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Global Questions for Map Evolution Equations
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Abstract. Just as the harmonic map equation is a geometric analogue of
the classical Laplace equation for harmonic functions, so the classical linear
evolution PDEs, the heat, wave, and Schrödinger equations, have geometric
“map” analogues: the harmonic map heat-flow, wave map, and Schrödinger
map equations. These equations are nonlinear when the target space geometry
is nontrivial. Quite remarkably, these equations are all of physical (as well as
mathematical) interest, at least when the target space is a 2-sphere, arising
variously in the study of ferromagnets (and anti-ferromagnets), liquid crystals,
and general relativity. In this article we review some recent results for map
evolution equations (focusing on the Landau –Lifshitz family of equations,
which includes as special cases the heat-flow and Schrödinger map) concerning
the basic global questions: singularity formation vs. global regularity, and
long-time asymptotics.

1. Introduction

Let us begin with the harmonic map equation. From the outset, in order to
streamline the presentation and make the analysis more concrete, we fix a specific
choice of domain and target manifold for our maps:

u : Rn → S2,

mostly n = 2. We realize S2 as the unit sphere in R3:

S2 := {u = (u1, u2, u2) ∈ R3 | |u| = 1} ⊂ R3.

(Notation. 3-vectors will be bold-faced throughout.) Harmonic maps are critical
points of the Dirichlet energy functional

E(u) :=
1
2

∫

Rn

|∇u|2 dx =
1
2

∫

Rn

n∑

j=1

3∑

k=1

∣∣∣∣
∂uk

∂xj

∣∣∣∣
2

dx,

and so (if regular) solve the corresponding Euler – Lagrange equation

(HM) 0 = −E′(u) = Pu∆u = ∆u + |∇u|2u
where Pu denotes the orthogonal projection from R3 onto the tangent plane

TuS2 := {ξ ∈ R3 | ξ · u = 0}
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to S2 at u. Equation (HM) is the equation for harmonic maps between Rn and S2.
It generalizes Laplace’s equation to maps.

1.1. Map evolution equations. Now we let our maps vary with time as
well, so that for each time t ≥ 0,

u(·, t) : Rn → S2,

or equivalently

u(x, t) =
(
u1(x, t), u2(x, t), u3(x, t)

) ∈ R3 with pointwise constraint |u(x, t)| ≡ 1.

Harmonic map heat-flow. Harmonic maps (between general Riemannian man-
ifolds) have for many years been of interest to differential geometers, and in order
to study them, [8] introduced the gradient-flow equations for the energy E, the
harmonic map heat flow equations ∂u/∂t = −E′(u), which in our setting read

(HMHF)
∂u
∂t

= ∆u + |∇u|2u
The harmonic map heat flow generalizes the linear heat equation to maps.

Landau –Lifshitz equations. Physically, equation (HMHF) is the special case
b = 0 of the Landau –Lifshitz (sometimes Landau –Lifshitz –Gilbert) equations
modeling dynamics in ferromagnets:

(LL)
∂u
∂t

= a(∆u + |∇u|2u) + bu×∆u

with a ≥ 0, b ∈ R, and where × denotes the usual cross-product in R3. In fact equa-
tion (LL) itself is a special case of a more general equation incorporating additional
physical effects such as anisotropy, and demagnetization (see, e.g., [17, 19]).

Schrödinger maps. The opposite limiting case (a = 0, i.e., no dissipation) of
(LL), can be written

(SM)
∂u
∂t

= u×∆u = −JuE′(u)

where the operator
Ju := u× : TuS2 → TuS2

Table 1

Linear Geometric Main
u : Rn → R (C) u : Rn → S2 ⊂ R3 Application

Laplace harmonic map geometry
∆u = 0 ∆u = −|∇u|2u

heat h.m. heat-flow geometry,
∂u

∂t
= ∆u

∂u

∂t
= ∆u + |∇u|2u ferromagnets

wave wave map relativity
∂2u

∂t2
= ∆u

∂2u

∂t2
= ∆u +

(
|∇u|2 −

∣∣∣∣
∂u

∂t

∣∣∣∣
2)

u

Schrödinger Schrödinger map ferromagnets
∂u

∂t
= i∆u

∂u

∂t
= u×∆u
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gives a rotation through π/2 on the tangent plane TuS2, and so endows S2 with
a complex structure. Thus equation (SM) can immediately be written for general
maps from Riemannian manifolds into Kähler manifolds (see, e.g., [6, 10,28]).

