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On Leray’s Self-Similar Solutions
of the Navier-Stokes Equations
Satisfying Local Energy Estimates
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Abstract

This paper proves that Leray’s self-similar solutions of the three-dimensional
Navier-Stokes equations must be trivial under very general assumptions, for exam-
ple, if they satisfy local energy estimates.

1. Introduction

In 1934LERAY [Le] raised the question of the existence of self-similar solutions
of the Navier-Stokes equations. For a long time, self-similar solutions had appeared
to be good candidates for constructing singular solutions of the Navier-Stokes
equationsLERAY’s question was unanswered until 1995, whartas, RUZICKA,

& SvERAK [NRS] showed, among other things, that the only self-similar solution
satisfying the global energy estimates is zero. Although they ansvigtedy’s
original problem, some important questions were left open. For example, can a self-
similar solution satisfyindpcal energy estimates exist? The goal of this paper is to
show that the self-similar solutions must be zero under very general assumptions,
for example, if they satisfy the local energy estimates.

For the Navier-Stokes equations

ur —vAu+u-Vu+Vp =0

(1.1) divu =0

} in R x (11, 12)

with v > 0, LERAY's (backward) self-similar solutions are of the form

u(x, 1) = A(t) U A@®)x), px, 1) =120)P A1)x),
(1.2) 1

with A(f) = \/ﬁ
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wherea > 0,U(y) = (U1, Us, U3)(y) andP(y) are defined ifR3. We also require
that certain natural energy normsobe finite. (Otherwise there exist nontrivial
solutions. See Remark 5.4.) The Navier-Stokes equationsdore the system

VAU +aU +a(y-V)U + (U -V)U + VP =0
(1.3) altaly-V)U+(E-¥) in R3
dvU =0

for U. As suggested bj.ErAY, a nonzerd/ would produce a solution of (1.1)

with a singularity at(0, 7). This would give a counterexample to the open ques-
tion whether a solution of (1.1) satisfying natural energy estimates can develop a
singularity.

In addition to yielding particular singular solutions, the study of self-similar
solutions seems to be important also from a more general point of view. Itis related
to the scaling property of (1.1), the fact thakifx, ¢) satisfies (1.1), then so do the
rescaled functions

ur (x,t) :=ru (rx, r? t—-T)+ T)

for eachr > 0. If (O, T) is a singular point, then the asymptotics of the singularity

is encoded in the behavior af asr — O". If u, converges to a limif, the

limit # must be self-similar, i.eu), = u for all » > 0, which implies that is of

the form (1.2). Of course, more complicated singularities may possibly exist. The
study of self-similar solutions has proved to be very useful in the investigations of
singularities of many equations with similar scaling properties, such as the harmonic
map heat flow, semilinear heat equations, and nonlineabfictger equations; see

for example [Strl, GK, KL]. It is hoped that the study of (1.3) can shed some light
on the regularity question for the Navier-Stokes equations.

The known regularity criteria for Navier-Stokes equations (such as [Se; FJIR;
VW, p 190; Gi; Str2; Ta; CF]) do not apply to self-similar singularities (unless certain
guantities are small). The main result of [NRS] is that the only weak solution of
(1.3) belonging taL® (R3) is U = 0. Also see [MNPS] (who showed the same
conclusion under a stronger assumption, but without using results from [CKN]).
The L3 integrability condition holds if the corresponding solutioof the Navier-
Stokes equations satisfies tjlebal energy estimates

t
/%|u(x,t)|2dx+// U|Vu(x,t)|2dxdt§/ Llu(x, 1) |Pdx
R3 1 JR3 R3

forall t € (11, r2). On the other hand, if we only assume tbeal energy estimates

T
(1.4) ess sup %|u(x,t)|2dx+/ fv|Vu(x,t)|2dxdt<oo
13 B

t3<t<T JB

for some ballB and somesz < T, then we only get estimates of some weighted
norms which do not imply thal/ € LS. (See Section 4 for more details.) There-
fore, [NRS] left open the existence of self-similar singularities which satisfy the
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local energy estimates. For example, a solution with the following decay was not
excluded:

(1.5) U(y):A(l>i+o(i> as y — oo,
Iy1/ 1yl |yl

whereA : $2 — R3 is smooth. At the same time, this seems to be a very natural
candidate for a self-similar singularity: the functiangiven by (1.2) satisfies

the local energy estimates, andx, ) — ur(x) ast — T, whereuyp(x) =
A(x/|x])/I1x| is homogeneous of degreel. We might speculate that after the
blowup timeT , u would become a forward (or defocusing) self-similar solution (the
existence of such solutions was studied in [GM, CP]), providing a rather nice interior
singularity. Very recently a solution of this type was constructed for the harmonic
map heat flow and other equations AWGENENT, ILMANEN, & VELAZQUEZ
[AIV]. (To make an analogy between the Navier-Stokes equations and the harmonic
map heat flow, we should compare the velocity with the gradient of the solution of
the harmonic map heat flow.) In addition, as suggested in [CKN], the blowup rate
of a singularity ofu at (0, T') is (at least in “parabolic average”)

C
lu(x, )] 2 —————=,
x|+ T —t

which is satisfied by a solutiam given by (1.2) ifU has the decay (1.5).
In this paper we exclude the possibility of such self-similar singularities. In
fact, we prove

(1.6)

Theorem 1. Ifaweak solutior¥/ of (1.3)belongs ta.? (R3), for somey € (3, o],
then it must be constaiand hence identically zerodf < co).

