First Name: \qquad Last Name: \qquad
Student-No: \qquad Section:

> Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int x^{2} \sqrt{8-x^{3}} d x$ for $x<2$.

$$
\text { Answer: } I=-2\left(8-x^{3}\right)^{3 / 2} / 9+C \text {. }
$$

Solution: Let $u=8-x^{3}$, so that $x^{2} d x=-d u / 3$. Then,

$$
I=-\int\left(u^{1 / 2} / 3\right) d u=-2 u^{3 / 2} / 9+C .
$$

Using $u=8-x^{3}$ we get $I=-2\left(8-x^{3}\right)^{3 / 2} / 9+C$.
(b) Calculate the indefinite integral $\int x \sqrt{x-1} d x$ for $x>1$.

$$
\text { Answer: } \frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C
$$

Solution: Let $u=x-1$ so $d u=d x$ and use $x=(1+u)$. Then,

$$
I=\int(u+1) u^{1 / 2} d u=\int\left(u^{3 / 2}+u^{1 / 2}\right) d u=\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}+C .
$$

Setting $u=x-1$ this gives $I=\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C$.
Method 2: Use integration by parts with $u=x$ and $d v / d x=\sqrt{x-1}$. Then, $d u / d x=1$ and $v=\frac{2}{3}(x-1)^{3 / 2}$. We get

$$
I=u v-\int v \frac{d u}{d x} d x=\frac{2 x}{3}(x-1)^{3 / 2}-\frac{2}{3} \int(x-1)^{3 / 2} d x=\frac{2 x}{3}(x-1)^{3 / 2}-\frac{4}{15}(x-1)^{5 / 2}+C .
$$

To show that these two methods give the same solution, we write the solution above as

$$
I=\frac{2(x-1)}{3}(x-1)^{3 / 2}+\frac{2}{3}(x-1)^{3 / 2}-\frac{4}{15}(x-1)^{5 / 2}+C .
$$

Combining together we get

$$
I=\left(\frac{2}{3}-\frac{4}{15}\right)(x-1)^{3 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C=\frac{2}{5}(x-1)^{5 / 2}+\frac{2}{3}(x-1)^{3 / 2}+C .
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \ln \left(1+x^{2}\right) d x$.

$$
\text { Answer: } x \ln \left(1+x^{2}\right)-2 x+2 \arctan (x)+C
$$

Solution: Let $u=\ln \left(1+x^{2}\right)$ and $d v / d x=1$. We calculate $d u / d x=2 x /\left(1+x^{2}\right)$ and $v=x$, so that one step of integration by parts gives

$$
I=u v-\int v \frac{d u}{d x} d x=x \ln \left(1+x^{2}\right)-2 \int \frac{x^{2}}{\left(1+x^{2}\right)} d x .
$$

This can be re-written in a form that is readily calculated as

$$
I=x \ln \left(1+x^{2}\right)-2 \int\left[1-\frac{1}{x^{2}+1}\right] d x=x \ln \left(1+x^{2}\right)-2(x-\arctan (x))+C .
$$

Definite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi} \sin ^{3}(x) d x$.

Answer: 4/3
Solution: Use $\sin ^{2}(x)=1-\cos ^{2}(x)$ to get $I=\int_{0}^{\pi}\left(1-\cos ^{2}(x)\right) \sin x d x$. Let $u=\cos x$, so that $d u=-\sin x d x$. Then, since $x=0$ maps to $u=1$ while $x=\pi$ maps to $u=-1$, we get

$$
I=-\int_{1}^{-1}\left(1-u^{2}\right) d u=\int_{-1}^{1}\left(1-u^{2}\right) d u=2 \int_{0}^{1}\left(1-u^{2}\right) d u=2(1-1 / 3)=4 / 3 .
$$

(b) Calculate $\int_{-1}^{1}\left(x^{2} e^{-x^{3}}+x^{5} \cos (x)\right) d x$.

