First Name:	Last Name:
Student-No:	_ Section:
	Grade:

The remainder of this page has been left blank for your workings.

VERSION B

Indefinite Integrals

- 1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int \frac{3x}{x+4} dx$.

Answer:
$$I = 3x - 12 \ln |x + 4| + C$$

Solution: We first write

$$I = 3\int \frac{x}{x+4} \, dx = 3\int \left[1 - \frac{4}{x+4}\right] \, dx = 3x - 12\ln|x+4| + C \, .$$

(b) Calculate the indefinite integral $\int \arctan(x) dx$.

Answer:
$$I = x \arctan(x) - \frac{1}{2}\ln(1+x^2) + C$$

Solution: Let $u = \arctan(x)$ and dv/dx = 1. We calculate $du/dx = 1/(1 + x^2)$ and v = x, so that one step of integration by parts gives

$$I = uv - \int v \frac{du}{dx} dx = x \arctan(x) - \int \frac{x}{(1+x^2)} dx$$

In the integral, we let $u = 1 + x^2$ so that $x \, dx = du/2$. We integrate to get

$$I = x \arctan(x) - \frac{1}{2}\ln(1 + x^2) + C$$

(c) (A Little Harder): Calculate the indefinite integral $\int \frac{1}{x\sqrt{x^2-1}} dx$ for x > 1.

Answer: $I = \operatorname{arcsec}(x) + C = \operatorname{arctan}(\sqrt{x^2 - 1}) + C.$

Solution: Let $x = \sec \theta$ so that $dx = \sec \theta \tan \theta \, d\theta$ and $\sqrt{x^2 - 1} = \tan \theta$ if $0 < \theta < \pi/2$. We calculate $\int \frac{1}{\sqrt{1-x^2}} \, dx = \int \frac{\sec \theta \tan \theta}{\theta + x^2} \, d\theta = \int (1) \, d\theta = \theta + C$

$$\int \frac{dx}{x\sqrt{x^2-1}} dx = \int \frac{dx}{\sec\theta \tan\theta} d\theta = \int (1)d\theta = \theta + \frac{1}{2} \int \frac{d\theta}{\sin\theta} d\theta = \int \frac{d\theta}{\sin\theta} d\theta = \int \frac{d\theta}{\sin\theta} d\theta = \frac{1}{2} \int \frac{d\theta}{\partial\theta} d\theta = \frac{$$

Now $\theta = \operatorname{arcsec}(x)$ or $\theta = \arctan(\sqrt{x^2 - 1})$.

Definite Integrals

Answer: $1 - \frac{\pi}{2}$

- 2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_0^{\pi/4} \tan^2(x) dx$

Solution: We use
$$\tan^2(x) = \sec^2(x) - 1$$
 to get

$$\int_0^{\pi/4} \tan^2(x) \, dx = \int_0^{\pi/4} \sec^2(x) \, dx - \int_0^{\pi/4} 1 \, dx = \tan(x) \mid_0^{\pi/4} -x \mid_0^{\pi/4} .$$
Since $\tan(\pi/4) = 1$, this yields that $\int_0^{\pi/4} \tan^2(x) \, dx = 1 - \frac{\pi}{4}$.

(b) Calculate $\int_{-\pi}^{\pi} (1+x^3) \cos^2(x) dx$.

Answer: π

Solution: $\int_{-\pi}^{\pi} (1+x^3) \cos^2(x) dx = \int_{-\pi}^{\pi} \cos^2(x) dx + \int_{-\pi}^{\pi} x^3 \cos^2(x) dx$ Since $x^3 \cos^2(x)$ is an odd function on a symmetric interval the second term evaluates to zero. Then, by using $\cos^2(x) = 1/2 + \cos(2x)/2$ we get

$$\int_{-\pi}^{\pi} \cos^2(x) \, dx = \int_{-\pi}^{\pi} \frac{1}{2} \, dx + \int_{-\pi}^{\pi} \frac{\cos(2x)}{2} \, dx$$
$$= \pi + \frac{\sin(2x)}{4} \mid_{-\pi}^{\pi}$$
$$= \pi + 0 = \pi \, .$$

(c) (A Little Harder): Calculate $\int_0^\infty e^{-x} \cos(x) dx$.

Answer: $\frac{1}{2}$

Solution: Define $I = \int e^{-x} \cos(x) dx$. We use integration by parts: We let $u = e^{-x}$ and $dv/dx = \cos(x)$ so that $v = \sin(x)$ and $u = -e^{-x}$. This gives

$$I = e^{-x}\sin(x) - \int -e^{-x}\sin(x) \, dx = e^{-x}\sin(x) + \int e^{-x}\sin(x) \, dx.$$

In the second integral substitute $u = e^{-x}$ and $dv/dx = \sin(x)$ so that $v = -\cos(x)$ and $du/dx = -e^{-x}$. Then,

$$I = e^{-x}\sin(x) + \left[e^{-x}(-\cos(x)) - \int (-1)e^{-x}(-\cos(x)) \, dx\right]$$

