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Satisfying Local Energy Estimates
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Abstract

This paper proves that Leray’s self-similar solutions of the three-dimensional
Navier-Stokes equations must be trivial under very general assumptions, for exam-
ple, if they satisfy local energy estimates.

1. Introduction

In 1934Leray [Le] raised the question of the existence of self-similar solutions
of the Navier-Stokes equations. For a long time, self-similar solutions had appeared
to be good candidates for constructing singular solutions of the Navier-Stokes
equations.Leray’s question was unanswered until 1995, whenNečas,Růžička,
& Šverák [NRS] showed, among other things, that the only self-similar solution
satisfying the global energy estimates is zero. Although they answeredLeray’s
original problem, some important questions were left open. For example, can a self-
similar solution satisfyinglocal energy estimates exist? The goal of this paper is to
show that the self-similar solutions must be zero under very general assumptions,
for example, if they satisfy the local energy estimates.

For the Navier-Stokes equations

ut − ν1u+ u · ∇u+ ∇p = 0

div u = 0

}
in R3 × (t1, t2)(1.1)

with ν > 0, Leray’s (backward) self-similar solutions are of the form

u(x, t) = λ(t) U (λ(t)x) , p(x, t) = λ2(t)P (λ(t)x) ,

with λ(t) = 1√
2a (T − t)

,
(1.2)
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wherea > 0,U(y) = (U1, U2, U3)(y) andP(y) are defined inR3. We also require
that certain natural energy norms ofu be finite. (Otherwise there exist nontrivial
solutions. See Remark 5.4.) The Navier-Stokes equations foru give the system

−ν1U + aU + a (y · ∇) U + (U · ∇) U + ∇P = 0

div U = 0

}
in R3(1.3)

for U . As suggested byLeray, a nonzeroU would produce a solutionu of (1.1)
with a singularity at(0, T ). This would give a counterexample to the open ques-
tion whether a solution of (1.1) satisfying natural energy estimates can develop a
singularity.

In addition to yielding particular singular solutions, the study of self-similar
solutions seems to be important also from a more general point of view. It is related
to the scaling property of (1.1), the fact that ifu (x, t) satisfies (1.1), then so do the
rescaled functions

ur (x, t) := ru
(
rx, r2 (t − T )+ T

)
for eachr > 0. If (0, T ) is a singular point, then the asymptotics of the singularity
is encoded in the behavior ofur as r → 0+. If ur converges to a limit̄u, the
limit ū must be self-similar, i.e.(ū)r = ū for all r > 0, which implies that̄u is of
the form (1.2). Of course, more complicated singularities may possibly exist. The
study of self-similar solutions has proved to be very useful in the investigations of
singularities of many equations with similar scaling properties, such as the harmonic
map heat flow, semilinear heat equations, and nonlinear Schrödinger equations; see
for example [Str1, GK, KL]. It is hoped that the study of (1.3) can shed some light
on the regularity question for the Navier-Stokes equations.

The known regularity criteria for Navier-Stokes equations (such as [Se; FJR;
vW, p 190; Gi; Str2; Ta; CF]) do not apply to self-similar singularities (unless certain
quantities are small). The main result of [NRS] is that the only weak solution of
(1.3) belonging toL3

(
R3

)
is U ≡ 0. Also see [MNPS] (who showed the same

conclusion under a stronger assumption, but without using results from [CKN]).
TheL3 integrability condition holds if the corresponding solutionu of the Navier-
Stokes equations satisfies theglobalenergy estimates∫

R3

1
2|u(x, t)|2dx +

∫ t

t1

∫
R3
ν|∇u(x, t)|2dxdt 5

∫
R3

1
2|u(x, t1)|2dx

for all t ∈ (t1, t2). On the other hand, if we only assume thelocal energy estimates

ess sup
t3<t<T

∫
B

1
2|u(x, t)|2dx +

∫ T

t3

∫
B

ν|∇u(x, t)|2 dx dt < ∞(1.4)

for some ballB and somet3 < T , then we only get estimates of some weighted
norms which do not imply thatU ∈ L3. (See Section 4 for more details.) There-
fore, [NRS] left open the existence of self-similar singularities which satisfy the
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local energy estimates. For example, a solution with the following decay was not
excluded:

U (y) = A

(
y

|y|
)

1

|y| + o

(
1

|y|
)

as y → ∞,(1.5)

whereA : S2 → R3 is smooth. At the same time, this seems to be a very natural
candidate for a self-similar singularity: the functionu given by (1.2)1 satisfies
the local energy estimates, andu(x, t) → uT (x) as t → T −, whereuT (x) =
A(x/|x|)/|x| is homogeneous of degree−1. We might speculate that after the
blowup timeT ,uwould become a forward (or defocusing) self-similar solution (the
existence of such solutions was studied in [GM, CP]), providing a rather nice interior
singularity. Very recently a solution of this type was constructed for the harmonic
map heat flow and other equations byAngenent, Ilmanen, & Velázquez
[AIV]. (To make an analogy between the Navier-Stokes equations and the harmonic
map heat flow, we should compare the velocity with the gradient of the solution of
the harmonic map heat flow.) In addition, as suggested in [CKN], the blowup rate
of a singularity ofu at (0, T ) is (at least in “parabolic average”)

|u(x, t)| = C

|x| + √
T − t

,(1.6)

which is satisfied by a solutionu given by (1.2) ifU has the decay (1.5).
In this paper we exclude the possibility of such self-similar singularities. In

fact, we prove

Theorem 1. If a weak solutionU of (1.3)belongs toLq
(
R3

)
, for someq ∈ (3,∞],

then it must be constant(and hence identically zero ifq < ∞).

Theorem 2. Supposeu is a weak solution of(1.1) satisfying the local energy es-
timates(1.4) in the cylinderQ1(0, T ) = B1(0) × (T − 1, T ). If u is of the form
(1.2)1, thenu is identically zero.

We refer the reader to Section 2 for the definitions of weak solutions. A particular
corollary of these results is that a weak solutionU of (1.3) with the decay (1.5)
must be zero.

Let us explain the main idea of the proof. We recall from [NRS] that the smooth
function

Π(y) = 1
2|U(y)|2 + P(y)+ ay · U(y)

satisfies

−ν1Π(y)+ (U(y)+ ay) · ∇Π(y) = −ν|Ω(y)|2 5 0,(1.7)

whereΩ = curlU . (HenceΠ satisfies the maximal principle.) One of the crucial
steps in [NRS] was to show that

Π (y) = o
(
1
)

as y → ∞.(1.8)
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They achieved this by showing that

U (y) = O
(|y|−3), P

(
y
) = O

(|y|−2) as y → ∞
under the assumption thatU ∈ L3

(
R3

)
. Using their method in the caseU ∈

Lq
(
R3

)
, 3< q < 9, we only get weaker estimates

U (y) = O
(|y|−1), P

(
y
) = O

(|y|−2+σ )
as y → ∞(1.9)

for arbitrary smallσ > 0, from which (1.8) does not follow. This seems to be a
serious obstacle for generalizing the method used in [NRS] toq > 3.

