First Name:	Last Name:	
Student-No:	Section:	
	Grade:	

The remainder of this page has been left blank for your workings.

VERSION A

Indefinite Integrals

- 1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int x^2 \sqrt{8-x^3} \, dx$ for x < 2.

Answer: $I = -2(8 - x^3)^{3/2}/9 + C.$

Solution: Let $u = 8 - x^3$, so that $x^2 dx = -du/3$. Then, $I = -\int (u^{1/2}/3) du = -2u^{3/2}/9 + C$. Using $u = 8 - x^3$ we get $I = -2(8 - x^3)^{3/2}/9 + C$.

(b) Calculate the indefinite integral $\int x\sqrt{x-1} \, dx$ for x > 1.

Answer:
$$\frac{2}{5}(x-1)^{5/2} + \frac{2}{3}(x-1)^{3/2} + C$$

Solution: Let u = x - 1 so du = dx and use x = (1 + u). Then,

$$I = \int (u+1)u^{1/2} \, du = \int \left(u^{3/2} + u^{1/2} \right) \, du = \frac{2}{5}u^{5/2} + \frac{2}{3}u^{3/2} + C \, .$$

Setting u = x - 1 this gives $I = \frac{2}{5}(x - 1)^{5/2} + \frac{2}{3}(x - 1)^{3/2} + C$. **Method 2:** Use integration by parts with u = x and $dv/dx = \sqrt{x - 1}$. Then, du/dx = 1 and $v = \frac{2}{3}(x - 1)^{3/2}$. We get

$$I = uv - \int v \frac{du}{dx} \, dx = \frac{2x}{3} (x-1)^{3/2} - \frac{2}{3} \int (x-1)^{3/2} \, dx = \frac{2x}{3} (x-1)^{3/2} - \frac{4}{15} (x-1)^{5/2} + C.$$

To show that these two methods give the same solution, we write the solution above as

$$I = \frac{2(x-1)}{3}(x-1)^{3/2} + \frac{2}{3}(x-1)^{3/2} - \frac{4}{15}(x-1)^{5/2} + C.$$

Combining together we get

$$I = \left(\frac{2}{3} - \frac{4}{15}\right)(x-1)^{3/2} + \frac{2}{3}(x-1)^{3/2} + C = \frac{2}{5}(x-1)^{5/2} + \frac{2}{3}(x-1)^{3/2} + C.$$

(c) (A Little Harder): Calculate the indefinite integral $\int \ln(1+x^2) dx$.

Answer: $x \ln(1+x^2) - 2x + 2 \arctan(x) + C$

Solution: Let $u = \ln(1+x^2)$ and dv/dx = 1. We calculate $du/dx = 2x/(1+x^2)$ and v = x, so that one step of integration by parts gives

$$I = uv - \int v \frac{du}{dx} \, dx = x \ln(1+x^2) - 2 \int \frac{x^2}{(1+x^2)} \, dx$$

This can be re-written in a form that is readily calculated as

$$I = x \ln(1+x^2) - 2 \int \left[1 - \frac{1}{x^2 + 1}\right] dx = x \ln(1+x^2) - 2 \left(x - \arctan(x)\right) + C.$$

Definite Integrals

- 2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_0^{\pi} \sin^3(x) dx$.

Answer: 4/3

Solution: Use $\sin^2(x) = 1 - \cos^2(x)$ to get $I = \int_0^{\pi} (1 - \cos^2(x)) \sin x \, dx$. Let $u = \cos x$, so that $du = -\sin x \, dx$. Then, since x = 0 maps to u = 1 while $x = \pi$ maps to u = -1, we get

$$I = -\int_{1}^{-1} (1 - u^2) \, du = \int_{-1}^{1} (1 - u^2) \, du = 2\int_{0}^{1} (1 - u^2) \, du = 2(1 - 1/3) = 4/3.$$

(b) Calculate
$$\int_{-1}^{1} \left(x^2 e^{-x^3} + x^5 \cos(x) \right) dx.$$

Answer: $\frac{1}{3}(e^1 - e^{-1})$.

Solution: We write $I = \int_{-1}^{1} x^2 e^{-x^3} dx + \int_{-1}^{1} x^5 \cos(x) dx$. The second integral vanishes since the integrand is odd and the integration is over a symmetric range of the origin. In the first integral put $u = x^3$ so that $(1/3) du = x^2 dx$. Since $x = \pm 1$ maps to $u = \pm 1$, we get $I = \int_{-1}^{1} (e^{-u}/3) du$. We then integrate this expression to get $I = -e^{-u}/3|_{-1}^{1} = \frac{1}{3}(e^1 - e^{-1})$.

(c) (A Little Harder): Calculate $\int_{1}^{e} (\ln x)^{2} dx$. Answer: e - 2.