Theorem 2. Suppose: is a weak solution of1.1) satisfying the local energy es-
timates(1.4) in the cylinderQ41(0, T) = B1(0) x (T — 1, T). If u is of the form
(1.2}, thenu is identically zero.

We referthe reader to Section 2 for the definitions of weak solutions. A particular
corollary of these results is that a weak solutigrof (1.3) with the decay (1.5)
must be zero.

Let us explain the main idea of the proof. We recall from [NRS] that the smooth
function

() =3UMP+ PO) +ay-U®y)
satisfies
(1.7) —VATI(y) + (U(y) +ay) - VIT(y) = —v|2()]? £ 0,

where$2 = curl U. (HencelT satisfies the maximal principle.) One of the crucial
steps in [NRS] was to show that

(1.8) II (y) = 0(1) asy — oo.
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They achieved this by showing that
Um=0(y%, PO)=0(y"?) asy— oo

under the assumption that € L3(R3). Using their method in the cadé e
L4 (R3), 3 < ¢ <9, we only get weaker estimates

(1.9) U =o0(y™), P()=0(y*"7) asy— oo

for arbitrary smallc > 0, from which (1.8) does not follow. This seems to be a
serious obstacle for generalizing the method used in [NRg]+03.
Our key observation is that (1.9) and, in fact, even a much weaker condition

(1.10) U(y)=o(lyl), P(y)=0(yI") asy— oo,
for some finiteN (no matter how large), is sufficient to imply that is constant.
Heuristically, for the differential equation

(1.11) Av(y) =y - Vu(y),

the right-hand side is a “magnifying force” (cf. the 1-dimensional ca’e: xv’).
Therefore, a solution should either be constant, or grow unboundedly. In addition,
in R3, a radial solution (y) = ¢ (r), r = |y|, satisfies

1.12 / Lexp(
(L.12) ¢<r>_c-r2exp(2>,
which suggests that a nonconstant solutibblows up at the same rate @sThis

also suggests that we can find suitable comparison functions with very fast growth.
Based on this observation, we will prove a Liouville-type lemma which implies
that/7 is constant under the assumption (1.10) in Section 5. In the other part of this
paper, we establish the estimates (1.10).

It should be emphasized that Theorem 2 is pul@bgl in the sense that we do
not impose any boundary condition @nThis is related to one special aspect of our
analysis. In the study of Navier-Stokes equations, the pressure is usually considered
as a “global” term and can be difficult to deal with. See, for example, [CKN, SvW,
Str2, LL, HW]. When there is no boundary assumption:im general one cannot
obtain a “desired” estimate gf for every weak solution:. In our analysis, we
overcome this difficulty by making use of the self-similarity: flogal estimate
of p corresponds to global estimate ofP, which we obtain by applying certain
results on singular integrals on the sp&O and on some weighted spaces with
the weights in the class,,. In particular, we are able to show that every self-similar
weak solution: in Theorem 2 is a “suitable weak solution” in the sense of [CKN],
and then apply the partial regularity result in [CKN] to obtain (1.10).

Our plan for this paper is as follows. In Section 2 we recall the definitions and
prove some results about the pressure. In Section 3 we prove the growth estimates
(1.10) for Theorem 1, using the representation formula for the Stokes system and
certain results from harmonic analysis. In Section 4 we prove the estimates (1.10)
for Theorem 2, usingt, weights and a variant of Proposition 2 from [CKN]. In
Section 5 we prove the Liouville-type lemma and conclude Theorems 1 and 2. To
understand quickly the main idea, the reader may just assume (1.10) and go directly
to Section 5.
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2. Preliminaries

This section establishes notational conventions and some definitions. First we
discuss the notation. We ugg- to denote the parabolic cylinders

0, (x,T) = B, (x) x (T —r2,T).

We also use the summation convention. We write = 9,;u; = du;/dx;, and use

the lettersC andc to denote generic constants which may change from line to line.
As far as the definitions of solutions of the Navier-Stokes equations (1.1) are

concerned, we refer the reader to [CKN] for the concepterty-Hopf weak so-

lutions [Le, Ho], and the concept dfuitable weak solutiongSchl, CKN]. Also

see [CFo, Te, vW]. We recall that the main ingredients of the definition of suitable

weak solutions in parabolic cylinde(3, are

(i) the equation (1.1), interpreted in the sense of distributions,
(i) the local energy estimates (1.4),

(iii) the assumption that the pressysdelong toL%4(Q,), and
(iv) the generalized energy inequality (see [CKN] p. 779).

Whenwe consider Leray-Hopfweak solutions, only (i), (ii)) and an energy inequality
(instead of (iv)) are required. Among these conditions, (iv) is satisfied by any smooth
solution of (1.1). Also, (iii) can be derived from (i), (ii), and (iv) if we impose a
0-boundary condition on. See [SvW, LL]. However, in general (iii) is not a result

of (i), (i), and (iv), as can be seen from this example. WeSISBRIN'S idea [Sel,

p. 187] and consider the vector fieldlefined by

u(x,0)=(T-1°(100, 0<s<4i

u is a Leray-Hopf weak solution i©1(0, 7)) (with non-homogeneous boundary
condition). (In factu is a Leray-Hopf weak solution iB1(0) x (T — 1, T + 1) if
we extend: to B1(0) x (T, T + 1) by zero.) However, since

p(x,1)=s(T —1)*Lxy + const,

p does not belong t&.>4(Q1) and hence&u, p) is not a suitable weak solution in
Q1. We remark that, in Theorem 2, we do not require the weak solutimnbe a
Leray-Hopf weak solution. Our only requirements (apart from self-similarity) are
(i) and (ii): the Navier-Stokes equations and the local energy estimates.