Our key observation is that (1.9) and, in fact, even a much weaker condition

U
(
y
) = o

(|y|), P
(
y
) = O

(|y|N )
as y → ∞,(1.10)

for some finiteN (no matter how large), is sufficient to imply thatΠ is constant.
Heuristically, for the differential equation

1v(y) = y · ∇v(y),(1.11)

the right-hand side is a “magnifying force” (cf. the 1-dimensional case:v′′ = xv′).
Therefore, a solution should either be constant, or grow unboundedly. In addition,
in R3, a radial solutionv (y) = φ (r), r = |y|, satisfies

φ′ (r) = c · 1

r2
exp

(
r2

2

)
,(1.12)

which suggests that a nonconstant solutionΠ blows up at the same rate asφ. This
also suggests that we can find suitable comparison functions with very fast growth.
Based on this observation, we will prove a Liouville-type lemma which implies
thatΠ is constant under the assumption (1.10) in Section 5. In the other part of this
paper, we establish the estimates (1.10).

It should be emphasized that Theorem 2 is purelylocal in the sense that we do
not impose any boundary condition onu. This is related to one special aspect of our
analysis. In the study of Navier-Stokes equations, the pressure is usually considered
as a “global” term and can be difficult to deal with. See, for example, [CKN, SvW,
Str2, LL, HW]. When there is no boundary assumption onu, in general one cannot
obtain a “desired” estimate ofp for every weak solutionu. In our analysis, we
overcome this difficulty by making use of the self-similarity: thelocal estimate
of p corresponds to aglobal estimate ofP , which we obtain by applying certain
results on singular integrals on the spaceBMOand on some weighted spaces with
the weights in the classAp. In particular, we are able to show that every self-similar
weak solutionu in Theorem 2 is a “suitable weak solution” in the sense of [CKN],
and then apply the partial regularity result in [CKN] to obtain (1.10).

Our plan for this paper is as follows. In Section 2 we recall the definitions and
prove some results about the pressure. In Section 3 we prove the growth estimates
(1.10) for Theorem 1, using the representation formula for the Stokes system and
certain results from harmonic analysis. In Section 4 we prove the estimates (1.10)
for Theorem 2, usingAp weights and a variant of Proposition 2 from [CKN]. In
Section 5 we prove the Liouville-type lemma and conclude Theorems 1 and 2. To
understand quickly the main idea, the reader may just assume (1.10) and go directly
to Section 5.
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2. Preliminaries

This section establishes notational conventions and some definitions. First we
discuss the notation. We useQr to denote the parabolic cylinders

Qr (x, T ) = Br (x)× (
T − r2, T

)
.

We also use the summation convention. We writeui,j = ∂jui = ∂ui/∂xj , and use
the lettersC andc to denote generic constants which may change from line to line.

As far as the definitions of solutions of the Navier-Stokes equations (1.1) are
concerned, we refer the reader to [CKN] for the concept ofLeray-Hopf weak so-
lutions [Le, Ho], and the concept ofsuitable weak solutions[Sch1, CKN]. Also
see [CFo, Te, vW]. We recall that the main ingredients of the definition of suitable
weak solutions in parabolic cylindersQr are

(i) the equation (1.1), interpreted in the sense of distributions,
(ii) the local energy estimates (1.4),
(iii) the assumption that the pressurep belong toL5/4(Qr), and
(iv) the generalized energy inequality (see [CKN] p. 779).

When we consider Leray-Hopf weak solutions, only (i), (ii) and an energy inequality
(instead of (iv)) are required. Among these conditions, (iv) is satisfied by any smooth
solution of (1.1). Also, (iii) can be derived from (i), (ii), and (iv) if we impose a
0-boundary condition onu. See [SvW, LL]. However, in general (iii) is not a result
of (i), (ii), and (iv), as can be seen from this example. We useSerrin’s idea [Se1,
p. 187] and consider the vector fieldu defined by

u (x, t) = (T − t)s (1,0,0) , 0< s < 1
5;

u is a Leray-Hopf weak solution inQ1(0, T ) (with non-homogeneous boundary
condition). (In fact,u is a Leray-Hopf weak solution inB1(0)× (T − 1, T + 1) if
we extendu toB1(0)× (T , T + 1) by zero.) However, since

p (x, t) = s (T − t)s−1 x1 + const.,

p does not belong toL5/4(Q1) and hence(u, p) is not a suitable weak solution in
Q1. We remark that, in Theorem 2, we do not require the weak solutionu to be a
Leray-Hopf weak solution. Our only requirements (apart from self-similarity) are
(i) and (ii): the Navier-Stokes equations and the local energy estimates.

A function U is called aweak solutionof (1.3) if U = (U1, U2, U3) ∈
W

1,2
loc

(
R3

)
, div U = 0, and∫
R3
(ν∇U · ∇ϕ + [aU + a (y · ∇) U + (U · ∇) U ] · ϕ) dx = 0

for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ C∞
c (R

3), div ϕ = 0. By standard regularity theory
of stationary Navier-Stokes equations, every weak solutionU of (1.3) is actually
smooth (see, for example, [Ga II, GiM, La, Te]).

Regarding the pressure, in the definition of a weak solutionU , we do not
require the specification of the pressure function. On the other hand, given a weak
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solutionU , one can always locally defineP such that(U, P ) satisfies (1.3) in
bounded regions. (For example, we can apply the results for Stokes system from
[Ga I, p. 180], with the body forcef = aU + a (y · ∇) U + (U · ∇) U.) In any
given connected region,P is unique up to a constant. Therefore we can define a
pressurePR in each ballBR (0) and make them agree with each other by specifying∫
B1
PR = 0 (or a fixed constant). In this way we can defineP globally. SinceU is

smooth,P is also smooth.
Another way to defineP is by considering its equation. We take the divergence

of (1.3) and formally deduce that

−1P =
∑

∂i∂j (UiUj ).(2.1)

If 2 < q < ∞, we can define

P̃ =
∑

RiRj (UiUj )(2.2)

(cf. [NRS]), whereRj , j = 1,2,3, are the classical Riesz transforms (see for
example [St1]). We will show that̃P is smooth and differs fromP by a constant.
We can also definẽP by (2.2) for the caseq = ∞. In that case,̃P is to be
understood as aBMO function and is defined by duality; see [JN; FS; St2, p. 156].
We are interested iñP since we can get a global control of̃P which will give us
the desired local control ofP . For clarification, we formulate

Lemma 2.1. Let a weak solutionU of (1.3)belong toLq
(
R3

)
, 2 < q 5 ∞. Let

P̃ be defined by(2.2). ThenP̃ satisfies(2.1) in the distributional sense, and hence
is smooth. Moreover, we have

‖P̃ ‖q/2 5 C‖U‖2
q if 2< q < ∞,(2.3)

‖P̃ ‖BMO 5 C‖U‖2∞ if q = ∞.(2.4)

Finally, if P is defined as earlier in this section, thenP − P̃ is constant if2< q <

∞, and affine ifq = ∞.

