First Name: \qquad Last Name: \qquad
Student-No: \qquad Section:
Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \frac{3 x}{x+4} d x$.

$$
\text { Answer: } \quad I=3 x-12 \ln |x+4|+C
$$

Solution: We first write

$$
I=3 \int \frac{x}{x+4} d x=3 \int\left[1-\frac{4}{x+4}\right] d x=3 x-12 \ln |x+4|+C .
$$

(b) Calculate the indefinite integral $\int \arctan (x) d x$.

$$
\text { Answer: } \quad I=x \arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)+C
$$

Solution: Let $u=\arctan (x)$ and $d v / d x=1$. We calculate $d u / d x=1 /\left(1+x^{2}\right)$ and $v=x$, so that one step of integration by parts gives

$$
I=u v-\int v \frac{d u}{d x} d x=x \arctan (x)-\int \frac{x}{\left(1+x^{2}\right)} d x
$$

In the integral, we let $u=1+x^{2}$ so that $x d x=d u / 2$. We integrate to get

$$
I=x \arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)+C .
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{1}{x \sqrt{x^{2}-1}} d x$ for $x>1$.

$$
\text { Answer: } I=\operatorname{arcsec}(x)+C=\arctan \left(\sqrt{x^{2}-1}\right)+C
$$

Solution: Let $x=\sec \theta$ so that $d x=\sec \theta \tan \theta d \theta$ and $\sqrt{x^{2}-1}=\tan \theta$ if $0<\theta<\pi / 2$. We calculate

$$
\int \frac{1}{x \sqrt{x^{2}-1}} d x=\int \frac{\sec \theta \tan \theta}{\sec \theta \tan \theta} d \theta=\int(1) d \theta=\theta+C
$$

Now $\theta=\operatorname{arcsec}(x)$ or $\theta=\arctan \left(\sqrt{x^{2}-1}\right)$.

Definite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 4} \tan ^{2}(x) d x$

$$
\text { Answer: } 1-\frac{\pi}{4}
$$

Solution: We use $\tan ^{2}(x)=\sec ^{2}(x)-1$ to get

$$
\int_{0}^{\pi / 4} \tan ^{2}(x) d x=\int_{0}^{\pi / 4} \sec ^{2}(x) d x-\int_{0}^{\pi / 4} 1 d x=\left.\tan (x)\right|_{0} ^{\pi / 4}-\left.x\right|_{0} ^{\pi / 4}
$$

Since $\tan (\pi / 4)=1$, this yields that $\int_{0}^{\pi / 4} \tan ^{2}(x) d x=1-\frac{\pi}{4}$.
(b) Calculate $\int_{-\pi}^{\pi}\left(1+x^{3}\right) \cos ^{2}(x) d x$.

Answer: π
Solution: $\int_{-\pi}^{\pi}\left(1+x^{3}\right) \cos ^{2}(x) d x=\int_{-\pi}^{\pi} \cos ^{2}(x) d x+\int_{-\pi}^{\pi} x^{3} \cos ^{2}(x) d x$
Since $x^{3} \cos ^{2}(x)$ is an odd function on a symmetric interval the second term evaluates to zero. Then, by using $\cos ^{2}(x)=1 / 2+\cos (2 x) / 2$ we get

$$
\begin{aligned}
\int_{-\pi}^{\pi} \cos ^{2}(x) d x & =\int_{-\pi}^{\pi} \frac{1}{2} d x+\int_{-\pi}^{\pi} \frac{\cos (2 x)}{2} d x \\
& =\pi+\left.\frac{\sin (2 x)}{4}\right|_{-\pi} ^{\pi} \\
& =\pi+0=\pi
\end{aligned}
$$

(c) (A Little Harder): Calculate $\int_{0}^{\infty} e^{-x} \cos (x) d x$.

Answer: $\frac{1}{2}$
Solution: Define $I=\int e^{-x} \cos (x) d x$.
We use integration by parts: We let $u=e^{-x}$ and $d v / d x=\cos (x)$ so that $v=\sin (x)$ and $u=-e^{-x}$. This gives

$$
I=e^{-x} \sin (x)-\int-e^{-x} \sin (x) d x=e^{-x} \sin (x)+\int e^{-x} \sin (x) d x
$$

In the second integral substitute $u=e^{-x}$ and $d v / d x=\sin (x)$ so that $v=$ $-\cos (x)$ and $d u / d x=-e^{-x}$. Then,

$$
\begin{aligned}
I & =e^{-x} \sin (x)+\left[e^{-x}(-\cos (x))-\int(-1) e^{-x}(-\cos (x)) d x\right] \\
& =e^{-x} \sin (x)+\left[-e^{-x} \cos (x)-\int e^{-x} \cos (x) d x\right] \\
& =e^{-x} \sin (x)+\left[-e^{-x} \cos (x)-I\right] \\
& =e^{-x} \sin (x)-e^{-x} \cos (x)-I \\
2 I & =e^{-x}(\sin (x)-\cos (x)) \\
I & =\frac{1}{2} e^{-x}(\sin (x)-\cos (x))
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} e^{-n}=0$ and $\sin (n)-\cos (n)$ is bounded (is at most 2) we have $\lim _{n \rightarrow \infty} I(n)=0$. This gives,

$$
\int_{0}^{\infty} e^{-x} \cos (x)=\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-x} \cos (x)=\lim _{n \rightarrow \infty}(I(n)-I(0))=-I(0)=1 / 2 .
$$