A function U is called aweak solutionof (1.3) if U = (U1,U>,U3) €
W2 (R%), divU =0, and

/3(VVU~V<p+[aU+a(y-V)U+(U-V)U]o(p)dx=O
R

for all ¢ = (1, 92, ¢3) € C§°(R3), div ¢ = 0. By standard regularity theory
of stationary Navier-Stokes equations, every weak solutiosf (1.3) is actually
smooth (see, for example, [Ga ll, GiM, La, Te]).

Regarding the pressure, in the definition of a weak solutignwe do not
require the specification of the pressure function. On the other hand, given a weak
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solution U, one can always locally definB such that(U, P) satisfies (1.3) in
bounded regions. (For example, we can apply the results for Stokes system from
[Ga |, p.180], with the body forc¢ = aU +a(y-V)U + (U - V) U.) In any
given connected regior® is unique up to a constant. Therefore we can define a
pressurePy in each ballBg (0) and make them agree with each other by specifying
fgl Pgr = 0 (or a fixed constant). In this way we can defidglobally. SinceU is
smooth,P is also smooth.

Another way to define® is by considering its equation. We take the divergence
of (1.3) and formally deduce that

(2.1) —AP =" 0;0;(U;U)).
If 2 < g < 0o, we can define
(2.2) P =Y "RiR;(UiU;)

(cf. [NRS]), whereR;, j = 1,2,3, are the classical Riesz transforms (see for
example [St1]). We will show thaP is smooth and differs fron® by a constant.
We can also definé® by (2.2) for the casgy = oco. In that caseP is to be
understood as BMO function and is defined by duality; see [IN; FS; St2, p. 156].
We are interested i® since we can get a global control 8fwhich will give us
the desired local control af. For clarification, we formulate

Lemma 2.1. Let a weak solutio/ of (1.3) belong toL¢ (R3), 2 < ¢ < co. Let
P be defined by2.2). ThenP satisfieq2.1)in the distributional sense, and hence
is smooth. Moreover, we have

(2.3) 1Pllgz  SCIUIZ  if 2<q <o,
(2.4) IPlgmo < CIUIZ if g =occ.

Finally, if P is defined as earlier in this section, thén— P is constant if2 < g <
00, and affine ify = oo.

Proof. To show that? is a distributional solution of (2.1), we have to show that
(2.5) —fﬁA(p:—/RiRj(Uin)A(p=/U,'Uj3,-8j(p
for all ¢ € C2° (R3). We recall that®; R; are self-adjoint inL2(R®) (this can be
checked easily by Fourier transforms; cf. [St1, p. 58]), and we have

RiRjAg = —3;3¢

(see [St1, p. 59]). Therefore, for the case 2 < oo, (2.5) can be established for
U e C® c L?. We then extend this result to genetale L7 by approximation.
For the casg = oo, we first observe that all integrals in (2.5) converge absolutely

sincep has compact support anél € BMO C Lj,. forall r < oo. We next
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observe thatAg is in tbe Hardy space#Z1(R3) (sinceAy € C2° and has mean
value zero) and, since is defined by duality (see [St2, p. 156]), we get

—/FAgD:—/Uin (RiRjA(p) =/U,»Uj3,-8j<p.

This shows thaf is a distributional solution of (2.1).

We remark that, by definition and the fact tiep € C2° with mean value zero,

R; R Ap remains the same independently of whether is considered as ah?
function or as an7z? function.

SinceU is smooth and? satisfies (2.1) in the distributional seng2js also
smooth by Weyl's lemma. Estimate (2.3) now follows from [CZ]. Equation (2.4) is
due toSPANNE, PEETRE, & STEIN, (see [St2, p. 191] for references). See also
[St1,2].

Finally, we show the last assertion by modifying the argument of [NRS, Lemma
3.1]. Let

(2.6) F=—vAU +aU +a(y - VYU + U -V)U + VP.

We know thatF = VP — VP; henceAF = 0 in R3 since bothP and P satisfy
(2.1). Thereforer is analytic. We now assert th&* F (0) = 0 for eachw in case

2 < g < o0, and for eachwr with |a| = 1 in caseg = oo. (Clearly this is enough
to conclude that is respectively O or constant by its analyticity.) To prove this
assertion, we note that, sineeD*F = 0, for every radial functiop € CZ° with

[ ¢ =1, we have

D“F (0) = (-1)*! / F () &3 (D) (ey) dy
R3
([St1, p. 275]). We claim that, as— 0, all terms obtained by substituting (2.6) into
the above integral converge to zero. Since the proof is similar to that in [NRS], we
only give an illustration and show how to deal with the terms invol\ing V) U

andV P in the casey = oo.
For the term involvingy - V) U,

’ / L0 VUl (D%) (ey)dy‘
R
= ‘—83““ /33U (D%@) (ey) dy — 31! /3 Uey; (3;D%¢) (ev) dy‘
R R
< 31U oo (/Rs (D) (ey)| dy + /R3 |3 (0;D%) (e9)] dy)

= 33U o (/ |(D%¢) (2)| e3dz —l—/ |zj (3;D%9) (2)| 8_3d1> .
R3 R3

Therefore this term goes to zerddf| = 1. (If ¢ < oo, we use the Elder inequality
in the third line and get the same conclusion forea)l
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Next we consider the term involvin‘@ﬁ:

/ v Pe3tlel (D%) (ey)dy = —83+|O"+1/ P (divD%¢) (ey) dy.
R3 R3

We notice thatdivD”p) (¢y) has mean value zero and compact support. Therefore
it belongs to the Hardy spac&1(R3) and

I (divDY@) (e) ll o1 = e 3|l (divD*@) () [l 1.