Proof. To show that̃P is a distributional solution of (2.1), we have to show that

−
∫
P̃1ϕ = −

∫
RiRj (UiUj )1ϕ =

∫
UiUj∂i∂jϕ(2.5)

for all ϕ ∈ C∞
c

(
R3

)
. We recall thatRiRj are self-adjoint inL2(R3) (this can be

checked easily by Fourier transforms; cf. [St1, p. 58]), and we have

RiRj1ϕ = −∂i∂jϕ
(see [St1, p. 59]). Therefore, for the case 2< q < ∞, (2.5) can be established for
U ∈ C∞

c ⊂ L2. We then extend this result to generalU ∈ Lq by approximation.
For the caseq = ∞, we first observe that all integrals in (2.5) converge absolutely
sinceϕ has compact support and̃P ∈ BMO ⊂ Lrloc for all r < ∞. We next
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observe that1ϕ is in the Hardy spaceH 1(R3) (since1ϕ ∈ C∞
c and has mean

value zero) and, sincẽP is defined by duality (see [St2, p. 156]), we get

−
∫
P̃1ϕ = −

∫
UiUj

(
RiRj1ϕ

) =
∫
UiUj∂i∂jϕ.

This shows that̃P is a distributional solution of (2.1).
We remark that, by definition and the fact that1ϕ ∈ C∞

c with mean value zero,
RiRj1ϕ remains the same independently of whether1ϕ is considered as anL2

function or as anH 1 function.
SinceU is smooth and̃P satisfies (2.1) in the distributional sense,P̃ is also

smooth by Weyl’s lemma. Estimate (2.3) now follows from [CZ]. Equation (2.4) is
due toSpanne, Peetre, & Stein, (see [St2, p. 191] for references). See also
[St1,2].

Finally, we show the last assertion by modifying the argument of [NRS, Lemma
3.1]. Let

F = −ν1U + aU + a (y · ∇) U + (U · ∇) U + ∇P̃ .(2.6)

We know thatF = ∇P̃ − ∇P ; hence1F = 0 in R3 since bothP andP̃ satisfy
(2.1). ThereforeF is analytic. We now assert thatDαF (0) = 0 for eachα in case
2 < q < ∞, and for eachα with |α| = 1 in caseq = ∞. (Clearly this is enough
to conclude thatF is respectively 0 or constant by its analyticity.) To prove this
assertion, we note that, since1DαF = 0, for every radial functionϕ ∈ C∞

c with∫
ϕ = 1, we have

DαF (0) = (−1)|α|
∫

R3
F (y) ε3+|α| (Dαϕ)

(εy) dy

([St1, p. 275]). We claim that, asε → 0, all terms obtained by substituting (2.6) into
the above integral converge to zero. Since the proof is similar to that in [NRS], we
only give an illustration and show how to deal with the terms involving(y · ∇) U
and∇P̃ in the caseq = ∞.

For the term involving(y · ∇) U ,∣∣∣∣∫
R3
(y · ∇) Uε3+|α| (Dαϕ)

(εy) dy

∣∣∣∣
=

∣∣∣∣−ε3+|α|
∫

R3
3U

(
Dαϕ

)
(εy) dy − ε3+|α|

∫
R3
Uεyj

(
∂jD

αϕ
)
(εy) dy

∣∣∣∣
5 3ε3+|α|‖U‖∞

(∫
R3

∣∣(Dαϕ)
(εy)

∣∣ dy +
∫

R3

∣∣εyj (
∂jD

αϕ
)
(εy)

∣∣ dy)

= 3ε3+|α|‖U‖∞
(∫

R3

∣∣(Dαϕ)
(z)

∣∣ ε−3dz+
∫

R3

∣∣zj (
∂jD

αϕ
)
(z)

∣∣ ε−3dz

)
.

Therefore this term goes to zero if|α| = 1. (If q < ∞, we use the Ḧolder inequality
in the third line and get the same conclusion for allα.)
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Next we consider the term involving∇P̃ :∫
R3

∇P̃ ε3+|α| (Dαϕ)
(εy) dy = −ε3+|α|+1

∫
R3
P̃

(
divDαϕ

)
(εy) dy.

We notice that(divDαϕ) (εy) has mean value zero and compact support. Therefore
it belongs to the Hardy spaceH 1(R3) and

‖ (
divDαϕ

)
(εy) ‖H 1 = ε−3‖ (

divDαϕ
)
(y) ‖H 1.

By theBMO-H 1 pairing we have∣∣∣∣∫
R3

∇P̃ ε3+|α| (Dαϕ)
(εy) dy

∣∣∣∣ 5 ε3+|α|+1‖P̃ ‖BMO · ε−3‖ (
divDαϕ

)
(y) ‖H 1.

Hence this term goes to zero for eachα.
We have shown thatF is some constant vectorc (c = 0 if q < ∞). Hence

∇ (
P̃ − P

) = c. Therefore
(
P̃ − P

)
(y) = (

P̃ − P
)
(0) + c · y. The proof is

complete. ut
Since adding a constant toP does not have any effect, we can assume that

P = P̃ in the case 2< q < ∞. We remark that, in Section 4, we will again
defineP̃ by (2.2) for the case whenU is in certain weightedLp space involving
Ap-weights.

3. Growth Estimates: Theorem 1

In this section we establish the growth estimates for Theorem 1. We first derive
a local gradient estimate forU . Then we use a bootstrap argument to obtain the
polynomial growth of the pressure at infinity. Finally we use Green’s representation
formula for the Stokes system to improve the growth estimate ofU . We remark that
obtaining the local estimate of∇U requires certain weak local control ofU and
P . We obtain this weak control ofP by considering̃P given by (2.2). The global
control ofU gives us a (weak)global control ofP̃ , which we then use to obtain a
local control ofP̃ andP . It is also possible to obtain local estimates ofP in terms
of local norms ofU . We will discuss related estimates of the Stokes system in a
forthcoming paper [ST].

In this section, we work on ballsB = Bρ (y0) with centery0 ∈ R3 and radius
ρ < 10.