Since it generalizes the linear Schrödinger equation to maps, (SM) is known as
the Schrödinger map (sometimes Schrödinger flow) equation.

Wave maps. Finally, the wave map equation is Pu(∂2u/∂t2 + ∆u) = 0, which
in our setting is

(WM)
(

∂2

∂t2
−∆

)
u +

(∣∣∣∣
∂u
∂t

∣∣∣∣
2

− |∇u|2
)
u = 0,

generalizes the linear wave equation to maps. It is has been studied as a toy
model in particle physics (“nonlinear σ-model”), but its main interest, aside from
the inherent mathematical one, is in general relativity, where it is studied as a
(comparatively simple) model for understanding singularity formation (for some
background, see, e.g., [23, 24]).

1.2. The energy landscape and equivariant symmetry. The energy E(u)
plays a central role in all of our analysis. We begin by observing that the energy
behaves well under the various dynamics introduced above.

Energy identity. Formally taking the dot product of (LL) with E′(u) = −∆u−
|∇u|2u ∈ TuS2 and integrating in space and time yields the basic energy identity

(1.1) E
(
u(t)

)
+ a

∫ t

0

∫

Rn

|∆u + |∇u|2u|2 dxdt = E
(
u(0)

)
.

For (SM) (a = 0) this means energy conservation, while for a > 0 (including the
(HMHF) case b = 0), energy is nonincreasing. A conserved Hamiltonian functional
for (WM) is obtained by adding 1

2

∫
Rn |∂u/∂t|2 dx to E(u).

Two space dimensions is energy critical. The energy scales as

E
(
u(·)) = s2−nE

(
u(·/s)

)

for s > 0, which makes the space dimension n = 2 “energy critical.” This has
important consequences (see below) and in particular leads to the intuition that
n = 2 should be a borderline case for the formation of singularities for our map
dynamics. So n = 2 turns out to be particularly interesting mathematically (and
of course n = 2 and n = 3 are physically the most interesting space dimensions).
For these reasons, we specialize to n = 2 from here on in.

Equivariant symmetry. Since the analysis of our flow equations is a big chal-
lenge, a good starting point is to assume some symmetry. Fix an integer m ∈ Z.
By an m-equivariant map u : R2 → S2 ⊂ R3, we mean a map of the form

u(r, θ) = emθR v(r)

where (r, θ) are polar coordinates on R2, v : [0,∞) → S2, and R is the matrix
generating rotations around the u3-axis:

R =




0 −1 0
1 0 0
0 0 0


 , eαR =




cos α − sin α 0
sin α cosα 0

0 0 1


 .

Radial maps arise as the case m = 0, and we may always assume m ≥ 0 (a
trivial transformation flips the sign of m). m-equivariance is preserved by all of the
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evolution equations considered above. A subclass of m-equivariant maps are those
of the form

(1.2) u(r, θ) =
(
cosmθ sin φ(r), sin mθ sin φ(r), cosφ(r)

)

which depend on a single radial function φ(r). This subclass is preserved by
(HMHF) and (WM), and is much used in the corresponding literature, since the
map equation reduces to a scalar PDE for φ(r, t) (which allows ready use of the
maximum principle in the (HMHF) case, for example). This subclass is notably
not preserved by (LL) or (SM), just as the wave and heat equations preserve real
functions, while the Schrödinger equation (or a heat-Schrödinger mix) does not.
We will work in the m-equivariant class for most of what follows.

Topological lower bound on energy. There is a well-known energy lower bound

E(u) ≥ 4π|deg(u)|
where deg(u) is the degree of the map u, considered (compactifying the domain R2

via stereographic projection) as a map from S2 to itself (defined, for example, by
integrating the pullback by u of the volume form on S2).

This bound is particularly easy to understand when u is an m-equivariant map,
so that

E(u) = π

∫ ∞

0

(∣∣∣∣
∂v
∂r

∣∣∣∣
2

+
m2

r2
(v2

1 + v2
2)

)
r dr.

