CONNECTIVITY OF MANIFOLD COMPLEMENTS

BEN WILLIAMS

ABSTRACT. It is well known that if M is a connected smooth manifold with a basepoint m_0 , then the homotopy groups $\pi_i(M, m_0)$ may be defined using only smooth maps from spheres and smooth homotopies between them. It is also a well-known fact that if M is a smooth manifold and Z is a codimension-d submanifold, then the inclusion $M \setminus Z \to M$ is d-1-connected. Proofs of these two results are given.

1. INTRODUCTION

The purpose of this note is to prove Theorems 1.7 and 1.11. The first says that the homotopy groups of a manifold may equally well be calculated using continuous maps and homotopies or smooth maps and homotopies. The second says that if M is a manifold and Z a closed submanifold of codimension d, then the inclusion $M \setminus Z \to M$ is d-1-connected. The manifolds in question are smooth separable real manifolds without boundary, but they are not assumed to be compact.

These two results are folklore. The first result is mentioned in [BT82], but I have not seen it proved in detail. I do not believe a proof of the second result appears in the peer-reviewed literature, although a proof is sketched in the notes of [Ful07, Appendix A, Proposition 4.1], attributed to D. Speyer. The proof of 1.11 in this note is modelled on the proof there.

Throughout, the term smooth manifold means a smooth separable manifold without boundary. The term smooth manifold with boundary means a smooth separable manifold with a possibly empty boundary. In general, we do not require our manifolds to be connected, and when we say that Z is of codimension d in M, we mean that the minimal codimension of a connected component of Z_i in M is d.

1.1. Smooth homotopy groups.

Definition 1.1. Suppose $f, g: N \to M$ are two smooth maps between smooth manifolds. A *smooth homotopy* from f to g is a map $H: N \times I \to M$ restricting to f (resp. g) at 0 (resp. 1) and such that H extends to a smooth map of some open neighbourhood of $N \times I$ in $N \times \mathbb{R}$.

Lemma 1.2. Smooth homotopy is an equivalence relation on smooth maps $N \to M$.

This is [Lee12, Lemma 6.28].

Lemma 1.3. Suppose $f, g : N \to M$ are two smooth maps that are homotopic relative to some closed $A \subseteq N$ (note that A may be empty). Then f and g are smoothly homotopic relative to A.

This is [Lee12, Theorem 6.29].

Theorem 1.4 (Whitney Approximation Theorem). Suppose $f : N \to M$ is a continuous function where the source is a smooth manifold with boundary and the target is a smooth manifold. Suppose $A \subseteq N$ is a closed subset such that $f|_A$ is smooth. Then f is homotopic relative to A to a smooth map $\overline{f} : N \to M$.

This is [Lee12, Theorem 6.26].

Corollary 1.5 (Extension Lemma). Suppose N is a smooth manifold with boundary, M a smooth manifold without boundary, $A \subseteq N$ a closed subset and $f : A \to M$ a smooth map. Then f has a smooth extension to N if and only if it has a continuous extension to N.

This is [Lee12, Corollary 6.27].

Definition 1.6. Let M be a smooth manifold with basepoint m_0 . For any integer $n \ge 0$, let $\pi_n^{\text{smooth}}(M, m_0)$ denote the smooth homotopy classes of basepoint-preserving maps $S^n \to M$.

There is a natural transformation $\pi_n^{\text{smooth}}(M, m_0) \to \pi_n(M, m_0)$ between functors defined on the category of smooth manifolds with basepoints, taking values in the category of pointed sets (when n = 0) or groups (when n = 1) or abelian groups $(n \ge 2)$.

Theorem 1.7. The natural transformation $\pi_n^{smooth}(M, m_0) \rightarrow \pi_n(M, m_0)$ is an isomorphism.

Proof. The set $\pi_n^{\text{smooth}}(M, m_0)$ is functorial for smooth basepoint-preserving maps $M \to M'$. There is a natural map $\pi_n^{\text{smooth}} \to \pi_n$. By Lemma 1.3, this natural map is injective and by Theorem 1.4 it is surjective.

1.2. Transversality. The following definition is taken from [Lee12, p. 143].

Definition 1.8. If $F: N \to M$ is a smooth map and $Z \subseteq M$ is an embedded submanifold, we say that F is *transverse* to S if for every $x \in F^{-1}(Z)$, the spaces $T_{F(x)}(Z)$ and $dF_x(T_xN)$ together span $T_{F(x)}(M)$.

We use only the most primitive consequence of transversality in this note:

Lemma 1.9. Suppose N and M are smooth manifolds of dimensions n and m respectively, and $Z \subseteq M$ is a smooth submanifold of dimension z. Suppose $F : N \to M$ is a smooth map that is transverse to Z. Suppose m > n + z. Then $F(N) \cap Z = \emptyset$.