3.1. Gradient Estimate

In this subsection we prove

Lemma 3.1. LetU be a weak solution of(1.3). If U ∈ Lq , 3 5 q < ∞, then

‖∇U‖2,B1(y0) + ‖U‖6,B1(y0) = o
(
|y0|1/2

)
as |y0| → ∞.
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Proof. We defineP by (2.2). For a given centery0, let φ be a cut-off function
with compact support inB2 (y0), φ = 1 in B1 (y0) , |∇φ| + |∇2φ| < 20. We
take the dot product of (1.3) withφU and then integrate. SinceU is smooth and
−U ·1U = |∇U |2 − 1

21U
2, we get∫

νφ|∇U |2dy

=
∫ [

1
νU2

2
− aU2 − (ay + U) · ∇U

2

2
− ∇P · U

]
φdy

=
∫

1
2νU

21φ −
∫
aU2φ +

∫
1
2U

2 (ay + U) · ∇φ +
∫

3
2aU

2φ +
∫
PU · ∇φ.

Hence ∫
B1

ν|∇U |2dy 5 C

∫
B2

[
U2 + |y0|U2 + |U |3 + |PU |

]
.(3.1)

Since‖U‖3,B2 and‖P ‖3/2,B2 tend to zero asy0 goes to infinity (we recall thatP
is defined by (2.2)), we conclude that

‖∇U‖2,B1 = o
(
|y0|1/2

)
.

By Sobolev imbedding, we get

‖U‖6,B1 5 C‖∇U‖2,B1 + C‖U‖q,B1 = o
(
|y0|1/2

)
. ut

Remark 3.1. If U ∈ L∞, and‖P ‖1,B1(y0) = O
(|y0|N

)
at infinity for someN = 1,

then by (3.1) we have

‖∇U‖2,B1(y0) = O
(
|y0|N/2

)
as |y0| → ∞.

3.2. Bootstrap

By iterating the Sobolev imbedding theorem and the interiorLp estimates for
the Stokes system, we derive the polynomial growth ofU andP in this subsection.
We first recall the interiorLp estimates for Stokes system (see [Ga I p. 208]). If
(v, π) is a solution of the Stokes system

ν1v − ∇π = f, div v = 0

in B2R, then

‖∇2v‖r,BR + ‖∇π‖r,BR 5 C
(‖f ‖r,B2R + ‖v‖1,r,B2R−BR + ‖π‖r,B2R−BR

)
(3.2)

for r ∈ (1,∞), whereC = C (ν, r, R). Our situation is

ν1U − ∇P = F , div U = 0,
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F (y) = aU + a(y · ∇)U + (U · ∇)U.
For the case 35 q < ∞, we have

‖F‖3/2,B1 5 C
(‖U‖2,B1 + |y0|‖∇U‖2,B1 + ‖U‖6,B1 · ‖∇U‖2,B1

) = o
(
|y0|3/2

)
by Lemma 3.1. The interior estimate (3.2) then gives

‖∇2U‖3/2,B1/2 + ‖∇P ‖3/2,B1/2 = o
(
|y0|3/2

)
by Lemma 3.1 and the fact that‖P ‖3/2,B1 = o(1).

Now, using the Sobolev imbedding theorem, we get

‖∇U‖3,B1/2 + ‖P ‖3,B1/2 = o
(
|y0|3/2

)
,

and hence

‖U‖r,B1/2 = o
(
|y0|3/2

)
for any r < ∞.(3.3)

We now go back toF and get

‖F‖2,B1/2 5 C
(‖U‖2,B1/2 + |y0|‖∇U‖2,B1/2 + ‖U‖6,B1/2 · ‖∇U‖3,B1/2

)
= o

(
|y0|2

)
.

By the interior estimate and another application of the imbedding, we get

‖∇2U‖2,B1/4 + ‖∇P ‖2,B1/4 = o
(
|y0|2

)
,

‖∇U‖6,B1/4 + ‖P ‖6,B1/4 = o
(
|y0|2

)
,

osc
(
U,B1/4

) = o
(
|y0|2

)
.

By bootstrapping again, we get

osc
(
P,B1/8

) = o
(
|y0|4

)
.

These give

|U (y0) | = o
(
|y0|3

)
, |P (y0) | = o

(
|y0|5

)
.(3.4)

Next we consider the caseq = ∞, which requires more care. Lemma 2.1 tells
us thatP̃ defined by (2.2) is in theBMO space. Hence by [JN, FS], we have (also
see [St2, p. 141, 144])∫

R3
|P̃ (y)− P̃B1(0)| (1 + |y|)−3−1 dy 5 C‖P̃ ‖BMO,

‖P̃ − P̃B1(y0)‖2,B1(y0) 5 C‖P̃ ‖BMO,
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whereP̃B1(y0) denotes 1
|B1|

∫
B1(y0)

P̃ dy. In particular, we get

‖P̃ ‖2,B1(y0) = O
(
|y0|4

)
.

SinceP − P̃ is affine, we conclude the same growth control for‖P ‖2,B1(y0).
Remark 3.1 then gives us

‖∇U‖2,B1(y0) = O
(
|y0|2

)
.

We now repeat the previous bootstrap argument and end up with

|P (y0)| = O
(
|y0|N

)
for someN > 0.

We summarize our discussion in

Lemma 3.2. LetU be a weak solution of(1.3)and letP be defined as in Section
2. If U ∈ Lq (

R3
)
, 3 5 q 5 ∞, then

|P (y0)| = O
(
|y0|N

)
as y0 → ∞(3.5)

for someN < ∞.

3.3. Representation Formula

In this subsection we use Green’s representation formula for the Stokes system
to get a growth control ofU . For simplicity we assume thatν = 1. For the Stokes
system

1v − ∇p = f, div v = 0

in a ballB = Bρ (y0) in R3, we have the following representation formula (see
[Ca; Va; Ga I, p. 234]):

vj (y) =
∫
B

Gij (y, z) fi (z) dz−
∫
∂B

vi (z)
[
Til

(
Gj , gj

)
(y, z)

]
nl (z) dσz,

p (y) = −
∫
B

gi (y, z) fi (z) dz− 2
∫
∂B

vi (z) ni (z) dσz + const.,

whereTil denotes the stress tensor

Til (w, π) = −δilπ + (
wi,l + wl,i

)
andGj = (

G1j ,G2j ,G3j
)
, Gij andgj are the Green’s tensors ([Ga I, pp. 226–

227]) which satisfy, for each fixedz ∈ B,

1yGj (y, z)+ ∇ygj (y, z) = δ (y − z)ej ,

divy Gj (y, z) = 0,

Gj (y, z)
∣∣
y∈∂B = 0.
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Moreover, we haveGij (y, z) = Gji (z, y), and the estimates

|Gij (y, z) | 5 c1|y − z|−1,(3.6)

|∇yGij (y, z) | + |∇zGij (y, z) | + |gj (y, z) | 5 c1|y − z|−2(3.7)

for y, z ∈ B̄ (see [Ca, pp. 335–336]). In addition, we can choosec1 uniformly for
ρ ∈ [ 1

10,10
]
.