If E(u) < ∞, then v(r) is continuous, and the limits limr→0 v(r) and limr→∞ v(r)
exist (see [12]), and so we must have v(0),v(∞) = ±k̂, where k̂ = (0, 0, 1). Without
loss of generality we fix v(0) = −k̂. The two cases v(∞) = ±k̂ then correspond to
different topological classes of maps. We denote by Σm the class of m-equivariant
maps with v(∞) = k̂:

Σm =
{
u : R2 → S2 | u = emθRv(r),E(u) < ∞,v(0) = −k̂,v(∞) = k̂

}
.

For u ∈ Σm, the energy E(u) can be rewritten by “completing the square”:

E(u) = π

∫ ∞

0

(∣∣∣∣
∂v
∂r

∣∣∣∣
2

+
m2

r2
|JvRv|2

)
r dr = π

∫ ∞

0

∣∣∣∣
∂v
∂r

− |m|
r

JvRv
∣∣∣∣
2

r dr + Emin

(recall Jv := v × ) with

Emin = 2π

∫ ∞

0

vr · |m|
r

JvRv r dr = 2π|m|
∫ ∞

0

(v3)r dr = 4π|m|.

Thus we arrive at
u ∈ Σm =⇒ E(u) ≥ 4π|m|.

Harmonic maps. This topological lower bound is clearly saturated if and only
if

(1.3)
∂v
∂r

=
|m|
r

JvRv,

and the minimal energy is attained precisely an explicit two-parameter family of
harmonic maps:

(1.4) Om :=
{
e(mθ+α)Rh(r/s) | s > 0, α ∈ R}
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where

(1.5) h(r) =




h1(r)
0

h3(r)


 , h1(r) =

2
r|m| + r−|m|

, h3(r) =
r|m| − r−|m|

r|m| + r−|m|
.

The rotation parameter α is determined only up to shifts of 2π (i.e., really α ∈ S1).
Note that Om is just the orbit of the harmonic map emθRh(r) under the symmetries
of the energy E which preserve equivariance: scaling and rotation. Of course,
these harmonic maps are each static solutions of all of the map evolution equations
introduced above.

This phenomenon— attainment of the minimal energy at solutions of a first-
order PDE, is not special to equivariant maps, it occurs in general, amounting (after
stereographically projecting S2 to the complex plane C) to the Cauchy – Riemann
equations for meromorphic (or anti-meromorphic) functions. This is another reason
that n = 2 is so interesting: the harmonic map problem has a beautiful structure,
and a wealth of explicit solutions.

1.3. A little recent history. Here we describe some of the important results
for the various map dynamics described above, continuing to focus on maps from
R2 to S2. We do not attempt to be exhaustive, but rather to point out a few
highlights relevant for our discussion.

Harmonic map heat-flow. Of the map evolution problems we are considering,
(HMHF) has been studied the longest, and is certainly the best understood. The
energy space theory goes back (at least for compact 2-dimensional domains) to [25],
where global weak solutions are constructed, with at most finitely many singular
space-time points where nonconstant harmonic maps “separate.” The small energy
solutions are global. Working in the subclass (1.2) with m = 1, and on a disk, [4]
showed that, indeed, finite time blow-up does occur in some solutions. An inter-
esting question, which was studied via formal asymptotics in [29], and addressed
rigorously in [11] and in the next section, is the relation between the possibility of
singularity formation, and the degree m.

Landau –Lifshitz equation. Once the Schrödinger-type term (b 6= 0) in included
in (LL), our understanding diminishes considerably. Though the problem is still
dissipative, maximum principle-type arguments are not readily applied, and even
partial regularity results become more difficult and weaker (see, e.g., [16] and ref-
erences therein). Singularity formation is an open question, partly because the
class (1.2) is no longer preserved. Indeed, the (HMHF) blow-up may not provide a
reliable guide for the (LL) problem.

Schrödinger maps. In the absence of dissipation (a = 0), the analysis becomes
still more difficult. Even the local theory is just beginning to be understood. In
fact, despite a great deal of recent work on the local well-posedness problem in two
space dimensions ([1, 7, 14, 21, 26]; see also [15, 22] for the “modified Schrödinger
map” case), there is no general local result for energy space data. For the class of
data we consider in the next section, m-equivariant solutions with energy near the
minimal energy 2π|m|, an energy-space local well-posedness result is given in [13].
It is worth remarking that the existence time furnished by this theorem depends
not on the energy (reflecting the energy-space critical nature of the equation in
dimension n = 2), but rather on more refined information about the initial data:
the “length scale” of the Ḣ1-nearest harmonic map (see [13] for details).
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Very few global results are known. We single out the result of [5] showing
that small energy, equivariant solutions are globally regular. The global results
of [12,13] we describe in the next section can be thought of as analogues of the [5]
result for large energy, where the problem is considerably enriched by the presence
of the harmonic map family.