By theBMO-.7# pairing we have

/R (VP (D) (ey) dy| = e Pllpao - 7% (divDg) (3) [l

Hence this term goes to zero for each

We have shown that" is some constant vecter(c = 0 if ¢ < o). Hence
V(P — P) = c. Therefore(P — P) (y) = (P — P)(0) + c - y. The proof is
complete. O

Since adding a constant #® does not have any effect, we can assume that
P = P inthe case 2< g < oo. We remark that, in Section 4, we will again
define P by (2.2) for the case whel is in certain weighted.” space involving
Ap-weights.

3. Growth Estimates: Theorem 1

In this section we establish the growth estimates for Theorem 1. We first derive
a local gradient estimate f@y. Then we use a bootstrap argument to obtain the
polynomial growth of the pressure at infinity. Finally we use Green’s representation
formula for the Stokes system to improve the growth estimaté. af/e remark that
obtaining the local estimate &fU requires certain weak local control of and
P. We obtain this weak control af by consideringP given by (2.2). The global
control of U gives us a (weakglobal control of P, which we then use to obtain a
local control of P and P. It is also possible to obtain local estimatesroin terms
of local norms ofU. We will discuss related estimates of the Stokes system in a
forthcoming paper [ST].

In this section, we work on ballB = B, (yg) with centeryg € R3 and radius
o < 10.

3.1. Gradient Estimate
In this subsection we prove

Lemma 3.1. LetU be a weak solution dfL.3). If U € L9,3 < g < oo, then

IVU 28100 + 1V ll6.8100 = 0 (1502)  as Iyol - oo.
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Proof. We defineP by (2.2). For a given centexy, let ¢ be a cut-off function
with compact support irB2 (yo), ¢ = 1 in By (yo), |Vé| + |V%p| < 20. We
take the dot product of (1.3) withU and then integrate. Sinde is smooth and
—U - AU = |VU|? - $AU?, we get

/v¢>|VU|2dy

vU? 2 U?
:/ AT—aU —(ay+U)~V7—VP-U ody

= /%vU2A¢ —/aU2¢ +/%U2(ay+U)~V¢ +/§auz¢ +/PU-V¢.
Hence
3.1) / VU 2y < C/ [U2~I—|yo|U2+ |U|3~|—|PU|].
By By

Since||U 3,8, and|| P ||3/2, 5, tend to zero asg goes to infinity (we recall thaP
is defined by (2.2)), we conclude that

IVUlz8, = o0 (13012) .
By Sobolev imbedding, we get

1Ullg,, < ClIVU ll2,8, + CllU|lg,8, = 0 (|y0|1/2) 4

Remark 3.1If U € L™, and|| P||1,8,(yo) = O (Iyol") at infinity for someN = 1,
then by (3.1) we have

IVU 25100 = O (1301*2)  as [y0l — oo.

3.2. Bootstrap

By iterating the Sobolev imbedding theorem and the intekibrestimates for
the Stokes system, we derive the polynomial growtty @nd P in this subsection.
We first recall the interiod.” estimates for Stokes system (see [Ga | p. 208]). If
(v, ) is a solution of the Stokes system

VAv—Vr = f, divv=0
in Bag, then
(3.2) ||V2v||r,BR + V7 lrBx < C (1 Ir.Bog + 101115 Bog—Bx + 1711 Bog—BR)
forr € (1, 00), whereC = C (v, r, R). Our situation is

VAU — VP =F, div U =0,
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F@y)=aU+a(y -V)U + (U -V)U.
For the case ¥ ¢ < oo, we have

IFll3/2.8, = C (1U 12,8, + 1ollIVU 2.8, + U ll6.8, - IVU ll2.8,) = 0 (|y0|3/2)
by Lemma 3.1. The interior estimate (3.2) then gives
IV2U la/2.812 + IV Pll3s2.y2 = 0 (130 */2)

by Lemma 3.1 and the fact thiaP||3/2, 5, = 0(1).
Now, using the Sobolev imbedding theorem, we get

IVU 3812 + 1 Pll3 50 = 0 (130172)
and hence
(3.3) 1Tl 3y, = 0 (|yo|3/2) forany r < oo.
We now go back t&” and get
”F”Z,Bl/z g C (”UHZ,Bl/z + |y0|||VU||2,Bl/2 + ”U”G,Bl/z ' ||VU||3,Bl/2)
= o (IvoP?).
By the interior estimate and another application of the imbedding, we get
IV2Ull2.8yy0 + IV Pl = 0 (1301?)
IVU ll6.8y0 + 1 Plls.gyse = 0 (I50l?)
osc(U, Byja) = o <|y0|2) .
By bootstrapping again, we get
osc(P, Bijg) = o <|y0|4> :
These give

(3.4) U 0o 1 =0 (130°). 1P o) =0 (Iyol®).

Next we consider the cage= oo, which requires more care. Lemma 2.1 tells
us thatP defined by (2.2) is in th8 MO space. Hence by [N, FS], we have (also
see [St2, p. 141, 144))

/R3 P () = Pgyo)l A+1y) > dy < ClIPllsuo,

P — PBi(yo) 2, B1(vo) = CIIPlIBMO:
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Whereﬁgl(yo) denoteslBi1| / B1(v0) Pdy. In particular, we get

1Pl2.8:00 = O (Iyol*).