By the above estimates we have, for each fixedy ∈ B (and we restrictρ ∈[ 1
10,10

]
),

‖Gij (y, ·) ‖Ls(B) 5 c2 (s) for s < 3,(3.8)

‖∇zGij (y, ·) ‖Ls(B) + ‖gj (y, ·) ‖Ls(B) 5 c3 (s) for s < 3
2,(3.9)

wherec2(s) andc3(s) are independent ofy ∈ B.
Now we can prove

Lemma 3.3. LetU be a weak solution of(1.3). If U ∈ Lq (
R3

)
, 3< q < ∞, then

U (y) = o (|y|) as y → ∞.

Proof. We defineP by (2.2). For every ballB = Bρ (y0), ρ ∈ [3
4,1

]
, by the

representation formula,

Uj (y) =
∫
B

Gij (y, z) aUi dz+
∫
B

Gij (y, z) (az+ U) · ∇Ui (z) dz

−
∫
∂B

Ui (z)
[
Til

(
Gj , gj

)
(y, z)

]
nl (z) dσz.

Let

I1 =
∫
B

Gij (y, z) aUidz,

I2 = −
∫
∂B

Ui (z)
[
Til

(
Gj , gj

)
(y, z)

]
nl (z) dσz;

then

Uj (y) =
∫
B

Gij (y, z) (az+ U) · ∇Ui dz+ I1 + I2

= lim
ε→0+

∫
B\Bε(y)

∂

∂zl

[
Gij (y, z) (azl + Ul)

]
Ui dz

+
∫
∂B

Gij (y, z) (azl + Ul)Uinl dσz

− lim
ε→0+

∫
∂Bε(y)

Gij (y, z) (azl + Ul)Uinl dσz + I1 + I2.
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The first limit equalsI3 + I4 + 3I1 where

I3 =
∫
B

∂

∂zl
Gij (y, z) azlUi dz,

I4 =
∫
B

∂

∂zl
Gij (y, z) UlUi dz.

Let us call the middle termI5,

I5 =
∫
∂B

Gij (y, z) (azl + Ul)Uinl dσz.

The second limit is zero by (3.6). Hence

Uj (y) = 4I1 + I2 + I3 + I4 + I5.

If we make the restriction that|y − y0| < 1
2 and 3

4 5 ρ 5 1, then

|I2| 5 Cc1

∫
∂B

|U | dσz,

|I5| 5 4c1

∫
∂B

a|y0||U | + |U |2 dσz.

Furthermore, sinceq > 3,
(
henceq ′ < 3

2

)
, we have

|I1| 5 4ac2
(
q ′) ‖U‖q,B,

|I3| 5 ac3
(
q ′) ‖U‖q,B · |y0|

by the Ḧolder inequality and (3.8), (3.9).
Finally we deal withI4, which requires more care. Ifq > 6, I4 is o (1) by the

Hölder inequality. In the caseq ∈ (3,6], if we use the Ḧolder inequality, we only
getI4 = o

(|y0|1+σ )
for any smallσ > 0 (the detail is left to the interested reader).

Let us use the following weighted inequality inRn, which is due toLeray and
Hardy. For anyf ∈ C∞

c (Rn), 1 5 r < n, and anyy ∈ Rn, we have∥∥∥∥ f (z)

|z− y|
∥∥∥∥
r,Rn

5 r

n− r
‖∇f ‖r,Rn .(3.10)

(See [Ga I, p. 59] for a proof and the references; also see [La, p. 16] for the case
r = 2.) Now we setr = 2 and choose a smooth cut-off functionφ with compact
support inB4 (y), φ = 1 in B2 (y), |∇φ| < 1. We substitutef = φU into (3.10)
and get∥∥∥∥ U (z)

|z− y|
∥∥∥∥

2,B2(y)

5 C‖∇U‖2,B4(y) + C‖U‖2,B4(y) = o
(
|y0|1/2

)
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by Lemma 3.1. Hence

|I4| 5 C

∫
B2(y)

|U (z) |2
|z− y|2 dz = o

(
|y0|1

)
.

We conclude that, for|y − y0| < 1
2 andρ ∈ [3

4,1
]
,

|Uj (y) | 5 o
(
|y0|1

)
+ C

∫
∂Bρ

a|y0||U | + |U |2dσz.

Now we integrate this inequality with respect toρ from 3
4 to 1 and get

|U (y) | 5 o
(
|y0|1

)
+ C

∫
B1−B3/4

a|y0||U | + |U |2dz

= o
(
|y0|1

)
. ut

Remark 3.2. (i) We did not use the full power of the representation formula. It is
enough to assume thaty = y0 in our estimates. (ii) Whenq = 3, we can only
show that|I3| = o

(|y0|1+σ )
for any smallσ > 0. This is the main difficulty we

encounter if we try to use the same method to do the caseq = 3. (iii) Our analysis
begins with the estimate of‖∇U‖2,B1, which is based on the control of‖U‖3,B2.
Hence to deal with the caseq < 3 would seem to require a different idea. (iv) For
3< q < ∞, as we easily see, we can weaken the assumptionU ∈ Lq (

R3
)

to

‖U‖q,B2(y) + ‖P ‖q/2,B2(y) → 0 as |y| → ∞.

3.4. Another Approach for3 5 q < 9

In the case 35 q < 9, we can apply the same argument of [NRS] to show

|U (y) | = O
(
|y|−1

)
, |P (y) | = O

(
|y|−2+σ)

(3.11)

for arbitrary smallσ > 0. The argument is as follows. We consider parabolic
cylindersQ1 (x0, T ) for |x0| large enough. We will show that the integral

∫
Q1(x0,T )

|u|3 + |p|3/2dx dt
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goes to zero as|x0| goes to infinity. This can be done by using the Hölder inequality
(we recall thatλ = λ (t) = (2a(T − t))−1/2):∫

Q1(x0,T )

|u|3dx dt =
∫ T

T−1
dt

∫
B1(x0)

|U (λx) |3
(
λ3dx

)

=
∫ T

T−1
dt

∫
Bλ(λx0)

|U (y) |3dy

5
∫ T

T−1
dt

(∫
Bλ(λx0)

|U (y) |qdy
)3/q

· C
(
λ3

)1−3/q

=
∫ T

T−1
λ3−9/q (t) dt · o (1)

= o (1) if 3 5 q < 9.

A similar estimate holds for∫
Q1(x0,T )

|p|3/2dx dt.