Wave maps. Wave maps have received more attention, for a longer time than
have Schrödinger maps. There is a large literature, especially concerning local
questions, which we will not attempt to summarize here (see, e.g., [24] for some
background). Because of the close connection with the R2 → S2 Schrödinger map
problem we are focusing on, we mention only that the possibility of finite-time
blow-up for the energy-space critical (n = 2) wave maps was established only quite
recently, first in [23] for higher degree equivariant maps, and then in [18] for degree
m = 1. The former result is quite analogous to the Schrödinger map result of [13]
which we will describe in the next section, though this is in fact a no blow-up result.
The essential difference is that the wave map problem allows specification of initial
momentum, which makes singularity formation easier to force.

2. Global results for Landau – Lifshitz and Schrödinger maps

Here we state some recent results concerning the question of global regularity
vs. singularity formation for the Landau – Lifshitz (LL) family of equations

(LL)
∂u
∂t

= a(∆u + |∇u|2u) + bu×∆u, u(x, 0) = u0(x)

(a ≥ 0, b ∈ R) which of course includes as special cases the harmonic map heat-flow
(a = 1, b = 0) and the Schrödinger map (a = 0, b = 1). This is mostly work from
the papers [12, 13] which address the Schrödinger case, and the paper [11] which
addresses the heat-flow case.

The results concern m-equivariant maps with energy near the minimal energy
Emin = 4π|m| (the harmonic map energy), and so the standing assumption on the
initial data is

u0 ∈ Σm, E(u0) = 4π|m|+ δ2
0 , δ0 ¿ 1.

Let
u(t) ∈ C([0, T ); Σm)

(Σm topologized with the energy (Ḣ1) norm) be the solution of (LL) corresponding
to the initial data u0 (which is a priori just a local-in-time solution— see [13] for
local well-posedness for this class of data).

Theorem 2.1 ([12] “orbital stability” of harmonic maps). For δ0 suffi-
ciently small, there exist s(t) ∈ C([0, T ); (0,∞)

)
and α(t) ∈ C([0, T );R) so that

(2.1)
∥∥u(x, t)− e(mθ+α(t))Rh

(
r/s(t)

)∥∥
Ḣ1(R2)

. δ0, ∀t ∈ [0, T ).

Moreover, suppose T < ∞. Then T is the maximal existence time (u(t) doesn’t
extend past T as a solution continuous into Σm) if and only if

(2.2) lim inf
t→T−

s(t) = 0.

This theorem can be viewed, on one hand, as an orbital stability result for the
family Om of harmonic maps (at least up to the possible blow-up time), and on the
other hand as a characterization of blow-up for energy near Emin: solutions blow-up
if and only if the “length-scale” s(t) goes to zero.
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The first statement of the theorem is really a kind of convexity result for the
energy functional— the only property of the dynamics that is needed is the nonin-
crease of the energy, as follows from the energy identity (1.1). The details can be
found in [12]

The second statement comes from the energy-space local existence theory —
see [13].

Of course this theorem leaves open the question of whether or not finite-time
singularities can form. The next result shows that when the degree is sufficiently
high, singularities will not form, and moreover, solutions converge to specific har-
monic maps as t →∞.

Theorem 2.2 ([11, 13] global regularity and asymptotic stability for
high degree). For (LL) with a > 0, assume |m| ≥ 3. For (SM) (a = 0), assume
|m| ≥ 4. As before, δ0 is sufficiently small. Then

(1) there is no finite-time blow-up: the solution can be extended to u ∈ C([0,∞); Σm).
(2) For any r ∈ (2,∞], p ∈ [2,∞) with 1/r + 1/p = 1

2 , we have
∥∥∇[

u(x, t)− e(mθ+α(t))Rh
(
r/s(t)

)]∥∥
Lr

t Lp
x(R2×[0,∞))

. Cpδ0

(if a > 0 we may include (r, p) = (2,∞))
(3) furthermore, there exist s+ > 0 and α+ with

s(t) → s+, α(t) → α+, as t →∞.