SinceP — P is affine, we conclude the same growth control [f]|2, 5, (y,)-
Remark 3.1 then gives us

IVU 2,100 = O (Iyol?).

We now repeat the previous bootstrap argument and end up with

1P 6ol =0 (1vol")

for somenN > 0.
We summarize our discussion in

Lemma 3.2. LetU be a weak solution ¢fL.3)and let P be defined as in Section
2.1fU € LY (R®),3 < ¢ < oo, then

(3.5) P o)l =0 (o) as yo— oo

for someN < oo.

3.3. Representation Formula

In this subsection we use Green'’s representation formula for the Stokes system
to get a growth control of/. For simplicity we assume that= 1. For the Stokes
system

Av—Vp=f divv=0

inaballB = B, (yo) in R3, we have the following representation formula (see
[Ca; Va; Gal, p. 234)):

vj (y) = /};Gij (v,2) fi (@)dz — /33 vi (2) [T (Gj, gj) (v, 2] mi (z) do,

py) = —/ gi (v,2) fi (@) dz — 2/ Vi (2) ni (z) do; + const,
B B
whereT;; denotes the stress tensor
Ty (w, ) = =8y + (wig + wyi)

andG; = (G1j, G2j, G3j), G;; andg; are the Green'’s tensors ([Ga |, pp. 226—
227]) which satisfy, for each fixede B,

AyGj(y,2) +Vyg; (v,2) =8 (y —2) €,
diVy G] ()’7 Z) = 0’

G; (O, Z)|yeaB =0.
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Moreover, we havés;; (v, z) = Gj; (z, y), and the estimates
(3.6) Gij (v.2) | S caly — 2™,

B7) VG 0D +IVGi (D) |+ g (0, 2) | S ealy — 2172

for y, z € B (see [Ca, pp. 335-336]). In addition, we can chagseniformly for
p € [1_10’ 10].
By the above estimates we have, for each fixed B (and we restricip €
1
[ 10 10]),
(3.8) I1Gij (v, ) sy S ca(s) for s <3,
(3.9) IV:Gij (v, ) llLssy + lgj (v, ) llsp) = e3(s)  for s < %

whereca(s) andces(s) are independent of € B.
Now we can prove

Lemma 3.3. LetU be aweak solution dfL.3). If U € L4 (R3), 3 < g < oo, then

U@ =o(y) as y— oo

Proof. We defineP by (2.2). For every balB = B, (yo), p € [3,1], by the
representation formula,

Uj (y):/BGij (y,z)andz+LGij (y,2)(az+U)-VU; (2)dz

B faB Ui (2)[Tu (G, &) (v, ] mi (2) do.
Let

11=/ Gij (y,2)aU;dz,
B

Ip= - /33 Ui @[T (G, gj) 0 ] m () do;
then

U; (y) = f Gij (v,2) (az+U)-VU;idz + 1 + I
B

d
Iim/ —1Gii (y,2) (az; + Up) | U; dz
e=0t Jp\B,(y) aZl[ ij v, 2) (az l)] i
+/ Gij (y,2) (azi + Up) Uin; do,
3B

— lim / Gij v,2) (az + U Uinydo, + I + Do.
0B (y)

e—>0t
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The first limit equalds + 14 + 311 where

3
132/ 52Gij 0, 9 azUidz,
B 921

0
Iy = f —Gij (v,2) UU; dz.
B 0z
Let us call the middle ternfs,
Is = /a Gij (y,2) (azy + Up) Uin; do,.
9B

The second limit is zero by (3.6). Hence
Ui(y)=4h+ L+ R+ 14+ Is.

If we make the restriction thay — yo| < 5 and3 < p < 1, then

L] < Cclf U do.
0B

15| < 4c1f alyollU| + U2 do..
0B

Furthermore, sincg > 3, (henceg’ < 3), we have
1] < 4ac2(q') U |lg.5.

13| < ac3(q") 1Ullg,5 - Iyol

by the Hlder inequality and (3.8), (3.9).

Finally we deal withls, which requires more care. df > 6, 14 is o (1) by the
Holder inequality. In the casg € (3, 6], if we use the Wlder inequality, we only
getls=o0 (|yo|1+") for any smalle > O (the detail is left to the interested reader).
Let us use the following weighted inequality Rt*, which is due toLErAY and
HaRrDY. Foranyf € C>* (R"), 1< r < n, and anyy € R", we have

f@
|z — ¥

r

(3.10) <

r,R" n—r

IV fllrRe.

(See [Ga I, p.59] for a proof and the references; also see [La, p. 16] for the case
r = 2.) Now we set = 2 and choose a smooth cut-off functigrwith compact
support inB4 (y), ¢ = 1in B2 (y), |Ve| < 1. We substitutef = ¢U into (3.10)

and get

U (2)
|z =yl

< CIVU 2.8y + CIU N2 840y = 0 (Iyol™?)
2,B2(y)
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by Lemma 3.1. Hence

U 2
|14|§CfB | (Z)'dz=o(|yo|1).

o) 12— 12

We conclude that, fofy — yo| < 3 andp € [3, 1],

U0 1= 0 (bolt) +€ [ abllul+ U Pdor.