Hence by [NRS, Proposition 2.1],u is bounded inQ1/2 (x0, T ) for |x0| bigger
than somer0, which is independent of the direction. Therefore, by [Se1, Oh],∇ku

are uniformly bounded for|x| ∈ [
r0 − 1

4, r0 + 1
4

]
, t ∈ (

T − 1
4, T

)
, for each

k = 0,1,2 . . . . In terms ofU , we get the first part of (3.11). We also need to
obtain decay estimates forP , which is slightly more difficult than the proof of a
corresponding statement in [NRS]. Nevertheless, it is possible to prove the second
part of (3.11) by using the integral form ofRiRj in R3:

RiRjf (y) = lim
ε→0+

∫
|z|>ε

3

4π

K(z)

|z|5 f (y − z)dz− 1

3
δij f (y),

withK(z) = zizj− 1
3δij |z|2 (cf. [St, p. 73, p. 58]) andf = UiUj , and by estimating

this integral directly. Since we have proved Lemma 3.2 (which is enough for the
proof of Theorem 1), we leave the details to the interested reader.

Another way to get (3.11) is to replaceQ1 (x0, T ) byQ1 (0, T ) in the previous
computation and get ∫

Q1(0,T )
|u|3 + |p|3/2dx dt < ∞

if 3 5 q < 9. This integral may not be small; hence we cannot use [NRS, Proposi-
tion 2.1] (which uses [CKN, Proposition 2]) to show thatu is bounded inQ1/2(0, T ).
Nonetheless, the proof of the same proposition shows that(u, p) is a suitable weak
solution inQ3/4 (0, T ), and therefore we can apply the results from Section 4.
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We remark thatG. Tian & Z. Xin [TX] recently proved the boundedness of
suitable weak solutionsu in QR/2 (x0, T ) under the condition that

sup
r5R

r−3
∫ ∫

Qr(x,T )

|u (x, t) |2dxdt < ε2,(3.12)

whereε2 is an absolute constant. If we could apply the previous computation, we
would conclude the same estimates (3.11) for 2< q < ∞. However, [TX] assumes
the local energy estimates (1.4) foru inQR which, in our case, is not a consequence
of either (3.12) or the assumptionU ∈ Lq (

R3
)
.

4. Growth Estimates: Theorem 2

In this section we establish the growth estimates for Theorem 2, that is, under
the assumption of the local energy estimates (1.4) foru. By [CKN, p. 781], (1.4)
implies‖u‖10/3,Q1 < ∞. We easily calculate that

‖u (·, t) ‖2,B1 = λ (t)−1/2 ‖U‖2,Bλ(t)(0),∫
Q1

|u|10/3 dx dt =
∫

R3
|U |10/3 · A1 min

(
|y|−5/3, λ

−5/3
0

)
dy,(4.1)

∫
Q1

|∇u|2 dx dt =
∫

R3
|∇U |2 · A2 min

(
|y|−1, λ−1

0

)
dy,

whereλ0 = (2a)−1/2, andA1 andA2 are some explicit constants. Hence all the
right-hand sides are finite. An immediate consequence is thatU ∈ W1,2

loc . Sinceu is
a weak solution of (1.1) by assumption,U is a weak solution of (1.3). HenceU and
u are both smooth. In particular,u is a “Leray-Hopf weak solution” and it differs
from a “suitable weak solution” only by lacking the estimate

p ∈ L5/4 (Q1 (0, T )) .(4.2)

From (4.1) we also have

‖∇U‖2,B1(y0) + ‖U‖10/3,B1(y0) = o
(
|y0|1/2

)
.

If we assume suitable control of‖P ‖3/2,B1 (or of a certain weaker norm), we can
follow the bootstrap argument in Subsection 3.2 to obtain certain polynomial growth
control ofU andP . Unfortunately, the growth control ofU cannot be improved by
using Green’s representation formula because of the termI3 in Subsection 3.3 (cf.
Remark 3.2 (ii)).

Instead, we show thatu is a suitable weak solution, and apply the partial reg-
ularity result from [CKN] to get the growth estimates ofU . To show thatu is a
suitable weak solution we have to “find” a pressurep satisfying (4.2). We do this
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by using some weighted estimates involvingAp-weights. (See for example [St2,
Chapter 5].) SinceU is smooth, the condition (4.1)2 < ∞ implies that∫

R3
|U |10/3 · w (y) dy < ∞,(4.3)

where
w (y) = |y|−5/3.

It is well known (and easily verified) thatw (y) is anA5/3 weight inR3, that
is, the quantity

F(y0, r) :=
(

1

|B|
∫
B

w(y) dy

)
·
(

1

|B|
∫
B

w(y)−3/2 dy

)2/3

is uniformly bounded for all ballsB = Br(y0). Using the results in [St2, pp. 204–
211], we see that the operatorsRiRj used in (2.2) to definẽP are continuous on

L
5/3
w

(
R3

)
, the space of all functionsf for which the norm

‖f ‖w,5/3 =
(∫

R3
|f |5/3 · w (y) dy

)3/5

is finite. Therefore, givenU satisfying (4.3), we can set̃P = ∑
RiRj

(
UiUj

)
and

we have
‖P̃ ‖w,5/3 5 C

∑
‖UiUj‖w,5/3.

Now, following the proof of Lemma 2.1, we want to show thatP̃ differs from
P only by a constant. We first claim that̃P satisfies (2.1) in the distributional sense.
This can be proved in the same way as in Lemma 2.1. The weightw does not cause
any new difficulty since the test functionϕ used in the proof has a compact support.
By Weyl’s lemma,P̃ is smooth. Next we have to verify that, for the functionF(y)
defined in Lemma 2.1,DαF(0) = 0 for all α. We consider the term involving
y · ∇U as an example. The computations for other terms are essentially the same.∣∣∣∣∫

R3
(y · ∇) Uε3+|α| (Dαϕ)

(εy) dy

∣∣∣∣
=

∣∣∣∣−ε3+|α|
∫

R3
3U

(
Dαϕ

)
(εy) dy − ε3+|α|

∫
R3
Uεyj

(
∂jD

αϕ
)
(εy) dy

∣∣∣∣
5 Cε3+|α|

(∫
R3

|U |10/3w(y) dy

)3/10

·

·
(∫

R3

∣∣∣(Dαϕ)
(εy) |y|1/2

∣∣∣10/7 +
∣∣∣εyj (

∂jD
αϕ

)
(εy) |y|1/2

∣∣∣10/7
dy

)7/10

5 Cε3+|α| ·
(∫

R3

[∣∣(Dαϕ)
(z)

∣∣10/7 + ∣∣zj (
∂jD

αϕ
)
(z)

∣∣10/7
]
|z|5/7ε−5/7−3 dz

)7/10

= Cε3+|α| · ε−13/5.
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Therefore, asε goes to zero, this term goes to zero. This shows thatP̃ together with
U satisfy Leray’s equation (1.3).

