First Name: \qquad Last Name: \qquad
Student-No: \qquad Section:
Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \sin ^{3}(x) d x$.

$$
\text { Answer: } \frac{1}{3} \cos ^{3}(x)-\cos (x)+C
$$

Solution: Use $\sin ^{2}(x)=1-\cos ^{2}(x)$ to convert the integral to $I=\int(1-$ $\left.\cos ^{2}(x)\right) \sin (x) d x$. Then let $u=\cos (x)$, so that $d u=-\sin (x) d x$, and the integral is

$$
I=\int\left(1-u^{2}\right)(-d u)=-u+\frac{1}{3} u^{3}+C .
$$

Substituting $\cos (x)$ back for u gets the answer $I=\frac{1}{3} \cos ^{3}(x)-\cos (x)+C$.
(b) Calculate the indefinite integral $\int \frac{1}{x(\ln x)^{2}} d x$ for $x>0$.

$$
\text { Answer: }-\frac{1}{\ln x}+C
$$

Solution: Let $u=\ln x$ so $d u=\frac{1}{x} d x$. The integral becomes

$$
I=\int \frac{1}{u^{2}} d u=-\frac{1}{u}+C .
$$

Set $u=\ln (x)$ to get that $I=-\frac{1}{\ln x}+C$.
(c) (A Little Harder): Calculate the indefinite integral $\int \frac{\sqrt{x^{2}-25}}{x} d x$ for $x>5$.

Answer: $\sqrt{x^{2}-25}-5 \operatorname{arcsec}(x / 5)+C$
Solution: Use the trig substitution $x=5 \sec (\theta)$, so that $d x=5 \sec \theta \tan \theta d \theta$. The integral becomes

$$
I=\int \frac{\sqrt{25 \sec ^{2} \theta-25}}{5 \sec \theta} 5 \sec \theta \tan \theta d \theta=\int 5 \tan ^{2} \theta d \theta
$$

With the help of the identity $\tan ^{2} \theta+1=\sec ^{2} \theta$ this becomes

$$
5 \int\left(\sec ^{2} \theta-1\right) d \theta=5 \tan \theta-5 \theta+C
$$

When substituting back $x=5 \sec (\theta)$ we can make a triangle with hypotenuse x and adjacent side length 5 , so that $\tan \theta=\frac{\sqrt{x^{2}-5^{2}}}{5}$. The final answer is $I=$ $\sqrt{x^{2}-25}-5 \operatorname{arcsec}(x / 5)+C$.

Definite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 8} \tan ^{5}(2 x) \sec ^{2}(2 x) d x$.

$$
\text { Answer: } \frac{1}{12}
$$

Solution: Let $u=2 x, d u=2 d x$, and the endpoints to the integral are now $u=0$ and $u=\pi / 4$. Then, we calculate

$$
\int_{0}^{\pi / 4} \tan ^{5}(u) \sec ^{2}(u) \frac{d u}{2}
$$

With the substitution $w=\tan u$, we get $d w=\sec ^{2}(u) d u$, and the endpoints are now $w=0$ and $w=1$. The integral is

$$
\frac{1}{2} \int_{0}^{1} w^{5} d w=\frac{1}{2}\left[\frac{1}{6} w^{6}\right]_{0}^{1}=\frac{1}{12}
$$

(b) Calculate $\int_{-2}^{-1} \frac{1}{(x+2)^{2}+1} d x$.

$$
\text { Answer: } \frac{\pi}{4}
$$

Solution: Let $x+2=\tan \theta$, so that $d x=\sec ^{2} \theta d \theta$. The end-points are $-2+2=$ $\tan \theta \Rightarrow \theta=0$ and $-1+2=\tan \theta \Rightarrow \theta=\frac{\pi}{4}$. The integral is

$$
\int_{0}^{\frac{\pi}{4}} \frac{1}{\tan ^{2} \theta+1} \sec ^{2} d \theta=\int_{0}^{\frac{\pi}{4}} d \theta=\frac{\pi}{4}
$$

(c) (A Little Harder): Calculate $\int_{0}^{1} x^{3} \sqrt{1-x^{2}} d x$.

Answer: $\frac{2}{15}$
Solution: Method 1: Let $x=\sin (\theta)$, so that $d x=\cos (\theta) d \theta$. The end-points $x=0$ and $x=1$ become $\theta=0$ and $\theta=\pi / 2$. The integral becomes

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \sqrt{1-\sin ^{2} \theta} \cos (\theta) d \theta=\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{2} \theta d \theta
$$

Since the \sin has an odd power we use the identity $\sin ^{2} \theta=1-\cos ^{2} \theta$ to get

$$
\int_{0}^{\frac{\pi}{2}} \sin (\theta)\left(1-\cos ^{2} \theta\right) \cos ^{2} \theta d \theta
$$

Anti-differentiate with the substitution $w=\cos \theta, d w=-\sin (\theta) d \theta$ to get

$$
\left[\frac{-1}{3} \cos ^{3} \theta+\frac{1}{5} \cos ^{5} \theta\right]_{0}^{\frac{\pi}{2}}=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}
$$