3B,

Now we integrate this inequality with respectddrom % to 1 and get
U §0(|yo|1)+C/B alyollU| + U Pdz

1— B34
1
=o (o). ©

Remark 3.2(i) We did not use the full power of the representation formula. It is
enough to assume that= yg in our estimates. (i) Wheg = 3, we can only
show thatiZ3| = o (Jyol**) for any smallo > 0. This is the main difficulty we
encounter if we try to use the same method to do the gase3. (iii) Our analysis
begins with the estimate ¢fVU||2 p,, which is based on the control §t/||3 p,.
Hence to deal with the cage< 3 would seem to require a different idea. (iv) For
3 < ¢ < o0, as we easily see, we can weaken the assumptien’? (R3) to

1Ullg.B2(v) + 1P llg/2.B25) = O @S |y| = o0.
3.4. Another Approachf@3 < ¢ <9

In the case X ¢ < 9, we can apply the same argument of [NRS] to show

(3.11) U (y)| =0 (|y|_1> , IPDMI=0 (|Y|_2+U)

for arbitrary smallo > 0. The argument is as follows. We consider parabolic
cylindersQ1 (xo, T) for |xg| large enough. We will show that the integral

/ lu® + |p|¥%dx dt
Q1(x0,T)
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goes to zero agp| goes to infinity. This can be done by using th@éter inequality
(we recall that. = A (t) = (2a(T — t))—l/Z):

T
/ |u|3dx dt =f d:/ U () |3 (A3dx)
Q1(x0,T) T-1 Bi(x0)
T 3
=/ drf U () 3y
T—1  JB; (o)

T 3/q 1-3/
< / dr ( / U (y) |‘fdy) c(x3)
T-1 B; (Axo)

T
= / 2379 (1) dr -0 (1)
T-1

—o(l) if3<q=<0.

A similar estimate holds for

/ |p|3/2dx drt.
Q1(x0,T)

Hence by [NRS, Proposition 2.1, is bounded inQ1/2 (xo, T) for |xo| bigger

than somey, which is independent of the direction. Therefore, by [Sel, @k,

are uniformly bounded fotx| € [ro — %1, ro + %] t e (T - %, T), for each
k=0,1,2.... In terms ofU, we get the first part of (3.11). We also need to
obtain decay estimates f@t, which is slightly more difficult than the proof of a
corresponding statement in [NRS]. Nevertheless, it is possible to prove the second
part of (3.11) by using the integral form & R; in R®:

RiR fO) = lim / 3 K@ oy~ naz— L5,
AN _8~>O+ lz|>¢ 4 |Z|5 Y Lax 3 ij ),

with K (z) = z;2; — %8ij|z|2 (cf.[St,p. 73, p.58]) angt = U; U;, and by estimating
this integral directly. Since we have proved Lemma 3.2 (which is enough for the
proof of Theorem 1), we leave the details to the interested reader.

Another way to get (3.11) is to replag® (xo, T') by Q1 (0, T) in the previous
computation and get

/ lu|® + |p|3/2dxdt < 0
01(0,7)

if 3 < ¢ < 9. This integral may not be small; hence we cannot use [NRS, Proposi-
tion 2.1] (which uses [CKN, Proposition 2]) to show thas bounded irQ1,2(0, T').
Nonetheless, the proof of the same proposition showg#hat) is a suitable weak
solution in Q3,4 (0, T'), and therefore we can apply the results from Section 4.
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We remark thaG. Tian & Z. XiN [TX] recently proved the boundedness of
suitable weak solutions in Q z,2 (xo, T) under the condition that

(3.12) supr—2 // lu (x, 1) |°dxdt < eo,
r(x,T)

r<R

wheree; is an absolute constant. If we could apply the previous computation, we
would conclude the same estimates (3.11) fer @ < oco. However, [TX] assumes

the local energy estimates (1.4) ioin Q g which, in our case, is not a consequence
of either (3.12) or the assumptidn e L4 (R3).

4. Growth Estimates: Theorem 2

In this section we establish the growth estimates for Theorem 2, that is, under
the assumption of the local energy estimates (1.4)fdy [CKN, p. 781], (1.4)
implies||u|l10/3,0, < oo. We easily calculate that

lu ¢ 0) 2,8, = 2 ()72 1U 28,0

(4.1) / lul1°/3dxdt=/ U Aymin (11792, 25%°) dy,
01 R3

/ |Vu|2dxdt=/ |VU|2-Azmin<|y|—1,,\gl)dy,
01 RS

whereio = (22)~Y2, and A1 and A, are some explicit constants. Hence all the
right-hand sides are finite. An immediate consequence ii)thaﬁivléf. Sinceu is

a weak solution of (1.1) by assumptidii,is a weak solution of (1.3). Hendéand

u are both smooth. In particular,is a “Leray-Hopf weak solution” and it differs
from a “suitable weak solution” only by lacking the estimate

(4.2) peL¥*(010,T)).

From (4.1) we also have

IVU 28100 + 1V l10/3, 310300 = 0 (13012)

If we assume suitable control ¢f|3/2 g, (or of a certain weaker norm), we can
follow the bootstrap argumentin Subsection 3.2 to obtain certain polynomial growth
control of U and P. Unfortunately, the growth control @& cannot be improved by
using Green’s representation formula because of the fgimSubsection 3.3 (cf.
Remark 3.2 (ii)).