The space-time estimates above imply asymptotic convergence of the solutions
to the family of harmonic maps (in a space-time norm (“dispersive”) sense, which is
the best we can expect for the Schrödinger case a = 0). Hence we say the harmonic
maps are asymptotically stable under the Landau – Lifshitz flow for |m| ≥ 3 (|m| ≥ 4
for (SM)).

The question of blow-up for lower degree maps is unresolved, except in the pure
heat-flow case. There we have

Theorem 2.3 ([11] heatflow blow-up for m = 1). Let m = 1. For any
δ > 0, there exists u0 ∈ Σ1 with 0 < E(u0) − 4π ≤ δ2 such that the corresponding
solution of the harmonic map heat flow blows up in finite time, in the sense that
(for example) ‖∇u(·, t)‖L∞x →∞.

This result is an adaptation of the blow-up proof of [4] for a disk domain, to
the case of R2. In particular, it must be verified that the construction (based on
a subsolution argument) can be achieved for data with energy arbitrarily close to
the harmonic map energy. The reader is referred to [11] for details.

We will present a few of the central ideas of our approach— and in particular
of the proof of Theorem 2.2— in the next two sections.

3. The approach: two geometric coordinate systems

The framework is to write our maps u(x, t) using two essentially different “co-
ordinate systems” in the energy space of maps. The first decomposes a map into
a “nearby” harmonic map (finite-dimensional part), and a deviation from the har-
monic map family (infinite-dimensional part). This system is used to track the
time-varying parameters of the “nearest” harmonic map. The second coordinate
system— the “generalized Hasimoto transform” of [5] — involves a kind of projec-
tion which removes the harmonic map component, and produces an equation for
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which we can do the hard estimates showing the perturbation away from the har-
monic maps “decays” with time.

3.1. Splitting and orthogonality. We split u(x, t) = emθRv(r, t) ∈ Σm as
a harmonic map with time-varying parameters, plus a perturbation:

v(r, t) = eα(t)R[h(ρ) + ξ(ρ, t)], ρ :=
r

s(t)

The choice of the parameter paths s(t) and α(t) is important, and we will address
it later.

We further split the perturbation into tangent and normal components (to the
sphere at the harmonic map) using the explicit orthonormal basis of Th(ρ)S2

̂ :=




0
1
0


 , and Jh(ρ)̂ =



−h3(ρ)

0
h1(ρ)


 ,

ξ(ρ, t) = z1(ρ, t)̂ + z2(ρ, t)Jh(ρ)̂ + γ(ρ, t)h(ρ)

where the pointwise constraint |u(x, t)| ≡ 1 forces γ = O(|z|2) for |ξ| small. In this
way, the complex function

z(ρ, t) = z1(ρ, t) + iz2(ρ, t),

together with a choice of the parameters s(t) and α(t), gives a full description of
the original solution u(x, t) (provided |ξ| ≤ 1).

It can then be shown that if u(x, t) satisfies (LL), then z(ρ, t) satisfies a non-
linear equation of (in general) mixed heat-Schrödinger type, of the form

s2 ∂z

∂t
= −(a+ib)Hz +(s2α̇− im sṡ)h1 +F (ρ, t), H := −∂2

ρ −
1
ρ
∂ρ +

m2

ρ2
(1− 2h2

1),

where F denotes terms nonlinear in z, ṡ, and α̇.
We next address the question of how to choose s(t) and α(t). Supposing for a

moment that s(t) ≡ 1, α(t) ≡ 0, the linearized equation for z(ρ, t) is

∂tz = −(a + ib)Hz.

and

H = L∗0L0, L0 := ∂ρ +
m

ρ
h3 = h1∂ρ

1
h1

(the adjoint L∗0 is taken in the L2(ρ dρ) inner product). So in particular, kerH =
span{h1}, and the linearized equation admits the constant (in time) solution z(ρ, t)
≡ h1(ρ). Since we would like z(ρ, t) to have some decay in time, we must choose
s(t) and α(t) in such a way as to avoid such constant solutions. And since H
is self-adjoint in L2, the natural choice is to work in the subspace of functions z
satisfying

(3.1) (z, h1)L2 =
∫ ∞

0

z(ρ)h1(ρ)ρ dρ ≡ 0,

which is invariant under the linearized equation. We will see below that this choice
is good for several other reasons. Imposition of this condition will determine the
dynamics of s(t) and α(t). But there is an important drawback to this approach:
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neither z, nor h1, lies in L2 in general. The natural (energy) space for z is given
by the norm (see [12])

‖z‖2X :=
∫ ∞

0

{
|zρ|2 +

|z|2
ρ2

}
ρ dρ

and so the best we can do is

|(z, h1)L2 | =
∣∣∣∣
(

z

ρ
, ρh1

)

L2

∣∣∣∣ ≤ ‖z‖X‖ρh1‖L2 .