= $e^{-x}\sin(x) + \left[-e^{-x}\cos(x) - \int e^{-x}\cos(x) \, dx\right]$
= $e^{-x}\sin(x) + \left[-e^{-x}\cos(x) - I\right]$
= $e^{-x}\sin(x) - e^{-x}\cos(x) - I$
 $2I = e^{-x}(\sin(x) - \cos(x))$
 $I = \frac{1}{2}e^{-x}(\sin(x) - \cos(x))$

Since $\lim_{n\to\infty} e^{-n} = 0$ and $\sin(n) - \cos(n)$ is bounded (is at most 2) we have $\lim_{n\to\infty} I(n) = 0$. This gives,

$$\int_0^\infty e^{-x} \cos(x) = \lim_{n \to \infty} \int_0^n e^{-x} \cos(x) = \lim_{n \to \infty} (I(n) - I(0)) = -I(0) = 1/2.$$

Riemann Sum, FTC, and Volumes

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the infinite sum

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{8i}{n^2} \sqrt{1 + \frac{4i^2}{n^2}}$$

by first writing it as a definite integral. Then, evaluate this integral.

Answer: $\frac{2}{3}(5\sqrt{5}-1)$

Solution: We let $\Delta x = 1/n$ and $x_i = i/n$ so that a = 0 and b = 1. Then, $f(x_i) = 8x_i\sqrt{1+4x_i^2}$. This yields that the Riemann is $\int_0^1 8x\sqrt{1+4x^2} dx$. Let $u = 1 + 4x^2$ so that du = 8x dx. When x = 0 then u = 1 and when x = 1 then u = 5. This gives,

$$I = \int_{1}^{5} u^{1/2} du = \frac{2}{3} u^{3/2} |_{1}^{5} = \frac{2}{3} \left(5\sqrt{5} - 1 \right)$$

(b) Define F(x) and g(x) by $F(x) = \int_0^x \cos^2(t) dt$ and $g(x) = x F(x^2)$. Calculate $g'(\sqrt{\pi})$. Answer: $5\pi/2$

Solution:
$$g'(x) = xF'(x^2)(2x) + F(x^2) = 2x^2 \cos^2(x^2) + F(x^2)$$
. We get $g'(\sqrt{\pi}) = 2\pi \cos^2(\pi) + F(\pi)$, and then calculate $F(\pi)$ as
 $F(\pi) = \int_0^{\pi} \cos^2(t) dt = \int_0^{\pi} \frac{1}{2} dt + \int_0^{\pi} \frac{\cos(2t)}{2} dt = \frac{\pi}{2} + \frac{\sin(2t)}{4} |_0^{\pi} = \frac{\pi}{2}$.
Since $\cos^2(\pi) = 1$, this yields that $g'(\sqrt{\pi}) = 5\pi/2$.

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y = x^2$ and y = 9x about the horizontal line y = -2. Do not evaluate the integral.

4. (a) 2 marks Plot the finite area enclosed by $y^2 = 10 - x$ and $x = (y - 2)^2$.

Solution:

The area is the enclosed region between the blue and red curves:

The curves (as a function of y) are $x = 10 - y^2$ (red curve) and $x = (y - 2)^2$ (blue curve), and they intersect when

$$10 - y^2 = (y - 2)^2 \rightarrow 0 = 2y^2 - 4y - 6 \rightarrow 0 = (y - 3)(y + 1).$$

This gives y = 1 and y = 3, corresponding to x = 9 and x = 1.

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Answer:
$$\int_{-1}^{3} \left[(10 - y^2) - (y - 2)^2 \right] dy$$

Solution: We label $x_T = 10 - y^2$ (red curve) and $x_B = (y - 2)^2$ (blue curve), and observe that $x_T > x_B$ on -1 < y < 3. The area is best represented as an integral in y: we get $\int_{-1}^{3} [(10 - y^2) - (y - 2)^2] dy$.

- 5. A solid has as its base the region in the xy-plane between $y = 1 x^2/16$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are semi-circles with the diameter of the semi-circle in the base.
 - (a) 4 marks Write a definite integral that determines the volume of the solid.

Answer:
$$\frac{\pi}{8} \int_{-4}^{4} \left(1 - \frac{x^2}{16}\right)^2 dx$$

Solution: For a cross-section along the y-z plane we obtain a semi-circle with diameter $1-x^2/16$ which means the area A(x) of the semi-circle is $\frac{\pi}{2}\left(\frac{1}{2}\left(1-\frac{x^2}{16}\right)\right)^2$. Thus, the volume of the solid is $V = \int_{-4}^4 A(x) \, dx$. This yields that

$$V = \frac{\pi}{8} \int_{-4}^{4} \left(1 - \frac{x^2}{16}\right)^2 \, dx$$

(b) 2 marks Evaluate the integral to find the volume of the solid.

Answer:
$$\frac{13}{15}\pi$$

Solution: Let $x = 4u$. Then, $dx = 4du$, so that using symmetry
 $V = \frac{\pi}{8} \int_{-1}^{1} (1 - u^2)^2 (4du) = \pi \int_{0}^{1} (1 - u^2)^2 du = \pi \int_{0}^{1} (1 - 2u^2 + u^4) du$.
This yields
 $V = \pi \left(1 - \frac{1}{3} + \frac{1}{5}\right) = \frac{\pi}{15} (15 - 5 + 3) = \frac{13\pi}{15}$.