> **Solution:** Let $u = (\ln x)^2$ and dv/dx = 1. Then, $du/dx = 2(\ln x)/x$ and v = x. By using one step of integration by parts (IBP) we get

$$I = uv|_{1}^{e} - \int_{1}^{e} v \frac{du}{dx} \, dx = x \left(\ln x\right)^{2} |_{1}^{e} - 2 \int_{1}^{e} \ln x \, dx$$

We then use IBP in the second integral. Let $u = \ln x$ and dv/dx = 1 so that du/dx = 1/x and v = x. This gives

$$I = x \left(\ln x \right)^2 |_1^e - 2 \left(x \ln x |_1^e - \int_1^e dx \right) \,.$$

By putting in the limits, and by using $\ln(1) = 0$ and $\ln(e) = 1$, we get I = e - 2[e - (e - 1)] = e - 2.

Riemann Sum, FTC, and Volumes

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the infinite sum

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2i}{n^2 \left(4 + i^2/n^2\right)}$$

by first writing it as a definite integral. Then, evaluate this integral.

Answer:
$$\int_0^1 \frac{2x}{4+x^2} dx = \ln 5 - \ln 4.$$

Solution: We identify $a = 0, b = 1, \Delta x = 1/n, x_i = i/n$, and $f(x_i) = 2x_i/(1 + i)/n$ x_i^2). This yields

$$S \equiv \lim_{n \to \infty} \sum_{i=1}^{n} \frac{2i}{n^2 \left(4 + i^2/n^2\right)} = \lim_{n \to \infty} \sum_{i=1}^{n} (\Delta x) f(x_i) = \int_0^1 \frac{2x}{4 + x^2} \, dx \, .$$

To calculate the integral we let $u = 4 + x^2$, so that $S = \int 1/u \, du = \ln u$. This yields $S = \ln(4 + x^2)|_0^1 = \ln 5 - \ln 4$. (b) Define F(x) and g(x) by $F(x) = \int_1^x \ln t \, dt$ and $g(x) = x F(x^2)$ for x > 1. Calculate g'(e). Answer: $q'(e) = 5e^2 + 1$.

Solution: We use the product rule to get $g'x = F(x^2) + 2x^2F'(x^2)$. Now by FTC I, we get $F'(x^2) = \ln(x^2) = 2 \ln x$. This yields,

$$g'(x) = F(x^2) + 4x^2 \ln x.$$
 (1)

Now let x = e and calculate using integration by parts that

$$F(e^2) = \int_1^{e^2} \ln t \, dt = t \ln t |_1^{e^2} - \int_1^{e^2} (1) \, dt = 2e^2 - (e^2 - 1) = e^2 + 1 \, .$$

Therefore, from (1) and using $\ln(e) = 1$, we get

$$g'(e) = F(e^2) + 4e^2 = 5e^2 + 1.$$

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y = x^2$ and y = 6x-5 about the horizontal line y = -2. Do not evaluate the integral.

4. (a) 2 marks Plot the finite area enclosed by $y^2 = 6 + x$ and 2y = x - 2.

Solution:

The area is the region enclosed between the blue and red curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Answer:
$$\int_{-2}^{4} (2y - y^2 + 8) \, dy.$$

Solution: To find the intersection points we set $x = y^2 - 6 = 2 + 2y$. This yields, $y^2 - 2y - 8 = (y - 4)(y + 2) = 0$, which gives y = -2 and y = 4. We label $x_T = 2y + 2$ (blue curve) and $x_B = y^2 - 6$ (red curve), and observe that $x_T > x_B$ on -2 < y < 4. The area is best calculated as an integral in y, so that $A = \int_{-2}^{4} (x_T - x_B) dy = \int_{-2}^{4} (2y + 2 - (y^2 - 6)) dy$.

- 5. A solid has as its base the region in the xy-plane between $y = 1 x^2/16$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are isosceles right triangles (i.e. 45 - 45 - 90 triangles) with the longest side (i.e. the hypoteneuse) in the base.
 - (a) 4 marks Write a definite integral that determines the volume of the solid.

Answer:
$$V = \frac{1}{4} \int_{-4}^{4} \left[1 - \frac{x^2}{16} \right]^2 dx$$
.

Solution: The intersection points with the x-axis are $x = \pm 4$. This gives, $V = \int_{-4}^{4} A(x) dx$ as the volume, where A(x) is the cross-sectional area of the solid at position x. This cross-section is a 45 - 45 - 90 triangle that has area $A(x) = [y(x)]([y(x)]/2)/2 = [y(x)]^2/4$. Here we have used the fact that the area of a 45 - 45 - 90 triangle with baselength b is bh/2 where h = b/2 is the altitude of the triangle. This gives,

$$V = \frac{1}{4} \int_{-4}^{4} [y(x)]^2 \, dx = \frac{1}{4} \int_{-4}^{4} \left[1 - \frac{x^2}{16} \right]^2 \, dx \, .$$

(b) 2 marks Evaluate the integral to find the volume of the solid.

Solution: Since the integrand is even, we write $V = \frac{1}{2} \int_0^4 \left[1 - \frac{x^2}{16}\right]^2 dx$. Now put x = 4u, so that dx = 4du, and so

$$V = 2\int_0^1 (1-u^2)^2 \, du = 2\int_0^1 \left(1-2u^2+u^4\right) \, du = 2\left(1-\frac{2}{3}+\frac{1}{5}\right) = \frac{16}{15} \, .$$