So to make sense of our orthogonality condition, we require

ρh1(ρ) =
2ρ

ρm + ρ−m
∈ L2(ρ,dρ),

which only holds if m ≥ 3. This is the main reason we cannot handle the small
|m| cases in Theorem 2.2. (The further restriction |m| > 3 for (SM) is needed for
different reasons, to be explained shortly.)

Differentiating the orthogonality condition with respect to t, and using the
equation for z, we arrive at a system of ODEs for s(t) and α(t), coupled to z(ρ, t).
A crucial aspect of our choice of orthogonality condition is that the linear terms
drop out, and ṡ and α̇ are quadratic in z:

(3.2) |sṡ|+ |s2α̇| .
∣∣(h1, F (ρ, t)

)∣∣
The objective then is to obtain estimates on z(ρ, t) which are L2 in time, which
will show ṡ and α̇ are integrable in time, and so s(t) and α(t) converge to limits as
t →∞.

3.2. Generalized Hasimoto transform. The equation for z(ρ, t), however,
is not suitable for obtaining estimates, for at least two reasons: (a) the orthogonality
condition has to be imposed to avoid nondecaying solutions, and (b) there are
nonlinear terms containing derivatives of z. Fortunately, there is a neat way around
these problems: the generalized Hasimoto transform of [5].

The Landau – Lifshitz equation (SM), written in terms of v(r, t), can be factored
as

∂v
∂t

= (a + bJv)[Dv
r +

1
r
− m

r
v3]W

where
W(r) := vr(r)− m

r
JvRv(r) ∈ Tv(r)S2

and
Dv

r := Pv(r)∂r

denotes the covariant derivative (with respect to r, along v).
Let e(r) ∈ Tv(r)S2 be a unit-length tangent field satisfying the “gauge condi-

tion” Dv
r e ≡ 0. Expressing W in the orthonormal frame {e, Jve},

W = q1e + q2J
ve,

it is not difficult to arrive at the following equation for the complex function
q(r, t) := q1(r, t) + iq2(r, t):

(3.3) qt = (a + ib)
(

∆r − 1
r2

(
(1−mv3)2 + mr(v3)r

))
q − iSq
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where the function S(r, t) arises as Dv
t e = SJve. The curvature relation

[Dr, Dt]e = −Re
[(

∂r +
1
r
− m

r
v3

)
q
(
q +

m

r
ν
)]

Jve,

where Pv(r)k̂ = k̂− v3v = ν1e + ν2J
ve, then leads to

S(r, t) = −1
2
Q(r, t) +

∫ ∞

r

1
τ

Q(τ, t) dτ, Q := |q|2 +
2m

r
Re(ν̄q).

So our equation resembles a cubic nonlinear heat-Schrödinger equation, keeping in
mind (a) there are nonlocal nonlinear terms, and (b) it is not self-contained: the
unknown map v(r, t) itself appears in several places (including through ν).

A key point is that

1 À E(u)− 4πm = 1
2‖W‖2L2 = π‖q‖2L2(r dr).

The transformation has “killed” the harmonic map component, leaving us with a
small L2-data problem for for the q equation (3.3), even though the map u is not a
small-energy map). What’s more, this equation is amenable to estimates.

3.3. Relating the two coordinate systems. Of course, it is useless (and
impossible) to obtain estimates for q(r, t), unless we can control z (and hence v) in
terms of q. This is certainly only possible if we have a supplementary condition such
as the orthogonality condition (3.1), since q ≡ 0 just means that v(r) = eαRh(r/s)
for some s, α).

We have: provided |m| ≥ 3 and (3.1) holds, and ‖z‖X ¿ 1 is sufficiently small,
(1) ‖zρ‖Lp + ‖z/ρ‖Lp . s1−2/p‖q‖Lp 2 ≤ p ≤ ∞
(2) if further |m| ≥ 4, then ‖zρ/ρ‖L2 + ‖z/ρ2‖L2 . s‖q/r‖L2 .

