CONNECTIVITY OF MANIFOLD COMPLEMENTS

BEN WILLIAMS

ABSTRACT. It is well known that if M is a connected smooth manifold with a basepoint
mo, then the homotopy groups m; (M, mo) may be defined using only smooth maps from
spheres and smooth homotopies between them. It is also a well-known fact that if M is a
smooth manifold and Z is a codimension-d submanifold, then the inclusion M \ Z — M
is d — 1-connected. Proofs of these two results are given.

1. INTRODUCTION

The purpose of this note is to prove Theorems 1.7 and 1.11. The first says that the
homotopy groups of a manifold may equally well be calculated using continuous maps and
homotopies or smooth maps and homotopies. The second says that if M is a manifold and
Z a closed submanifold of codimension d, then the inclusion M\ Z — M is d— 1-connected.
The manifolds in question are smooth separable real manifolds without boundary, but they
are not assumed to be compact.

These two results are folklore. The first result is mentioned in [BT82], but I have not
seen it proved in detail. I do not believe a proof of the second result appears in the
peer-reviewed literature, although a proof is sketched in the notes of [Ful07, Appendix A,
Proposition 4.1], attributed to D. Speyer. The proof of 1.11 in this note is modelled on the
proof there.

Throughout, the term smooth manifold means a smooth separable manifold without
boundary. The term smooth manifold with boundary means a smooth separable manifold
with a possibly empty boundary. In general, we do not require our manifolds to be con-
nected, and when we say that Z is of codimension d in M, we mean that the minimal
codimension of a connected component of Z; in M is d.

1.1. Smooth homotopy groups.

Definition 1.1. Suppose f,g: N — M are two smooth maps between smooth manifolds.
A smooth homotopy from f to g is a map H : N x I — M restricting to f (resp. g) at 0
(resp. 1) and such that H extends to a smooth map of some open neighbourhood of N x I
in N x R.

Lemma 1.2. Smooth homotopy is an equivalence relation on smooth maps N — M.

This is [Leel2, Lemma 6.28].
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Lemma 1.3. Suppose f,g: N — M are two smooth maps that are homotopic relative to
some closed A C N (note that A may be empty). Then f and g are smoothly homotopic
relative to A.

This is [Leel2, Theorem 6.29].

Theorem 1.4 (Whitney Approximation Theorem). Suppose f: N — M is a continuous
function where the source is a smooth manifold with boundary and the target is a smooth
manifold. Suppose A C N is a closed subset such that f|4 is smooth. Then f is homotopic
relative to A to a smooth map f: N — M.

This is [Leel2, Theorem 6.26].

Corollary 1.5 (Extension Lemma). Suppose N is a smooth manifold with boundary, M a
smooth manifold without boundary, A C N a closed subset and f: A — M a smooth map.
Then f has a smooth extension to N if and only if it has a continuous extension to N.

This is [Leel2, Corollary 6.27].

Definition 1.6. Let M be a smooth manifold with basepoint mgy. For any integer n >
0, let 7Moot (A7 mg) denote the smooth homotopy classes of basepoint-preserving maps
S™— M.

There is a natural transformation w$m°°" (M mg) — 7, (M, mg) between functors de-
fined on the category of smooth manifolds with basepoints, taking values in the category
of pointed sets (when n = 0) or groups (when n = 1) or abelian groups (n > 2).

Theorem 1.7. The natural transformation 7w (M, mg) — m,(M,mg) is an isomor-

phism.

Proof. The set 75™°°™" (A, myg) is functorial for smooth basepoint-preserving maps M —

M'. There is a natural map WflmOOth — 7. By Lemma 1.3, this natural map is injective

and by Theorem 1.4 it is surjective. O
1.2. Transversality. The following definition is taken from [Leel2, p. 143].

Definition 1.8. If F': N — M is a smooth map and Z C M is an embedded submanifold,
we say that F is transverse to S if for every x € F~1(Z), the spaces Tp(,)(Z) and dF, (T, N)
together span T, (M).

We use only the most primitive consequence of transversality in this note:

Lemma 1.9. Suppose N and M are smooth manifolds of dimensions n and m respectively,
and Z C M is a smooth submanifold of dimension z. Suppose F' : N — M 14s a smooth
map that is transverse to Z. Suppose m >n+ z. Then F(N)NZ = 0.

Proof. Suppose for the sake of contradiction that we can find x € F~1(Z). Then Tr@)(Z)
has dimension z and dF,(7T,N) has dimension no greater than n. In particular

a contradiction. O
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Theorem 1.10 (Extension Theorem). Let N be a smooth manifold with boundary and M
a smooth manifold. Suppose Z is a closed submanifold of M. Suppose C is a closed subset
of N, and suppose f : N — M is a smooth map such that f|c is transverse to Z and
Of|cron is transverse to Z. Then there exists a smooth map g : N — M, homotopic to f,
such that g is transverse to Z and Og is transverse to Z, and such that on a neighbourhood
of C, the map g agrees with f.

This is the “Extension Theorem” on [GP10, p. 72].

1.3. Dimension and connectivity.

Theorem 1.11. Let M be a smooth manifold of dimension m and let Z be an embedded
smooth submanifold of codimension d. Let mo € M\ Z be a basepoint. Leti: M\ Z — M
denote the inclusion. Then

is (M \ Z,mp) — 7 (M, mg)
1s surjective when n =d — 1 and an isomorphism when n < d — 1.