Now we can definep by (1.2)2. Clearlyp together withu satisfy (1.1) and
p ∈ L5/3 (Q1) sinceP̃ ∈ L5/3

w

(
R3

)
. We summarize this discussion in

Lemma 4.1. Let u be a weak solution of(1.1) in Q1 satisfying the local energy
estimates(1.4). If u is of the form(1.2)1, thenu is smooth, and there is a smooth
functionp ∈ L5/3 (Q1) of the form(1.2)2 such that(u, p) is a suitable weak
solution of(2.1) in Q1.

We remark that, by construction, theL5/3-norm ofp is bounded by the local en-
ergy ofu. More generally, by using similar arguments we can also bound‖p‖r/2,Q1

by ‖u‖2
r,Q1

if we assume thatu ∈ Lr (Q1) for r ∈ (2,6). (We use theAr/2 weight

|y|−r/2.)
We will use the following lemma, which is a variant of Proposition 2 of [CKN].

Lemma 4.2. Let (u, p) be a suitable weak solution of(1.1). There is an absolute
constantε4 > 0 such that, if

lim sup
r→0+

r−1
∫
Qr(x,t)

|∇u|2 5 ε4,

thenu is essentially bounded inQr1 (x, t) for somer1 > 0.

This lemma differs from Proposition 2 of [CKN] by replacingQ∗
r (x, t) by

Qr (x, t). (We recall thatQ∗
r (x, t) = Qr

(
x, t + 1

8r
2
)
.) It assumes the information

only at times previous tot , and gets control only at times previous tot . Since the
original proof of Proposition 2 of [CKN] and the accompanying lemmas go through
without change, we omit the details and refer the reader to [CKN]. As in the proof
of Theorem B in [CKN, p. 807], this lemma implies that the singular set at the top
of the parabolic cylinder also has one-dimensional Hausdorff measure zero.

With this lemma, we can prove

Corollary 4.3. Let (u, p) be a suitable weak solution of the Navier-Stokes equa-
tions(1.1) in Q1 (0, T ), and letu be of the form(1.2)1. ThenU (y) = O

(|y|−1
)
.

Remark. Heuristically, if the corollary were not true, there would be a direction
along which|y||U(y)| is not bounded. By the self-similarity,u would be singular
at all points on that direction (at timeT ); hence we have a segment consisting of
singular points. We know from [CKN] that this would be impossible if they were
interior points. Using Lemma 4.2, we conclude that the top of the parabolic cylinder
cannot contain a singular segment either.

Proof. We may assume thatT = 0. If the corollary were not true, we could find
yk ∈ R3, |yk| → ∞, and

|U (yk) | · |yk| > k.

Let us denotey/|y| by ŷ. The set{ŷk} has an accumulation pointx∗ on the unit
sphere{|y| = 1}. We may assume that̂yk → x∗ by considering a subsequence. We



The Navier-Stokes Equations 47

assert thatu is not bounded in anyQr (σx∗,0) for σ ∈ (0,1) andr ∈ (
0, 1

2

)
. To

see this, let us fixσ andr, and letλ0 = λ
(−r2

) = 1/
√

2ar (we recall thatλ (t) =
(−2at)−1/2). Fork large enough, we have|yk| > σλ0 and|σ ŷk − σx∗| < r. Let tk
be the time such thatλ (tk) · σ = |yk|. We easily check thatλ (tk) = σ−1|yk| > λ0
and hencetk ∈ (−r2,0

)
. Therefore the point(σ ŷk, tk) is contained inQr (σx∗,0).

On the other hand,

|u (σ ŷk, tk) | = λ (tk) · |U (λ (tk) σ ŷk) | = σ−1|yk| · |U (yk) | > σ−1k.

This shows the assertion that all points on the segment{(σx∗,0) : σ ∈ (0,1)}
are singular. This is a contradiction to the fact that the singular set at the top of the
parabolic cylinder has one-dimensional Hausdorff measure zero. This contradiction
shows our corollary. ut

To finish the proof of Theorem 2, we have several possibilities. The first way
is to observe that, sinceU is smooth,U ∈ Lq (

R3
)

for q > 3 by Lemma 4.1 and
Corollary 4.3. Therefore Theorem 2 follows from Theorem 1. The second way is
to prove

P (y) = o
(
|y|N

)
as y → ∞(4.4)

for someN < ∞. (Corollary 4.3 and (4.4), together with Lemma 5.1 in the next
section, prove Theorem 2 without using Theorem 1.) To prove (4.4), we can use
Lemma 4.1 and follow the proof of Subsections 3.1 and 3.2, as sketched at the
beginning of this section. Alternatively, since Corollary 4.3 implies thatu is uni-
formly bounded in{x : 1

4 < |x| < 1} × (−1,0), the same argument of Subsection
3.4 gives the second part of (3.11).

5. The Liouville-Type Lemma and the Main Theorems

In this last section we prove the key Liouville-type lemma and the main theo-
rems.

Lemma 5.1. LetΠ : R3 → R, andU : R3 → R3 be smooth, and satisfy

−ν1Π(y)+ (U(y)+ ay) · ∇Π(y) 5 0(5.1)

in R3. If |U (y) | 5 b|y| for some constantb ∈ (0, a) and for|y| sufficiently large,
and

|Π (y) | = o

(∫ |y|
ecs

2/2ds

)
as |y| → ∞,

wherec = (a − b) /ν, thenΠ is constant.

Proof. LetM(r) = max|y|=r Π (y). M(r) is non-decreasing inr by the maximal
principle. Let

φ (r) = −1

cr
ecr

2/2 +
∫ r

ecs
2/2ds.
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(It satisfies (1.12) up to a constant factor.) It is easy to see that the functionv(y) =
φ (|y|) is a supersolution for|y| larger than somer0, i.e.,

−ν1v(y)+ (U(y)+ ay) · ∇v(y) = 0 for |y| > r0.

Let
ψε (y) = M(r0)+ ε · [φ (|y|)− φ (r0)] for ε > 0.

Thenψε are all supersolutions for|y| > r0. It is clear thatψε (y) = Π (y) for
|y| = r0 and for|y| near∞ by the growth ofΠ . By the comparison principle we
have

Π (y) 5 M(r0)+ ε · [φ (|y|)− φ (r0)] for |y| = r0.