Answer: $\frac{1}{3}\left(e^{1}-e^{-1}\right)$.
Solution: We write $I=\int_{-1}^{1} x^{2} e^{-x^{3}} d x+\int_{-1}^{1} x^{5} \cos (x) d x$. The second integral vanishes since the integrand is odd and the integration is over a symmetric range of the origin. In the first integrat put $u=x^{3}$ so that $(1 / 3) d u=x^{2} d x$. Since $x= \pm 1$ maps to $u= \pm 1$, we get $I=\int_{-1}^{1}\left(e^{-u} / 3\right) d u$. We then integrate this expression to get $I=-e^{-u} /\left.3\right|_{-1} ^{1}=\frac{1}{3}\left(e^{1}-e^{-1}\right)$.
(c) (A Little Harder): Calculate $\int_{1}^{e}(\ln x)^{2} d x$.

$$
\text { Answer: } e-2 \text {. }
$$

Solution: Let $u=(\ln x)^{2}$ and $d v / d x=1$. Then, $d u / d x=2(\ln x) / x$ and $v=x$. By using one step of integration by parts (IBP) we get

$$
I=\left.u v\right|_{1} ^{e}-\int_{1}^{e} v \frac{d u}{d x} d x=\left.x(\ln x)^{2}\right|_{1} ^{e}-2 \int_{1}^{e} \ln x d x .
$$

We then use IBP in the second integral. Let $u=\ln x$ and $d v / d x=1$ so that $d u / d x=1 / x$ and $v=x$. This gives

$$
I=\left.x(\ln x)^{2}\right|_{1} ^{e}-2\left(\left.x \ln x\right|_{1} ^{e}-\int_{1}^{e} d x\right) .
$$

By putting in the limits, and by using $\ln (1)=0$ and $\ln (e)=1$, we get $I=$ $e-2[e-(e-1)]=e-2$.

Riemann Sum, FTC, and Volumes

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i}{n^{2}\left(4+i^{2} / n^{2}\right)}
$$

by first writing it as a definite integral. Then, evaluate this integral.
Answer: $\quad \int_{0}^{1} \frac{2 x}{4+x^{2}} d x=\ln 5-\ln 4$.
Solution: We identify $a=0, b=1, \Delta x=1 / n, x_{i}=i / n$, and $f\left(x_{i}\right)=2 x_{i} /(1+$ $\left.x_{i}^{2}\right)$. This yields

$$
S \equiv \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i}{n^{2}\left(4+i^{2} / n^{2}\right)}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(\Delta x) f\left(x_{i}\right)=\int_{0}^{1} \frac{2 x}{4+x^{2}} d x
$$

To calculate the integral we let $u=4+x^{2}$, so that $S=\int 1 / u d u=\ln u$. This yields $S=\left.\ln \left(4+x^{2}\right)\right|_{0} ^{1}=\ln 5-\ln 4$.
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{1}^{x} \ln t d t$ and $g(x)=x F\left(x^{2}\right)$ for $x>1$. Calculate $g^{\prime}(e)$.

Answer: $g^{\prime}(e)=5 e^{2}+1$.
Solution: We use the product rule to get $\left.g^{\prime} x\right)=F\left(x^{2}\right)+2 x^{2} F^{\prime}\left(x^{2}\right)$. Now by FTC I, we get $F^{\prime}\left(x^{2}\right)=\ln \left(x^{2}\right)=2 \ln x$. This yields,

$$
\begin{equation*}
g^{\prime}(x)=F\left(x^{2}\right)+4 x^{2} \ln x . \tag{1}
\end{equation*}
$$

Now let $x=e$ and calculate using integration by parts that

$$
F\left(e^{2}\right)=\int_{1}^{e^{2}} \ln t d t=\left.t \ln t\right|_{1} ^{e^{2}}-\int_{1}^{e^{2}}(1) d t=2 e^{2}-\left(e^{2}-1\right)=e^{2}+1
$$

