)). The graph provides a finite correspondence X → Y . In
this way, the category Smk embeds in Cork. From this point of view L(Y ), as defined previously,
is essentially the Yoneda functor of Y ∈ Cork.

Remark 11.2.6. The presheaf L(Y ;A) is actually a Nisnevich sheaf. This is a kind of descent argu-
ment, not given further here.

Notation 11.2.7. Let A be an abelian group.
If X,x0 is a pointed scheme, then we define L(X,x0;A) as the cokernel L(x0;A)→ L(X;A).
IfX , x0 is a pointed presheaf on Smk, then we may define L(X , x0;A) by writingX as a filtered

colimit of pointed representable presheaves (X , x0) = colimi(Ui, ui,0), then setting

L(X , x0;A) = colim
i

L(Ui, ui,0;A).

Remark 11.2.8. The A1-homotopy type of L(X , x0;A) depends only on the A1-homotopy type of
(X , x0) and on A. This is difficult, and we refer to [Voe10].

Remark 11.2.9. We have not extended L(·;A) to simplicial presheaves, but this isn’t necessary.
Given any simplicial presheaf, there is some presheaf concentrated in degree 0 that is A1-equivalent.
Most importantly, we can find a version of the mapping cone construction: given f : X → Y , a
map of presheaves, produce X ×A1, then replace X ×{1} by Y×{1} using f , and collapse X ×{0}
to a point.

Since S0 is a presheaf, we can find a presheaf model for Sn for all n ≥ 0.

Definition 11.2.10. Let A be an abelian group in which the exponential characteristic c of k is
invertible. Then define

K(A, p, q) := RA1L(Sp ∧G∧qm , ∗;A).

Proposition 11.2.11. There are weak equivalences

Map+(S1,K(A, p, q))→ K(A, p− 1, q)

Map+(Gm,K(A, p, q))→ K(A, p, q − 1).

Corollary 11.2.12. Let A be an abelian group in which c is invertible. For any object X of sPre(Smk),
we define the motivic cohomology

H̃p(X,A(q)) = [X,K(A, p, q)]•

Remark 11.2.13. We have not defined an S1-Gm-bispectrum, but this is what K(A, ·, ·) is. This
allows us to define Hp(X,A(q)) even for negative values of p and q.
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Example 11.2.14. Why is this remotely plausible?
consider the following construction in classical topology. Start with a space, X , equipped with

a basepoint x0 ∈ X . Take SingX , a simplicial set pointed at x0. Then form the free simplicial
abelian group Z̃[X] := ZSingX/Zx0 object. The Dold–Kan correspondence says that πi(Z̃[X])

calculates the singular homology Hi(X;Z), and therefore |Z̃[X]| is a space for which the homotopy
groups are the Z-homology of X . Similar constructions apply also for groups other than Z.

The space |Z̃[X]| is a kind of topological construction of the “free abelian group on (X,x0)”,
and this construction is a version of the Dold–Thom theorem.

If X is a sphere, Sn, then |Z̃[Sn]| gives a construction of the Eilenberg–Mac Lane spaceK(Z, n).

Suppose k for now is algebraically closed of characteristic 0. Suppose U, u0 is a pointed scheme
that is also a motivic sphere. Let’s consider L(U)(k). This consists of formal sums of closed sub-
schemes of U × k = U that are finite (and surjective) over k. That is, L(U)(k) consists of formal
sums of the elements in U(k).

There is a difference between L(U) and ZU—the presheaf that sends an arbitrary X to formal
sums of elements of U(X)—in that L(U) takes more account of the geometry of U .

The presheaf L(U, u0)(k) is the quotient of L(U)(k) obtained by setting u0 = 0. Therefore,
L(U, u0) is a version of the same construction used in the Dold–Thom theorem.

Here are some more results about motivic cohomology, which can’t be deduced immediately
from what we’ve already proved.

They are all proved in [MVW06] (although the definition of motivic cohomology there is su-
perficially different from here, it turns out to be equivalent).

Proposition 11.2.15. Suppose Z → X is a smooth pair of codimension c. Then there is a “Thom Isomor-
phism”

H̃p(ThZ(X);A(q)) ∼= Hp−2c(Z;A(q − x))

Proposition 11.2.16. There are vanishing results:

1. For all X , the groups Hp(X,A(q)) = 0 when q < 0.

2. When X is a smooth k-variety, Hp(X,Z(q)) = 0 whenever p > 2q and H2p(X,Z(p)) ∼= C̃H
p
(X).

3. If X is a smooth k-variety of dimension d, then Hp(X,Z(q)) = 0 whenever p > q + d, and if
X = Spec k, then Hp(Spec k,Z(p)) ∼= KM

p (k), the Milnor K-theory.

The following is the Beilinson–Lichtenbaum conjecture, now proved as a part of the Norm–
Residue Isomorphism Theorem ([HW19]).