Riemann Sum, FTC, and Volumes

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{8 i}{n^{2}} \sqrt{1+\frac{4 i^{2}}{n^{2}}}
$$

by first writing it as a definite integral. Then, evaluate this integral.
Answer: $\frac{2}{3}(5 \sqrt{5}-1)$
Solution: We let $\Delta x=1 / n$ and $x_{i}=i / n$ so that $a=0$ and $b=1$. Then, $f\left(x_{i}\right)=8 x_{i} \sqrt{1+4 x_{i}^{2}}$. This yields that the Riemann is $\int_{0}^{1} 8 x \sqrt{1+4 x^{2}} d x$. Let $u=1+4 x^{2}$ so that $d u=8 x d x$. When $x=0$ then $u=1$ and when $x=1$ then $u=5$. This gives,

$$
I=\int_{1}^{5} u^{1 / 2} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{1} ^{5}=\frac{2}{3}(5 \sqrt{5}-1) .
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x} \cos ^{2}(t) d t$ and $g(x)=x F\left(x^{2}\right)$. Calculate $g^{\prime}(\sqrt{\pi})$.

$$
\text { Answer: } 5 \pi / 2
$$

Solution: $g^{\prime}(x)=x F^{\prime}\left(x^{2}\right)(2 x)+F\left(x^{2}\right)=2 x^{2} \cos ^{2}\left(x^{2}\right)+F\left(x^{2}\right)$. We get $g^{\prime}(\sqrt{\pi})=$ $2 \pi \cos ^{2}(\pi)+F(\pi)$, and then calculate $F(\pi)$ as

$$
F(\pi)=\int_{0}^{\pi} \cos ^{2}(t) d t=\int_{0}^{\pi} \frac{1}{2} d t+\int_{0}^{\pi} \frac{\cos (2 t)}{2} d t=\frac{\pi}{2}+\left.\frac{\sin (2 t)}{4}\right|_{0} ^{\pi}=\frac{\pi}{2}
$$

Since $\cos ^{2}(\pi)=1$, this yields that $g^{\prime}(\sqrt{\pi})=5 \pi / 2$.
(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=x^{2}$ and $y=9 x$ about the horizontal line $y=-2$. Do not evaluate the integral.

Answer: $\pi \int_{0}^{9}\left[(9 x+2)^{2}-\left(x^{2}+2\right)^{2}\right] d x$

Solution:

The two curves intersect when $x^{2}=9 x$, which yields $x=0$ and $x=9$. Define $y_{T}=9 x$ (top blue curve) and $y_{B}=x^{2}$ (bottom red curve), so that $y_{T}>y_{B}$ on $[0,9]$. Then, at each x in $[0,9]$, we have that $\left(y_{T}+2\right)$ and $\left(y_{B}+2\right)$ are the distances of the two curves from the axis of rotation $y=-2$ shown by the orange curve. This yields $V=\pi \int_{1}^{5}\left[\left(y_{T}+2\right)^{2}-\left(y_{B}+2\right)^{2}\right] d x=$ $\pi \int_{0}^{9}\left[(9 x+2)^{2}-\left(x^{2}+2\right)^{2}\right] d x$.
4. (a) 2 marks Plot the finite area enclosed by $y^{2}=10-x$ and $x=(y-2)^{2}$.

Solution:

The area is the enclosed region between the blue and red curves:

The curves (as a function of y) are $x=10-y^{2}$ (red curve) and $x=(y-2)^{2}$ (blue curve), and they intersect when

$$
10-y^{2}=(y-2)^{2} \rightarrow 0=2 y^{2}-4 y-6 \quad \rightarrow \quad 0=(y-3)(y+1)
$$

This gives $y=1$ and $y=3$, corresponding to $x=9$ and $x=1$.
(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Answer: $\int_{-1}^{3}\left[\left(10-y^{2}\right)-(y-2)^{2}\right] d y$
Solution: We label $x_{T}=10-y^{2}$ (red curve) and $x_{B}=(y-2)^{2}$ (blue curve), and observe that $x_{T}>x_{B}$ on $-1<y<3$. The area is best represented as an integral in y : we get $\int_{-1}^{3}\left[\left(10-y^{2}\right)-(y-2)^{2}\right] d y$.
5. A solid has as its base the region in the $x y$-plane between $y=1-x^{2} / 16$ and the x axis. The cross-sections of the solid perpendicular to the x-axis are semi-circles with the diameter of the semi-circle in the base.
(a) 4 marks Write a definite integral that determines the volume of the solid.

$$
\text { Answer: } \frac{\pi}{8} \int_{-4}^{4}\left(1-\frac{x^{2}}{16}\right)^{2} d x
$$

Solution: For a cross-section along the $y-z$ plane we obtain a semi-circle with diameter $1-x^{2} / 16$ which means the area $A(x)$ of the semi-circle is $\frac{\pi}{2}\left(\frac{1}{2}\left(1-\frac{x^{2}}{16}\right)\right)^{2}$. Thus, the volume of the solid is $V=\int_{-4}^{4} A(x) d x$. This yields that

$$
V=\frac{\pi}{8} \int_{-4}^{4}\left(1-\frac{x^{2}}{16}\right)^{2} d x
$$

(b) 2 marks Evaluate the integral to find the volume of the solid.

$$
\text { Answer: } \frac{13}{15} \pi
$$

Solution: Let $x=4 u$. Then, $d x=4 d u$, so that using symmetry

$$
V=\frac{\pi}{8} \int_{-1}^{1}\left(1-u^{2}\right)^{2}(4 d u) \Rightarrow \pi \int_{0}^{1}\left(1-u^{2}\right)^{2} d u=\pi \int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u
$$

This yields

$$
V=\pi\left(1-\frac{1}{3}+\frac{1}{5}\right)=\frac{\pi}{15}(15-5+3)=\frac{13 \pi}{15}
$$