Proof. By Theorem 1.7, the sets m,(M,mg) and 7, (M \ Z, mp) admit a description as
the set of equivalence classes of smooth basepoint-preserving maps S™ — M under the
equivalence relation of smooth, basepoint-preserving homotopy.

Suppose n < d — 1. Let a € m,(M,mg) be a class, represented by a smooth map
f 8" — M. Using Theorem 1.10 with N = S™ and the basepoint of S™ as C, we may
suppose f is transverse to Z, which by counting dimensions and Lemma 1.9 implies that
im(f) is disjoint from Z. The homotopy class of f : S™ — M \ Z gives us a representative
for @ € m, (M \ Z,mo) mapping to «, so that i, is surjective.

Suppose 0 < n < d — 1. Suppose 8 € m,(M \ Z, mp) has the property that i.(3) is
trivial. We will show that ( is trivial. Let f: S™ — M \ Z be a smooth representative for
B, and let H"” : D™*' — M be a continuous map restricting to i o f on S” = 9D"*1—H"
exists because i,(3) is trivial. By using the Whitney Approximation Theorem, 1.4, we
may replace H” by a smooth map H’, again restricting to i o f on dD"!. Then by using
Theorem 1.10, with N = D"*! and C = 9N = SV, we may replace H' by a homotopic
smooth map H : D"t — M such that H|ypn+1 = io f and such that H is transverse to
Z. By a dimension-counting argument and Lemma 1.9, we know that im(H)NZ = () since
n < d—1. The map H has image in M \ Z, and is a contraction of f to a constant map
in M \ Z. Since H exists, 8 is trivial.

The argument to show that 7o(M \ Z, mg) — mo(M, mg) is injective is similar. Suppose
x,y € M\ Z are two points that lie in the same component of M. Then there is a path
~": T — M from z to y, and using Theorem 1.4, we may replace 7/ by a smooth path +/
from z to y. Then using Theorem 1.10 with N = I, and C = dI, we may replace 7' by a
smooth path v from x to y that meets Z transversely. Provided d > 1, this means Z does
not meet v at all, as required. O

Remark 1.12. The map ¢ of the Theorem is said to be (d — 1)-connected.
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1.4. Application to complex varieties.

Proposition 1.13. Suppose V' is a smooth connected complex variety and Z is a subvariety
of (complex) codimension d. Then the inclusion i : V\ Z — V is (2d — 1)-connected.

Proof. We may stratify Z into smooth strata of weakly increasing dimensions, and so by
an induction argument, it is sufficient to treat the case where Z C M is a smooth closed
subvariety, i.e., a complex-codimension-d smoothly embedded submanifold. The result now
follows from Theorem 1.11. O

Corollary 1.14. Suppose Z is a subvariety of Ag of codimension d > 0. Let xg € A(]CV \Z
be a basepoint. Then m, (AN \ Z, x0) is trivial for n < 2d — 2.

Notation 1.15. One says that AY \ Z is (2d — 2)-connected.

1.5. Precision of the bound. If M is a manifold, Z is a closed submanifold and mg €
M\ Z, then there is a long exact sequence of relative homotopy groups (or pointed sets at
the right-hand end of the sequence):

(1)
e — 7T7;(M\Z, mo) — 71'2‘(M, mo) — 7TZ'(M, M\Z) — Wi_l(M\Z, mo) — 7Ti_1(M, mo) — .

See [Whil2, IV, Thm 2.4] for the general theory.

Proposition 1.16. Suppose M is a manifold and Z is a connected closed submanifold of
codimension d > 1, and that mg € M \ Z is a basepoint. Then at least one of the two maps
(induced by the inclusion)

ma(M \ Z,mg) — mg(M,mg), 7mq—1(M \ Z,mo) — mg_1(M,mg)
is not an isomorphism.

Proof. Let N C M be a tubular neighbourhood of Z, the existence of which is proved in
[Hir76, Thm 6.2]). In particular:

e N is an open submanifold of M and Z is a closed submanifold of V.

e 7 is a deformation retract of N. Let us write p : N — Z for the retraction map.

e The map p: N — Z is isomorphic to the structure map £ — Z where F is the
normal bundle of Z in M.

There is an excision isomorphism:
H*(M’M\ZaFZ) = H*(N7N\ZaF2)

The Thom isomorphism theorem gives us: H.(N, N \ Z;F3) = H,_4(Z;F2) (see [Dol95,
VIII, 7.15]). Therefore

Hi(M,M\ Z;Fy) =0ifi<d and Hg(M,M\ Z;Fy) 0.
The universal coefficients theorem for homology implies that
Hy(M, M\ Z;F9) 2 Fy @z Hgy(M, M\ Z;7)
and therefore that Hy(M, M \ Z;7Z) % 0.
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Theorem 1.11 and the long exact sequence (1) imply that the relative homotopy groups
mi(M, M \ Z) all vanish when i < d — 1. The relative version of the Hurewicz theorem
[Whil2, IV, Thm 7.2] tells us that Hy(M, M \ Z;Z) is a quotient of 7y(M, M \ Z) by an
action of w1 (M \ Z, mp). In particular, 7g(M, M\ Z) is not 0. The result now follows from
the long exact sequence (1). O

Example 1.17. For all positive integers d, the examples of Z = pt and M = S% and Z = pt
and M = R? show that either of the two maps in Proposition 1.16 may be an isomorphism,
at the expense of the other.
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