Instead, we show that is a suitable weak solution, and apply the partial reg-
ularity result from [CKN] to get the growth estimates @f To show that: is a
suitable weak solution we have to “find” a presspreatisfying (4.2). We do this
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by using some weighted estimates involviag-weights. (See for example [St2,
Chapter 5].) Sincé/ is smooth, the condition (4.1 oo implies that

(4.3) / U3 w (y)dy < oo,
R3

where
w (y) = |y~
It is well known (and easily verified) that (y) is an As;3 weight in RS, that

is, the quantity

Foor) = (— [ woydy)- (= | w324
(3o, 7) <|B|/B ) y) (|B|/B o) y)

is uniformly bounded for all ball# = B, (yo). Using the results in [St2, pp. 204—
211], we see that the operata®sR; used in (2.2) to defing are continuous on

L3/3 (R3), the space of all functiong for which the norm

3/5
1 £llw.s/3 = (/R |f|5/3-w<y)dy)

is finite. Therefore, givew satisfying (4.3), we can sét = 3" R; R, (U;U;) and
we have ~
1Pllws3 < CYIUUjllws/3.

Now, following the proof of Lemma 2.1, we want to show thadiffers from
P only by a constant. We first claim th&tsatisfies (2.1) inthe distributional sense.
This can be proved in the same way as in Lemma 2.1. The waeigloies not cause
any new difficulty since the test functignused in the proof has a compact support.
By Weyl's lemma,P is smooth. Next we have to verify that, for the functibiy)
defined in Lemma 2.1D* F(0) = O for all «. We consider the term involving
y - VU as an example. The computations for other terms are essentially the same.

‘ /R L0V U3l (DY) (ey) dy

= ‘—534"“] 3U (D“(p) (ey)dy — 83+|°“/ Uey; (BjD“q)) (ey) dy‘
R3 R3
3/10
< ce¥tlel ( / U3 (y) dy) :
R3

| (fRs (D) (&) 1y1¥2

10/7 10/7 7/10
‘ +‘8yj(3jD“<ﬂ)(ey)|yll/2‘ dy)

7/10
§ C83+|Ol‘ . (AS I:’(D(X(p) (Z)|10/7 + |ZJ (ajDa(p) (Z)|10/7] |Z|5/78_5/7_3dz>

_ Ce3tlal . o135
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Therefore, as goes to zero, this term goes to zero. This showsfﬁmgether with
U satisfy Leray’'s equation (1.3).

Now we can defing by (1.2p. Clearly p together withu satisfy (1.1) and
p e L53(Qq) sinceP e L3 (R3). We summarize this discussion in

Lemma 4.1. Letu be a weak solution ofL.1) in Q; satisfying the local energy
estimateg1.4). If u is of the form(1.2);, thenu is smooth, and there is a smooth
function p € L%3(Q1) of the form(1.2), such that(u, p) is a suitable weak
solution of(2.1)in Q1.

We remark that, by construction, tfi&/3-norm of p is bounded by the local en-
ergy ofu. More generally, by using similar arguments we can also bdipid,2 o,
by ||u||iQ1 if we assume that € L™ (Q1) for r € (2, 6). (We use the4, 2 weight

Iyl 772
We will use the following lemma, which is a variant of Proposition 2 of [CKN].

Lemma 4.2. Let (4, p) be a suitable weak solution ¢f.1). There is an absolute
constants4 > 0 such that, if

lim sup r‘lf [Vul? < ea,
O (x,1)

r—0t
thenu is essentially bounded i@,, (x, r) for somer; > O.

This lemma differs from Proposition 2 of [CKN] by replacir@ (x, ¢) by
0, (x,1). (We recall thaQ} (x, 1) = Q,(x, 1 + :—érz).) It assumes the information
only at times previous to, and gets control only at times previousttdsince the
original proof of Proposition 2 of [CKN] and the accompanying lemmas go through
without change, we omit the details and refer the reader to [CKN]. As in the proof
of Theorem B in [CKN, p. 807], this lemma implies that the singular set at the top
of the parabolic cylinder also has one-dimensional Hausdorff measure zero.

With this lemma, we can prove

Corollary 4.3. Let (u, p) be a suitable weak solution of the Navier-Stokes equa-
tions(1.1)in Q1 (0, T), and letu be of the form(1.2),. ThenU (y) = O (Jy|72).

Remark Heuristically, if the corollary were not true, there would be a direction
along which|y||U (y)| is not bounded. By the self-similarity, would be singular

at all points on that direction (at tinig); hence we have a segment consisting of
singular points. We know from [CKN] that this would be impossible if they were
interior points. Using Lemma 4.2, we conclude that the top of the parabolic cylinder
cannot contain a singular segment either.

Proof. We may assume thgt = 0. If the corollary were not true, we could find
Yk € R3, |[y| — o0, and
U () | - 1yl > k.

Let us denote/|y| by y. The sefy;} has an accumulation poirg on the unit
spherg|y| = 1}. We may assume th&t — x, by considering a subsequence. We
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assert that is not bounded in an@, (x4, 0) for o € (0, 1) andr € (0O, %) To
see this, let us fix andr, and letig = A (—r2) = 1/+/2ar (we recall that. () =
(—2at)~1/?). Fork large enough, we havey| > oipand|oyx — ox,| < r. Lets
be the time such that(s;) - o = |yx|. We easily check that () = o ~1|y| > Ao
and hence, € (—rz, 0). Therefore the pointo yg, ) is contained inQ, (o xy, 0).
On the other hand,

(0T, 1) | = A (1) - U () o5k) | = o Myl - U (vo) | > o~ k.