Proof. Suppose for the sake of contradiction that we can find $x \in F^{-1}(Z)$. Then $T_{F(x)}(Z)$ has dimension z and $dF_x(T_xN)$ has dimension no greater than n. In particular

$$m = \dim_R T_{F(x)}M = \dim_{\mathbb{R}}(T_{F(x)}(Z) + dF_x(T_xN)) \le z + n < m,$$

a contradiction.

Theorem 1.10 (Extension Theorem). Let N be a smooth manifold with boundary and M a smooth manifold. Suppose Z is a closed submanifold of M. Suppose C is a closed subset of N, and suppose $f : N \to M$ is a smooth map such that $f|_C$ is transverse to Z and $\partial f|_{C \cap \partial N}$ is transverse to Z. Then there exists a smooth map $g : N \to M$, homotopic to f, such that g is transverse to Z and ∂g is transverse to Z, and such that on a neighbourhood of C, the map g agrees with f.

This is the "Extension Theorem" on [GP10, p. 72].

1.3. Dimension and connectivity.

Theorem 1.11. Let M be a smooth manifold of dimension m and let Z be an embedded smooth submanifold of codimension d. Let $m_0 \in M \setminus Z$ be a basepoint. Let $i: M \setminus Z \to M$ denote the inclusion. Then

$$i_*: \pi_n(M \setminus Z, m_0) \to \pi_n(M, m_0)$$

is surjective when n = d - 1 and an isomorphism when n < d - 1.

Proof. By Theorem 1.7, the sets $\pi_n(M, m_0)$ and $\pi_n(M \setminus Z, m_0)$ admit a description as the set of equivalence classes of smooth basepoint-preserving maps $S^n \to M$ under the equivalence relation of smooth, basepoint-preserving homotopy.

Suppose $n \leq d-1$. Let $\alpha \in \pi_n(M, m_0)$ be a class, represented by a smooth map $f: S^n \to M$. Using Theorem 1.10 with $N = S^n$ and the basepoint of S^n as C, we may suppose f is transverse to Z, which by counting dimensions and Lemma 1.9 implies that $\operatorname{im}(f)$ is disjoint from Z. The homotopy class of $f: S^n \to M \setminus Z$ gives us a representative for $\overline{\alpha} \in \pi_n(M \setminus Z, m_0)$ mapping to α , so that i_* is surjective.

Suppose 0 < n < d - 1. Suppose $\beta \in \pi_n(M \setminus Z, m_0)$ has the property that $i_*(\beta)$ is trivial. We will show that β is trivial. Let $f: S^n \to M \setminus Z$ be a smooth representative for β , and let $H'': D^{n+1} \to M$ be a continuous map restricting to $i \circ f$ on $S^n = \partial D^{n+1} - H''$ exists because $i_*(\beta)$ is trivial. By using the Whitney Approximation Theorem, 1.4, we may replace H'' by a smooth map H', again restricting to $i \circ f$ on ∂D^{n+1} . Then by using Theorem 1.10, with $N = D^{n+1}$ and $C = \partial N = S^N$, we may replace H' by a homotopic smooth map $H: D^{n+1} \to M$ such that $H|_{\partial D^{n+1}} = i \circ f$ and such that H is transverse to Z. By a dimension-counting argument and Lemma 1.9, we know that $\operatorname{im}(H) \cap Z = \emptyset$ since n < d - 1. The map H has image in $M \setminus Z$, and is a contraction of f to a constant map in $M \setminus Z$. Since H exists, β is trivial.

The argument to show that $\pi_0(M \setminus Z, m_0) \to \pi_0(M, m_0)$ is injective is similar. Suppose $x, y \in M \setminus Z$ are two points that lie in the same component of M. Then there is a path $\gamma'': I \to M$ from x to y, and using Theorem 1.4, we may replace γ' by a smooth path γ' from x to y. Then using Theorem 1.10 with N = I, and $C = \partial I$, we may replace γ' by a smooth path γ from x to y that meets Z transversely. Provided d > 1, this means Z does not meet γ at all, as required.

Remark 1.12. The map *i* of the Theorem is said to be (d-1)-connected.

1.4. Application to complex varieties.

Proposition 1.13. Suppose V is a smooth connected complex variety and Z is a subvariety of (complex) codimension d. Then the inclusion $i: V \setminus Z \to V$ is (2d-1)-connected.

Proof. We may stratify Z into smooth strata of weakly increasing dimensions, and so by an induction argument, it is sufficient to treat the case where $Z \subseteq M$ is a smooth closed subvariety, i.e., a complex-codimension-d smoothly embedded submanifold. The result now follows from Theorem 1.11.

