
CONNECTIVITY OF MANIFOLD COMPLEMENTS

BEN WILLIAMS

Abstract. It is well known that if M is a connected smooth manifold with a basepoint
m0, then the homotopy groups πi(M,m0) may be defined using only smooth maps from
spheres and smooth homotopies between them. It is also a well-known fact that if M is a
smooth manifold and Z is a codimension-d submanifold, then the inclusion M \ Z → M
is d− 1-connected. Proofs of these two results are given.

1. Introduction

The purpose of this note is to prove Theorems 1.7 and 1.11. The first says that the
homotopy groups of a manifold may equally well be calculated using continuous maps and
homotopies or smooth maps and homotopies. The second says that if M is a manifold and
Z a closed submanifold of codimension d, then the inclusion M \Z → M is d−1-connected.
The manifolds in question are smooth separable real manifolds without boundary, but they
are not assumed to be compact.

These two results are folklore. The first result is mentioned in [BT82], but I have not
seen it proved in detail. I do not believe a proof of the second result appears in the
peer-reviewed literature, although a proof is sketched in the notes of [Ful07, Appendix A,
Proposition 4.1], attributed to D. Speyer. The proof of 1.11 in this note is modelled on the
proof there.

Throughout, the term smooth manifold means a smooth separable manifold without
boundary. The term smooth manifold with boundary means a smooth separable manifold
with a possibly empty boundary. In general, we do not require our manifolds to be con-
nected, and when we say that Z is of codimension d in M , we mean that the minimal
codimension of a connected component of Zi in M is d.

1.1. Smooth homotopy groups.

Definition 1.1. Suppose f, g : N → M are two smooth maps between smooth manifolds.
A smooth homotopy from f to g is a map H : N × I → M restricting to f (resp. g) at 0
(resp. 1) and such that H extends to a smooth map of some open neighbourhood of N × I
in N × R.

Lemma 1.2. Smooth homotopy is an equivalence relation on smooth maps N → M .

This is [Lee12, Lemma 6.28].
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Lemma 1.3. Suppose f, g : N → M are two smooth maps that are homotopic relative to
some closed A ⊆ N (note that A may be empty). Then f and g are smoothly homotopic
relative to A.

This is [Lee12, Theorem 6.29].

Theorem 1.4 (Whitney Approximation Theorem). Suppose f : N → M is a continuous
function where the source is a smooth manifold with boundary and the target is a smooth
manifold. Suppose A ⊆ N is a closed subset such that f |A is smooth. Then f is homotopic
relative to A to a smooth map f̄ : N → M .

This is [Lee12, Theorem 6.26].

Corollary 1.5 (Extension Lemma). Suppose N is a smooth manifold with boundary, M a
smooth manifold without boundary, A ⊆ N a closed subset and f : A → M a smooth map.
Then f has a smooth extension to N if and only if it has a continuous extension to N .

This is [Lee12, Corollary 6.27].

Definition 1.6. Let M be a smooth manifold with basepoint m0. For any integer n ≥
0, let πsmooth

n (M,m0) denote the smooth homotopy classes of basepoint-preserving maps
Sn → M .

There is a natural transformation πsmooth
n (M,m0) → πn(M,m0) between functors de-

fined on the category of smooth manifolds with basepoints, taking values in the category
of pointed sets (when n = 0) or groups (when n = 1) or abelian groups (n ≥ 2).

Theorem 1.7. The natural transformation πsmooth
n (M,m0) → πn(M,m0) is an isomor-

phism.

Proof. The set πsmooth
n (M,m0) is functorial for smooth basepoint-preserving maps M →

M ′. There is a natural map πsmooth
n → πn. By Lemma 1.3, this natural map is injective

and by Theorem 1.4 it is surjective. □

1.2. Transversality. The following definition is taken from [Lee12, p. 143].

Definition 1.8. If F : N → M is a smooth map and Z ⊆ M is an embedded submanifold,
we say that F is transverse to S if for every x ∈ F−1(Z), the spaces TF (x)(Z) and dFx(TxN)
together span TF (x)(M).