The proofs can be found in [13] (the p = ∞ case of the first statement was not
considered there, but it can be shown also to hold).

The second statement is the source of the extra restriction |m| ≥ 4 in the (SM)
case. The point is that we need ṡ and α̇ to be L1

t , and hence by (3.2) we need an
estimate on z which is L2

t . As we will see in the next section, we can estimate q in
L2

t L
∞
x if a > 0 (and so we may use the p = ∞ case of the first statement above),

but we don’t have this estimate when a = 0, and so must rely on q/|x| ∈ L2
t L

2
x,

forcing us to use the second statement above.

4. Linear evolution estimates with critical-decay potentials

So the remaining task is to obtain estimates for q(r, t) (including L2-in-time
estimates). The key here is to understand the linear part, obtained by substituting
h(r) for v(r, t) in the q equation (3.3), and dropping nonlinear terms, to arrive at

qt = (a + ib)
[
qrr − 1

r
qr − 1

r2
(1 + m2 − 2mh3)q

]
.

Thus we need space-time estimates for the linear evolution operator

e−(a+ib)tH , H = −∆ + V (|x|), V (r) =
1 + m2 − 2mh3(r)

r2

where a ≥ 0, b ∈ R. This turns out to be an interesting mathematical problem,
precisely because the 1/r2 behavior of the potential V (r) at the origin and at
infinity places it just beyond the reach (on the borderline, in fact) of the typical
perturbative arguments used to obtain estimates for such operators. Indeed, the
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question of estimates for such operators has quite recently been addressed: see [30]
for the purely diffusive case (b = 0), and [2, 3] for the purely conservative case
(a = 0). In both cases, the relevant results hold for space dimensions ≥ 3, because
of the lack of Hardy inequality in dimension 2. Our job, then is to recover 2-
dimensional versions of these estimates, exploiting our symmetry (equivariance)
assumption. We summarize the resulting estimates for L2 initial data:

Theorem 4.1. Let the exponent pairs (r, p) and (r̃, p̃) both satisfy the “admis-
sibility” condition 1/r + 1/p = 1

2 . The space-time estimates

‖e−t(a+ib)Hϕ‖Lr
t Lp

x
+ ‖

∫ t

0

e−(t−s)(a+ib)Hf(·, s) ds‖Lr
t Lp

x
. ‖ϕ‖L2 + ‖f‖

Lr̃′
t Lp̃′

x

hold in the following cases:
• pure heat (a > 0, b = 0) for general φ, f , excluding the endpoint case

r = r̃ = 2 (so p = p̃ = ∞), which is false in general— see the example of [27]
• mixed case (a > 0, b ∈ R) for φ(·) and f(·, t) radial, but including the

endpoint case r = r̃ = 2, provided m ≥ 2.
• pure Schrödinger case (a = 0, b 6= 0) holds for φ(·) and f(·, t) radial,

but not including the endpoint case r = r̃ = 2 (which is open), again provided
m ≥ 2.
In addition, for all cases, if m ≥ 2 and φ and f are radial, we also have weighted
L2 estimates. Denoting ‖g‖L2,±1 := ‖|x|±1g‖L2 :

‖e−t(a+ib)Hϕ‖L2
t L2,−1

x
. ‖ϕ‖L2

∥∥∥∥
∫ t

0

e−(t−s)(a+ib)Hf(·, s) ds

∥∥∥∥
L2

t L2,−1
x ∩Lr

t Lp
x

. min(‖f‖
Lr̃′

t Lp̃′
x

, ‖f‖L2
t L2,1

x
)

(excluding r = r̃ = 2 only if a = 0).

Remarks on the proofs of these estimates. The goal is to estimate w(x, t),
a solution of the linear inhomogeneous initial value problem

wt + (a + ib)Hu = f, w(x, 0) = ϕ(x).

• L2 contraction for any a ≥ 0. We begin with this trivial observation,
using V ≥ 0. Multiply the equation for w by w, take the real part, integrate in
space and time, and use the Hölder inequality to produce the basic L2 estimate:

‖w‖L∞t L2
x

. ‖ϕ‖L2 + ‖f‖L1
t L2

x
.