Therefore, from (1) and using $\ln (e)=1$, we get

$$
g^{\prime}(e)=F\left(e^{2}\right)+4 e^{2}=5 e^{2}+1 .
$$

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=x^{2}$ and $y=6 x-5$ about the horizontal line $y=-2$. Do not evaluate the integral.

$$
\text { Answer: } \quad V=\pi \int_{1}^{5}\left[(6 x-5+2)^{2}-\left(x^{2}+2\right)^{2}\right] d x
$$

Solution:

The two curves intersect when $x^{2}=6 x-5$, which yields $(x-5)(x-1)=0$. This gives $x=1$ and $x=5$ for which $y=1$ and $y=25$, respectively. The intersection points are in the first quadrant. Define $y_{T}=6 x-5$ (top blue curve) and $y_{B}=x^{2}$ (bottom red curve). Then, at each x in $[1,5]$, we have that $\left(y_{T}+2\right)$ and $\left(y_{B}+2\right)$ are the distances of the two curves from the axis of rotation $y=-2$ shown by the orange curve, This yields $V=\pi \int_{1}^{5}\left[\left(y_{T}+2\right)^{2}-\left(y_{B}+2\right)^{2}\right] d x$.
4. (a) 2 marks Plot the finite area enclosed by $y^{2}=6+x$ and $2 y=x-2$.

Solution:

The area is the region enclosed between the blue and red curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Answer: $\int_{-2}^{4}\left(2 y-y^{2}+8\right) d y$.
Solution: To find the intersection points we set $x=y^{2}-6=2+2 y$. This yields, $y^{2}-2 y-8=(y-4)(y+2)=0$, which gives $y=-2$ and $y=4$. We label $x_{T}=2 y+2$ (blue curve) and $x_{B}=y^{2}-6$ (red curve), and observe that $x_{T}>x_{B}$ on $-2<y<4$. The area is best calculated as an integral in y, so that $A=\int_{-2}^{4}\left(x_{T}-x_{B}\right) d y=\int_{-2}^{4}\left(2 y+2-\left(y^{2}-6\right)\right) d y$.
5. A solid has as its base the region in the $x y$-plane between $y=1-x^{2} / 16$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are isosceles right triangles (i.e. $45-45-90$ triangles) with the longest side (i.e. the hypoteneuse) in the base.
(a) 4 marks Write a definite integral that determines the volume of the solid.

$$
\text { Answer: } V=\frac{1}{4} \int_{-4}^{4}\left[1-\frac{x^{2}}{16}\right]^{2} d x
$$

Solution: The intersection points with the x-axis are $x= \pm 4$. This gives, $V=\int_{-4}^{4} A(x) d x$ as the volume, where $A(x)$ is the cross-sectional area of the solid at position x. This cross-section is a $45-45-90$ triangle that has area $A(x)=[y(x)]([y(x)] / 2) / 2=[y(x)]^{2} / 4$. Here we have used the fact that the area of a 45-45-90 triangle with baselength b is $b h / 2$ where $h=b / 2$ is the altitude of the triangle. This gives,

$$
V=\frac{1}{4} \int_{-4}^{4}[y(x)]^{2} d x=\frac{1}{4} \int_{-4}^{4}\left[1-\frac{x^{2}}{16}\right]^{2} d x
$$

(b) 2 marks Evaluate the integral to find the volume of the solid.

Answer: 16/15
Solution: Since the integrand is even, we write $V=\frac{1}{2} \int_{0}^{4}\left[1-\frac{x^{2}}{16}\right]^{2} d x$. Now put $x=4 u$, so that $d x=4 d u$, and so

$$
V=2 \int_{0}^{1}\left(1-u^{2}\right)^{2} d u=2 \int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u=2\left(1-\frac{2}{3}+\frac{1}{5}\right)=\frac{16}{15} .
$$