We use only the most primitive consequence of transversality in this note:

Lemma 1.9. Suppose N and M are smooth manifolds of dimensions n and m respectively,
and Z ⊆ M is a smooth submanifold of dimension z. Suppose F : N → M is a smooth
map that is transverse to Z. Suppose m > n+ z. Then F (N) ∩ Z = ∅.

Proof. Suppose for the sake of contradiction that we can find x ∈ F−1(Z). Then TF (x)(Z)
has dimension z and dFx(TxN) has dimension no greater than n. In particular

m = dimR TF (x)M = dimR(TF (x)(Z) + dFx(TxN)) ≤ z + n < m,

a contradiction. □
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Theorem 1.10 (Extension Theorem). Let N be a smooth manifold with boundary and M
a smooth manifold. Suppose Z is a closed submanifold of M . Suppose C is a closed subset
of N , and suppose f : N → M is a smooth map such that f |C is transverse to Z and
∂f |C∩∂N is transverse to Z. Then there exists a smooth map g : N → M , homotopic to f ,
such that g is transverse to Z and ∂g is transverse to Z, and such that on a neighbourhood
of C, the map g agrees with f .

This is the “Extension Theorem” on [GP10, p. 72].

1.3. Dimension and connectivity.

Theorem 1.11. Let M be a smooth manifold of dimension m and let Z be an embedded
smooth submanifold of codimension d. Let m0 ∈ M \Z be a basepoint. Let i : M \Z → M
denote the inclusion. Then

i∗ : πn(M \ Z,m0) → πn(M,m0)

is surjective when n = d− 1 and an isomorphism when n < d− 1.

Proof. By Theorem 1.7, the sets πn(M,m0) and πn(M \ Z,m0) admit a description as
the set of equivalence classes of smooth basepoint-preserving maps Sn → M under the
equivalence relation of smooth, basepoint-preserving homotopy.

Suppose n ≤ d − 1. Let α ∈ πn(M,m0) be a class, represented by a smooth map
f : Sn → M . Using Theorem 1.10 with N = Sn and the basepoint of Sn as C, we may
suppose f is transverse to Z, which by counting dimensions and Lemma 1.9 implies that
im(f) is disjoint from Z. The homotopy class of f : Sn → M \ Z gives us a representative
for ᾱ ∈ πn(M \ Z,m0) mapping to α, so that i∗ is surjective.

Suppose 0 < n < d − 1. Suppose β ∈ πn(M \ Z,m0) has the property that i∗(β) is
trivial. We will show that β is trivial. Let f : Sn → M \ Z be a smooth representative for
β, and let H ′′ : Dn+1 → M be a continuous map restricting to i ◦ f on Sn = ∂Dn+1—H ′′

exists because i∗(β) is trivial. By using the Whitney Approximation Theorem, 1.4, we
may replace H ′′ by a smooth map H ′, again restricting to i ◦ f on ∂Dn+1. Then by using
Theorem 1.10, with N = Dn+1 and C = ∂N = SN , we may replace H ′ by a homotopic
smooth map H : Dn+1 → M such that H|∂Dn+1 = i ◦ f and such that H is transverse to
Z. By a dimension-counting argument and Lemma 1.9, we know that im(H)∩Z = ∅ since
n < d − 1. The map H has image in M \ Z, and is a contraction of f to a constant map
in M \ Z. Since H exists, β is trivial.

The argument to show that π0(M \Z,m0) → π0(M,m0) is injective is similar. Suppose
x, y ∈ M \ Z are two points that lie in the same component of M . Then there is a path
γ′′ : I → M from x to y, and using Theorem 1.4, we may replace γ′ by a smooth path γ′

from x to y. Then using Theorem 1.10 with N = I, and C = ∂I, we may replace γ′ by a
smooth path γ from x to y that meets Z transversely. Provided d > 1, this means Z does
not meet γ at all, as required. □

Remark 1.12. The map i of the Theorem is said to be (d− 1)-connected.
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1.4. Application to complex varieties.

Proposition 1.13. Suppose V is a smooth connected complex variety and Z is a subvariety
of (complex) codimension d. Then the inclusion i : V \ Z → V is (2d− 1)-connected.