Now letting ε go to zero, we getΠ (y) 5 M(r0) for all |y| = r0, and hence
maxΠ is attained at somey, |y| = r0. By the strong maximal principle,Π must
be constant. (Notice that our coefficients are bounded in bounded regions.)ut
Remark 5.1.It is reasonable to expect that(U + ay) · ∇Π acts as a “magnifying
force”, since we are looking for blow-up solutions of the Navier-Stokes equations,
(cf. [GK, equation (3.2)] and [Gi2]). It is known that for Navier-Stokes equations
there existforward self-similar solutions which are defined onR3 × (0,∞) and
are singular at(0,0) (see [GM, CP]). Its corresponding stationary problem behaves
like 1v(y) = −y · ∇v(y) at infinity, which does not blow up at infinity.

Remark 5.2.We can easily extend this lemma toRn, n = 2. In that case, the
comparison functionφ takes the form

φ (r) =
∫ r

s1−necs2/2ds.

Now we prove Theorems 1 and 2.

Proofs of Theorems 1 and 2. Lemmas 3.2 and 3.3, Corollary 4.3 and the estimate
(4.4), give us the growth estimates

U (y) = o (|y|) ,Π (y) = O
(
|y|N

)
as |y| → ∞

under either Theorem 1 or Theorem 2, for someN < ∞. Lemma 5.1 then implies
thatΠ is constant. Therefore∇Π is zero, i.e.,

UjUj,i + P,i + aUi + ayjUj,i = 0 for each i.(5.2)

Besides (5.2), if we consider (1.7), we get|Ω(y)|2 = 0, that is,

∂iUj = ∂jUi for all i, j.

Comparing (5.2) with the equations (1.3) ofU

−ν1Ui + UjUi,j + P,i + aUi + ayjUi,j = 0 for each i,

we get
−ν1Ui = 0 for each i.
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SinceU ∈ Lq (
R3

)
in Theorem 1 andU → 0 at infinity in Theorem 2, the usual

Liouville theorem implies that theUi are 0 (or constant ifU ∈ L∞). The proof is
complete. ut
Remark 5.3. By Lemma 5.1, it is sufficient to have|U(y)| 5 b|y| for someb < a

and for|y| > r0 (andP (y) = O
(|y|N )

for someN > 0), for the triviality ofU .
The corresponding condition foru (given by (1.2)1) is

|u (x, t) | 5 b|x|
2a(T − t)

for |x| > (T − t)1/2r0.

It is interesting to compare it with (1.6).

Remark 5.4. To conclude that a solution of (1.3) is zero, certain assumptions on the
growth ofU are necessary, as can be seen from the following example. LetΦ be an
arbitrary harmonic function onR3. LetU = ∇Φ andP = −1

2|U |2 − ay ·U , (i.e.,
Π = 0). Then(U, P ) satisfiesLeray’s equations (1.3). This gives us a certain
heuristic reason for considering the quantityΠ . That the quantity12|u|2+p satisfies
a maximal principle for the stationary Navier-Stokes equations is well known (see,
e.g., [Se2, p. 261, GW]), and has played an important role in recent results ([FR1,2,
Str3]) regarding the regularity of solutions of the stationary Navier-Stokes equations
in higher dimensions.

Remark 5.5.Scheffer [Sch2] raised the question of the existence of nontrivial
solutions ofLeray’s equation with a “speed-reducing” forceg:

−ν1U + aU + ay · ∇U + U · ∇U + ∇P = g, div U = 0,

for someU , g with U · g 5 0. By using the methods in this paper we can obtain
some partial results onScheffer’s question, but the general case seems to remain
open.
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Šverák, for his guidance and encouragement. I also thank ProfessorR.V. Kohn for
helpful comments, and my friendsYu Yuan, Y.-P. Kuo, Tim Brule andS.-C. Chu
for their continued interests in this work. This work was partially supported by NSF grant
DMS-9622795.

References

[AIV] S. Angenent, T. Ilmanen & J. J. L. Velázquez, preprint.
[CKN] L. Caffarelli, R.V. Kohn & L. Nirenberg, Partial regularity of suitable

weak solution of the Navier-Stokes equations,Comm. Pure Appl. Math.35(1982),
771–831.

[CZ] A.P. Calderón & A. Zygmund, On existence of certain singular integrals,
Acta Math.88 (1952), 85–139.

[CP] M. Cannone & F. Planchon, Self-similar solutions for Navier-Stokes equa-
tions inR3, Comm. Part. Diff. Eqs.21 (1996), 179–193.

[Ca] L. Cattabriga, Su un problema al retorno relativo al sistema di equazioni di
Stokes, Rend. Sem. Math. Univ. Padova31 (1961), 308–340.



50 Tai-Peng Tsai

[CF] P. Constantin & C. Fefferman, Direction of vorticity and the problem
of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J.42
(1993), 775–789.

[CFo] P. Constantin & C. Foias,Navier-Stokes equations, Univ. of Chicago Press,
1988.

[FJR] E. B. Fabes, B. F. Jones & N. M. Riviere, The initial value problem
for the Navier-Stokes equations with data inLp, Arch. Rational Mech. Anal.45
(1972), 222–240.

[FS] C. Fefferman & E. Stein, H p spaces of several variables, Acta Math.
129(1972), 137–193.

[FR1] J. Frehse & M. Růžička, On the regularity of the stationary Navier-Stokes
equations, Ann. Sc. Norm. Pisa21 (1994), 63–95.

[FR2] J. Frehse & M. Růžička, Regularity of the stationary Navier-Stokes equa-
tions in bounded domains, Arch. Rational Mech. Anal.128(1994), 361–381.

[Ga] G. Galdi, An introduction to the mathematical theory of Navier-Stokes equa-
tions, I, II, Springer, 1994.

[GiM] M. Giaquinta & G. Modica, Non linear systems of the type of the stationary
Navier-Stokes equations, J. Reine Angew. Math.330(1982), 173–214.

[Gi] Y. Giga, Solutions for semilinear parabolic equations inLp and regularity of
weak solutions of the Navier-Stokes system, J. Diff. Equations61(1986), 186–212.

[Gi2] Y. Giga, On elliptic equations related to self-similar solutions for nonlinear
heat equations, Hiroshima Math. J.16 (1986), 539–552.

[GK] Y. Giga & R.V. Kohn, Asymptotically self-similar blow-up of semilinear
heat equations, Comm. Pure Appl. Math.38 (1985), 297–319.

[GM] Y. Giga & T. Miyakawa, Navier-Stokes flow inR3 with measures as initial
vorticity and Morrey spaces, Comm. in Part. Diff. Eqs.14 (1989), 577–618.

[GW] D. Gilbarg & H.F. Weinberger, Asymptotic properties of Leray’s solu-
tion of the stationary two-dimensional Navier-Stokes equations, Russian Math.
Surveys,29 (1974), 109–123.

[HW] J.G. Heywood & O.D. Walsh, A counterexample concerning the pressure
in the Navier-Stokes equations, ast → 0+, Pacific J. Math.164(1994), 351–359.
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