Corollary 1.14. Suppose Z is a subvariety of $\mathbb{A}^N_{\mathbb{C}}$ of codimension d > 0. Let $x_0 \in \mathbb{A}^N_{\mathbb{C}} \setminus Z$ be a basepoint. Then $\pi_n(\mathbb{A}^N_{\mathbb{C}} \setminus Z, x_0)$ is trivial for $n \leq 2d - 2$.

Notation 1.15. One says that $\mathbb{A}^N_{\mathbb{C}} \setminus Z$ is (2d-2)-connected.

1.5. **Precision of the bound.** If M is a manifold, Z is a closed submanifold and $m_0 \in M \setminus Z$, then there is a long exact sequence of relative homotopy groups (or pointed sets at the right-hand end of the sequence):

$$\cdots \to \pi_i(M \setminus Z, m_0) \to \pi_i(M, m_0) \to \pi_i(M, M \setminus Z) \to \pi_{i-1}(M \setminus Z, m_0) \to \pi_{i-1}(M, m_0) \to \cdots$$

See [Whi12, IV, Thm 2.4] for the general theory.

Proposition 1.16. Suppose M is a manifold and Z is a connected closed submanifold of codimension $d \ge 1$, and that $m_0 \in M \setminus Z$ is a basepoint. Then at least one of the two maps (induced by the inclusion)

$$\pi_d(M \setminus Z, m_0) \to \pi_d(M, m_0), \quad \pi_{d-1}(M \setminus Z, m_0) \to \pi_{d-1}(M, m_0)$$

is not an isomorphism.

Proof. Let $N \subset M$ be a tubular neighbourhood of Z, the existence of which is proved in [Hir76, Thm 6.2]). In particular:

- N is an open submanifold of M and Z is a closed submanifold of N.
- Z is a deformation retract of N. Let us write $p: N \to Z$ for the retraction map.
- The map $p: N \to Z$ is isomorphic to the structure map $E \to Z$ where E is the normal bundle of Z in M.

There is an excision isomorphism:

$$\mathrm{H}_*(M, M \setminus Z; \mathbb{F}_2) \cong \mathrm{H}_*(N, N \setminus Z; \mathbb{F}_2)$$

The Thom isomorphism theorem gives us: $H_*(N, N \setminus Z; \mathbb{F}_2) \cong H_{*-d}(Z; \mathbb{F}_2)$ (see [Dol95, VIII, 7.15]). Therefore

$$\operatorname{H}_{i}(M, M \setminus Z; \mathbb{F}_{2}) = 0 \text{ if } i < d \text{ and } \operatorname{H}_{d}(M, M \setminus Z; \mathbb{F}_{2}) \not\cong 0.$$

The universal coefficients theorem for homology implies that

 $\mathrm{H}_d(M, M \setminus Z; \mathbb{F}_2) \cong \mathbb{F}_2 \otimes_{\mathbb{Z}} \mathrm{H}_d(M, M \setminus Z; \mathbb{Z})$

and therefore that $H_d(M, M \setminus Z; \mathbb{Z}) \not\cong 0$.

Theorem 1.11 and the long exact sequence (1) imply that the relative homotopy groups $\pi_i(M, M \setminus Z)$ all vanish when i < d - 1. The relative version of the Hurewicz theorem [Whi12, IV, Thm 7.2] tells us that $H_d(M, M \setminus Z; \mathbb{Z})$ is a quotient of $\pi_d(M, M \setminus Z)$ by an action of $\pi_1(M \setminus Z, m_0)$. In particular, $\pi_d(M, M \setminus Z)$ is not 0. The result now follows from the long exact sequence (1).

Example 1.17. For all positive integers d, the examples of Z = pt and $M = S^d$ and Z = ptand $M = \mathbb{R}^d$ show that either of the two maps in Proposition 1.16 may be an isomorphism, at the expense of the other.

References

- [BT82] Raoul Bott and Loring W. Tu, Differential Forms in Algebraic Topology, Springer New York, 1982. $\uparrow 1$
- [Dol95] A. Dold, Lectures on algebraic topology, Classics in Mathematics, Springer, 1995. ↑4
- [Ful07] William Fulton, Equivariant Cohomology in Algebraic Geometry, 2007. $\uparrow 1$
- [GP10] Victor Guillemin and Alan Pollack, Differential topology, AMS Chelsea Pub, 2010. $\uparrow \!\! 3$
- [Hir76] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33., Springer-Verlag, New York, 1976 (English). ↑4
- [Lee12] John M. Lee, Introduction to Smooth Manifolds, Second, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2012. [↑]1, 2
- [Whi12] George W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics Ser., vol. 61, Springer, 2012. ↑4, 5

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER BC, CANADA *Email address*: tbjw@math.ubc.ca