Proof. We may stratify Z into smooth strata of weakly increasing dimensions, and so by
an induction argument, it is sufficient to treat the case where Z ⊆ M is a smooth closed
subvariety, i.e., a complex-codimension-d smoothly embedded submanifold. The result now
follows from Theorem 1.11. □

Corollary 1.14. Suppose Z is a subvariety of AN
C of codimension d > 0. Let x0 ∈ AN

C \Z
be a basepoint. Then πn(AN

C \ Z, x0) is trivial for n ≤ 2d− 2.

Notation 1.15. One says that AN
C \ Z is (2d− 2)-connected.

1.5. Precision of the bound. If M is a manifold, Z is a closed submanifold and m0 ∈
M \Z, then there is a long exact sequence of relative homotopy groups (or pointed sets at
the right-hand end of the sequence):
(1)
· · · → πi(M\Z,m0) → πi(M,m0) → πi(M,M\Z) → πi−1(M\Z,m0) → πi−1(M,m0) → · · · .
See [Whi12, IV, Thm 2.4] for the general theory.

Proposition 1.16. Suppose M is a manifold and Z is a connected closed submanifold of
codimension d ≥ 1, and that m0 ∈ M \Z is a basepoint. Then at least one of the two maps
(induced by the inclusion)

πd(M \ Z,m0) → πd(M,m0), πd−1(M \ Z,m0) → πd−1(M,m0)

is not an isomorphism.

Proof. Let N ⊂ M be a tubular neighbourhood of Z, the existence of which is proved in
[Hir76, Thm 6.2]). In particular:

• N is an open submanifold of M and Z is a closed submanifold of N .
• Z is a deformation retract of N . Let us write p : N → Z for the retraction map.
• The map p : N → Z is isomorphic to the structure map E → Z where E is the
normal bundle of Z in M .

There is an excision isomorphism:

H∗(M,M \ Z;F2) ∼= H∗(N,N \ Z;F2)

The Thom isomorphism theorem gives us: H∗(N,N \ Z;F2) ∼= H∗−d(Z;F2) (see [Dol95,
VIII, 7.15]). Therefore

Hi(M,M \ Z;F2) = 0 if i < d and Hd(M,M \ Z;F2) ̸∼= 0.

The universal coefficients theorem for homology implies that

Hd(M,M \ Z;F2) ∼= F2 ⊗Z Hd(M,M \ Z;Z)

and therefore that Hd(M,M \ Z;Z) ̸∼= 0.
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Theorem 1.11 and the long exact sequence (1) imply that the relative homotopy groups
πi(M,M \ Z) all vanish when i < d − 1. The relative version of the Hurewicz theorem
[Whi12, IV, Thm 7.2] tells us that Hd(M,M \ Z;Z) is a quotient of πd(M,M \ Z) by an
action of π1(M \Z,m0). In particular, πd(M,M \Z) is not 0. The result now follows from
the long exact sequence (1). □

Example 1.17. For all positive integers d, the examples of Z = pt and M = Sd and Z = pt
and M = Rd show that either of the two maps in Proposition 1.16 may be an isomorphism,
at the expense of the other.

References

[BT82] Raoul Bott and Loring W. Tu, Differential Forms in Algebraic Topology, Springer New York, 1982.
↑1

[Dol95] A. Dold, Lectures on algebraic topology, Classics in Mathematics, Springer, 1995. ↑4
[Ful07] William Fulton, Equivariant Cohomology in Algebraic Geometry, 2007. ↑1
[GP10] Victor Guillemin and Alan Pollack, Differential topology, AMS Chelsea Pub, 2010. ↑3
[Hir76] Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33., Springer-Verlag,

New York, 1976 (English). ↑4
[Lee12] John M. Lee, Introduction to Smooth Manifolds, Second, Graduate Texts in Mathematics, vol. 218,

Springer-Verlag, New York, 2012. ↑1, 2
[Whi12] George W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics Ser.,

vol. 61, Springer, 2012. ↑4, 5

Department of Mathematics, University of British Columbia, Vancouver BC, Canada
Email address: tbjw@math.ubc.ca


	1. Introduction
	1.1. Smooth homotopy groups
	1.2. Transversality
	1.3. Dimension and connectivity
	1.4. Application to complex varieties
	1.5. Precision of the bound

	References