This shows the assertion that all points on the segrfignt,,0) : o € (0, 1)}

are singular. This is a contradiction to the fact that the singular set at the top of the
parabolic cylinder has one-dimensional Hausdorff measure zero. This contradiction
shows our corollary. O

To finish the proof of Theorem 2, we have several possibilities. The first way
is to observe that, sindé is smoothU € L7 (R3) for ¢ > 3 by Lemma 4.1 and
Corollary 4.3. Therefore Theorem 2 follows from Theorem 1. The second way is
to prove

(4.4 P(y)=0<|y|N) as y > o

for someN < oo. (Corollary 4.3 and (4.4), together with Lemma 5.1 in the next
section, prove Theorem 2 without using Theorem 1.) To prove (4.4), we can use
Lemma 4.1 and follow the proof of Subsections 3.1 and 3.2, as sketched at the

beginning of this section. Alternatively, since Corollary 4.3 implies that uni-

formly bounded infx : %1 < |x] < 1} x (-1, 0), the same argument of Subsection

3.4 gives the second part of (3.11).

5. The Liouville-Type Lemma and the Main Theorems

In this last section we prove the key Liouville-type lemma and the main theo-
rems.

Lemma5.1. Let/7T : R® — R, andU : R® — RS be smooth, and satisfy
(5.1) —VvAI(y) + (U(y) +ay) - VII(y) =0

inR3.If |U (y) | < b|y| for some constarit € (0, a) and for|y| sufficiently large,

and
I,
|H(y)|=0</ e’ /zds) as |y| — oo,

wherec = (a — b) /v, thenIT is constant.

Proof. Let M (r) = maxy|=- IT (y). M(r) is non-decreasing in by the maximal
principle. Let

b= ey f 2,
cr
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(It satisfies (1.12) up to a constant factor.) It is easy to see that the fungtior=
¢ (]y]) is a supersolution fopy| larger than somey, i.e.,

—vAV(y) + (U(y) +ay)-Vu(y) 20 for |y| > ro.

Let
Ve () = M(ro) +&-[9p(Iy]) —¢ (ro)] for &> 0.

Thenv, are all supersolutions fdy| > ro. It is clear thaty, (y) = IT (y) for
|y| = ro and for|y| nearoco by the growth offT. By the comparison principle we
have

T (y) = M(ro) +&-[¢ (Iy) — ¢ (ro)]  for [y] 2 ro.

Now letting ¢ go to zero, we gefl (y) < M(rg) for all |y| = rp, and hence
maxIT is attained at some, |y| = ro. By the strong maximal principldJ must
be constant. (Notice that our coefficients are bounded in bounded regians.)

Remark 5.1It is reasonable to expect th@l + ay) - VIT acts as a “magnifying
force”, since we are looking for blow-up solutions of the Navier-Stokes equations,
(cf. [GK, equation (3.2)] and [Gi2]). It is known that for Navier-Stokes equations
there existforward self-similar solutions which are defined & x (0, co) and

are singular ato0, 0) (see [GM, CP]). Its corresponding stationary problem behaves
like Av(y) = —y - Vu(y) at infinity, which does not blow up at infinity.

Remark 5.2We can easily extend this lemma R, n = 2. In that case, the
comparison functio takes the form

r 2
¢ (r) =/ s1mes 2

Now we prove Theorems 1 and 2.

Proofs of Theorems 1 and 2Lemmas 3.2 and 3.3, Corollary 4.3 and the estimate
(4.4), give us the growth estimates

U =00y, 1) =0(1y1") as Iyl > oo

under either Theorem 1 or Theorem 2, for sofe: co. Lemma 5.1 then implies
thatI7 is constant. Therefor€I7 is zero, i.e.,

(5.2) UjUji+P;+aU;+ay;Uj; =0 for eachi.
Besides (5.2), if we consider (1.7), we gét(y)|2 = 0, that is,
;U; =9;U; forall i, .
Comparing (5.2) with the equations (1.3)©f
—VAU; +U;U; j+ P; +aU; +ay;U; ; =0 foreach i,

we get
—vAU; =0 foreachi.
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SinceU € L1 (R3) in Theorem 1 and/ — O at infinity in Theorem 2, the usual
Liouville theorem implies that th&; are O (or constant i/ € L°°). The proof is
complete. O

Remark 5.3By Lemma 5.1, it is sufficient to hayé&/ (y)| < b|y| for someb < a
and for|y| > ro (@and P (y) = O (|y|") for someN > 0), for the triviality of U.
The corresponding condition far(given by (1.2)) is

blx|

— f T — Y2,
2a(T —1) or |x| > ( ) “rg

u(x,0)| =

It is interesting to compare it with (1.6).

Remark 5.4To conclude that a solution of (1.3) is zero, certain assumptions on the
growth ofU are necessary, as can be seen from the following examplé. hetan
arbitrary harmonic function oR®. LetU = V& andP = —3|U2 —ay - U, (i.e.,

I = 0). Then(U, P) satisfiesLErAY’s equations (1.3). This gives us a certain
heuristic reason for considering the quanfity That the quantit)% lu|?+ p satisfies

a maximal principle for the stationary Navier-Stokes equations is well known (see,
e.g., [Se2, p. 261, GW)]), and has played an important role in recent results ([FR1,2,
Str3]) regarding the regularity of solutions of the stationary Navier-Stokes equations
in higher dimensions.

Remark 5.5SCcHEFFER [Sch2] raised the question of the existence of nontrivial
solutions ofLERAY’s equation with a “speed-reducing” forge

—vAU +aU +ay-VU+U-VU+VP =g, dv U=0,

for someU, g with U - g < 0. By using the methods in this paper we can obtain
some partial results OBCHEFFER’S question, but the general case seems to remain
open.
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