Proposition 11.2.17. Let X be a smooth variety over a field k (of characteristic different from `). Then
there is an isomorphism

Hp(X,Z/(`)(q)) ∼= Hp
ét(X,µ

⊗q
` )

for all p ≤ q.

(here µ` denotes the étale sheaf of `-th roots of unity).
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A-equivalence, 44
Ω-spectrum, 80
A1-homotopy category, 60
A1-invariant, 63
A1-local, 60
π0(·), 21
n-simplex, 10
étale, 30
étale covering, 31

adjoint equivalence, 57
affine vector bundle torsor, 71
Alexander–Whitney map, 57
anodyne extensions, 15
associated pointed model category, 18

basis for a Grothendieck topology, 28
BG property, see Brown–Gersten property
big étale site, 31

of a general scheme, 31
big Zariski site, 31
Brown–Gersten property, 51

category of sheaves, 29
category of simplices, 10
cd-topology, see Nisnevich topology
classical model structure, see Quillen model struc-

ture
codegeneracy map, 9
coface map, 9
cofibrant, 4
cofibrant replacement, 4
cofibrantly generated model category, 14
cofibration, 2

of complexes, 7
of simplicial sets, 12
Serre, 3

cofibre, 21, 74

cofilitered, 37
cofiltered, 37
conservative family of points, 36
cosimplicial object, 10
cosimplicial space, 10
covering, 28

of spaces, 27
covering families, 28
cylinder object, 4

degeneracy maps, 9
degenerate elements, 10

Eilenberg–Zilber map, 57
elementary A1-homotopy, 65
elementary distinguished square, see elementary

Nisnevich square
elementary Nisnevich square, 34
enough points, 36
equalizer, 17
exact sequence, 23

face maps, 9
fibrant, 4
fibrant replacement, 4
fibration, 2

of complexes, 7
of simplicial sets, 12
Serre, 3

fibre, 21
fibre functor, 36
filtered, 37
finite correspondence, 81
formally étale, 30
functor of points, 33

geometric realization, 11
global injective fibration, 49
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global weak equivalence, 41
Grothendieck topology, 29

Hensel’s lemma, 39
henselian, 39
henselization, 39
homotopy cartesian, 49
homotopy category, 3
homotopy cocartesian, 49
homotopy cofibre, 74
homotopy colimit, 47
homotopy commutative, 48
homotopy limit, 47
homotopy pushout, 48
Hopf fibration, 25

injective A1-model structure, 60
injective fibration, 43
injective model structure, 43

join, 48, 62

Kan complex, 12
Kan fibration, see fibration

left Bousfield localization, 44, 45
left homotopy, 4
left lifting property, 3
left proper, 43
left Quillen functor, 8
local fibration, 50

trivial, 50
local object, 44
local weak equivalence, 41
locally bounded functions, 28
loop space, 20

minimal fibrations, 16
model category, 2
model structure, 2
motivic homotopy category, see A1-homotopy cat-

egory
motivic sphere, 63

naively A1-homotopic, 65
nerve, 43
Nisnevich covering, 32
Nisnevich map of smooth pairs, 76

Nisnevich neighbourhood, 38
normal bundle, 74
normalized chain complex, 55

objectwise fibration, 50
objectwise weak equivalence, see global weak

equivalence

path object, 5
point, 36
pointed, 18
presheaf, 28

on a space, 27
pretopology, 28
projective fibration, see objectwise fibration
proper, 43
pseudofiltered, 37

quasi-affine varieties, 54
quasi-isomorphism, 7
quasicategory, 12
Quillen equivalence, 8
Quillen model structure, 3

reduced suspension, 20
relative cell complex, 3
representable sheaf, 29
right homotopy, 5
right lifting property, 3
right proper, 43
right Quillen functor, 8
rotations, 80

sectionwise fibration, see objectwise fibration
separated presheaf, 28
sheaf, 28

on a space, 27
simple Nisnevich neighbourhood, 38
simplicial category, 9, 20
simplicial cotensor, 20
simplicial enrichment, 20
simplicial identities, 9
simplicial model category, 20
simplicial object, 9
simplicial presheaf, 40
simplicial sets, 10
simplicial tensor, 20
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simplicial weak equivalence, see local weak equiv-
alence

site, 28
skyscraper sheaf, 37
slice category, 46
small étale site, 31
smash product

of simplicial sets, 19
of spaces, 19

smooth pair, 76
SNN, see simple Nisnevich neighbourhood
square-0 ideal, 30
stalk, 36
standard étale, 30
Strøm model structure, 7
strictly A1-invariant, 64
strictly henselian, 39
subcanonical, 29

Tate circle, 62
Thom space, 73
total left derived functor, 8
total right derived functor, 8
trivial (co)fibration, 2
trivial vector bundle, 72

unnormalized chains, 56

vector bundle of rank n, 72

weak equivalence, 2, 3
of simplicial sets, 12

weakly excisive, 76

Zariski covering, 31
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