• Estimates for a > 0, radial data, and m ≥ 2. These estimates are the
easiest, coming as they do directly from “energy estimates.” First, to compensate
for the lack of Hardy inequality in dimension 2, change the function:

w̃(x, t) := eiiθw(r, t)

so that
|wr|2 + |w

r
|2 = |∇w̃|2,

where now w̃(x, t) solves

w̃t + (a + ib)(−∆ + Ṽ )w̃, w̃(x, 0) = eiθϕ(r),

and the key fact is that the “new” potential satisfies

r2Ṽ (r) = m2 − 2mh3(r) ≥ m2 − 2m ≥ 0 for m ≥ 2.
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To get an L∞x estimate, we employ the simple embedding inequality

‖w‖L∞ . ‖wr‖1/2
L2 ‖w

r
‖1/2

L2

for radial functions, established in [12]. So now, as above, multiply the equation
by w̃, take the real part, integrate over space and time, and use a > 0 and Ṽ ≥ 0
to arrive at

‖w‖2
L∞t L2

x∩L2
t L2,−1

x ∩L∞t L2
x
≤ ‖∇w̃‖2L2

t L2
x

+ ‖w̃‖2L∞t L2
x

. ‖ϕ‖2L2 + ‖wf‖L1
t L1

x

which, by Hölder and interpolation yields all the desired estimates in this case
(radial data, a > 0, m ≥ 2).

• Estimates for b = 0. Not surprisingly, we obtain the finest estimates in
the “pure heat” case. The first step is to establish the time decay estimates

‖e−tHϕ‖Lp
x

. t−(1/a−1/p)/2‖ϕ‖La

for 1 ≤ a ≤ p ≤ ∞. This is done via the maximum principle, comparing with the
the heat flow et∆ for which these estimates follow immediately from the explicit
fundamental solution. A necessary preliminary step is to establish boundedness
of solutions via an embedding inequality ‖w‖L∞ . ‖Hw‖L2 + ‖w‖L2 . The second
step is to follow [9] in applying the Marcinkiewicz interpolation theorem to the time
decay estimates to generate the homogeneous space-time estimates

‖e−tHϕ‖Lr
t Lp ≤ C‖ϕ‖La

for 1/r = 1/a− 1/p′, r ≥ a > 1. Finally, the corresponding nonhomogeneous esti-
mates then follow from these, together with the the Hardy – Littlewood inequality.

• Estimates for a = 0. The “pure Schrödinger” case is the most delicate.
Here we adopt the approach from [2, 3], working with radial functions to compen-
sate for the lack of Hardy inequality in 2 dimensions. The idea is to first obtain
the weighted L2 estimates (in this context a “Kato smoothing” estimate) through a
resolvent estimate which itself comes directly from estimates on the relevant equa-
tion, and by exploiting the positivity and repulsivity of the potential. The various
other estimates can then be obtained by perturbative arguments from the reference
operator −∆ + 1/r2, provided m ≥ 2. We refer to [13] for details.

5. Conclusions and future directions

The map equations discussed in this article are of both physical and geometric
interest, and yet it is only very recently that the global behavior of solutions is
starting to be understood, and that only in very limited settings. Much work
remains to be done. We single out a few pressing directions of inquiry:

• Move beyond the equivariant setting. To now, global results (e.g.,
blow-up or asymptotic behavior) for energy-critical map problems are confined to
equivariant maps. It is important to remove this restrictive symmetry assumption,
especially for stability and asymptotic questions. Among other things, this requires
(1) understanding the energy landscape near the (now much larger) harmonic map
family outside the equivariant class (note that some of this analysis described above
is essentially one-dimensional in nature, and may not survive the removal of the
symmetry assumption); (2) adapting the “Hasimoto transform” used above, which
introduces “loss-of-regularity” problems.
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• Singularity formation in m = 1 Schrödinger maps. This is the most
obvious unanswered question. Blow-up arguments for the pure heat-flow with de-
gree m = 1 rely heavily on the maximum principle, unavailable for the Landau –
Lifshitz problem (with b 6= 0). On the other hand, the analysis described above
breaks down (in several ways) for m = 1, as indeed it should if blow-up is possible.

• The full physical model. The Landau – Lifshitz equation described above
is a “bare-bones” model, incorporating only the “exchange energy,” and (for a > 0)
dissipation. The question of how physically important effects such as anisotropy,
and demagnetization (a nonlocal term) affect solutions has hardly been touched.
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