Method 2: Write the integral as

$$
I=\int_{0}^{1} x^{2} \sqrt{1-x^{2}}(x d x)
$$

Set $u=1-x^{2}$, so that $x d x=-d u / 2$. Since $x=0$ and $x=1$ map to $u=1$ and $u=0$, we use $x^{2}=1-u$ and get

$$
I=-\frac{1}{2} \int_{1}^{0}(1-u) u^{1 / 2} d u=\frac{1}{2} \int_{0}^{1}\left(u^{1 / 2}-u^{3 / 2}\right) d u=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{2}{15} .
$$

Riemann Sum, FTC, and Volumes

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i}{n^{2}} e^{-i^{2} / n^{2}}
$$

by first writing it as a definite integral. Then, evaluate this integral.
Answer: $\int_{0}^{1} 2 x e^{-x^{2}} d x=-\frac{1}{e}+1=1-e^{-1}$.
Solution: We identify $a=0, b=1, \Delta x=\frac{1}{n}, x_{i}=\frac{i}{n}$, and $f\left(x_{i}\right)=2 x_{i} e^{-x_{i}^{2}}$. This yields

$$
S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i}{n^{2}} e^{-i^{2} / n^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{0}^{1} 2 x e^{-x^{2}} d x
$$

To calculate the integral we let $u=x^{2}$, so that $d u=2 d x$. The end-points in terms of u are 0 and 1 . Then

$$
S=\int_{0}^{1} e^{-u} d u=\left[-e^{-u}\right]_{0}^{1}=-\frac{1}{e}+1=1-e^{-1}
$$

(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x} e^{-t} d t$ and $g(x)=\sqrt{F\left(x^{2}\right)}$. Calculate $g^{\prime}(2)$.

$$
\text { Answer: } \frac{2 e^{-4}}{\sqrt{1-e^{-4}}}
$$

Solution: The chain rule implies that

$$
g^{\prime}(x)=\frac{1}{2 \sqrt{F\left(x^{2}\right)}} F^{\prime}\left(x^{2}\right)(2 x)
$$

By the fundamental theorem of calculus, $F^{\prime}\left(x^{2}\right)=e^{-x^{2}}$. We can calculate

$$
F(x)=\left[-e^{-t}\right]_{0}^{x}=-e^{-x}+1
$$

Together we have

$$
g^{\prime}(x)=\frac{x e^{-x^{2}}}{\sqrt{-e^{-x^{2}}+1}} .
$$

Evaluating at $x=2$ we get $g^{\prime}(2)=\frac{2 e^{-4}}{\sqrt{1-e^{-4}}}$. Alternatively, we could first compute $g(x)=\sqrt{-e^{-x^{2}}+1}$ and use the chain rule to differentiate.
(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=(x-2)^{2}$ and $y=2-(x-2)^{2}$ about the horizontal line $y=-2$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{1}^{3}\left[\left(4-(x-2)^{2}\right)^{2}-\left((x-2)^{2}+2\right)^{2}\right] d x
$$

Solution:

The curves intersect when $(x-2)^{2}=2-(x-2)^{2}$ which occurs at $(x-2)^{2}=1$ so that $x-2= \pm 1$. This gives $x=1$ and $x=3$. The outer radius is $r_{2}(x)=$ $2-(x-2)^{2}-(-2)=4-(x-2)^{2}$ and the inner radius is $r_{1}(x)=(x-2)^{2}-(-2)$. The volume of revolution is given by the formula

$$
V=\pi \int_{1}^{3}\left(r_{2}^{2}(x)-r_{1}^{2}(x)\right) d x
$$

4. (a) 2 marks Plot the finite area enclosed by $4 y^{2}=8-x$ and $y=x / 4$.

Solution: The area is the enclosed region between the blue and red curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Answer: $\int_{-2}^{1}\left(8-4 y^{2}-4 y\right) d y$.
Solution: To find the intersection points we set $x=4 y$ and $4 y^{2}=8-4 y$. This yields

$$
0=4\left(y^{2} \not-y-2\right)=4(y+2)(y-1),
$$

so that $y=1$ and $y=-2$. We label $x_{T}=8-4 y^{2}$ (red curve) and $x_{B}=4 y$ (blue curve), and observe that $x_{T}>x_{B}$ on $-2<y<1$. The area is best calculated as an integral in y, so that $A=\int_{-2}^{1}\left(x_{T}-x_{B}\right) d y=\int_{-2}^{1}\left(8-4 y^{2}-4 y\right) d y$.
5. A solid has as its base the region in the $x y$-plane between $y=1-x^{2} / 16$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are isosceles right triangles (i.e. $45-45-90$ triangles) with the longest side (i.e. the hypoteneuse) in the base.
(a) 4 marks Write a definite integral that determines the volume of the solid.

$$
\text { Answer: } \frac{1}{4} \int_{-4}^{4}\left(1-\frac{x^{2}}{16}\right)^{2} d x
$$

Solution: The intersection points with the x-axis are $x= \pm 4$. This gives, $V=\int_{-3}^{3} A(x) d x$ as the volume, where $A(x)$ is the cross-sectional area of the solid at position x. This cross-section is a $45-45-90$ triangle that has area $A(x)=[y(x)]([y(x)] / 2) / 2=[y(x)]^{2} / 4$. Here we have used the fact that the area of a $45-45-90$ triangle with baselength b is $b h / 2$ where $h=b / 2$ is the altitude of the triangle. This gives, $V=\frac{1}{4} \int_{-4}^{4}\left(1-\frac{x^{2}}{16}\right)^{2} d x$.
(b) 2 marks Evaluate the integral to find the volume of the solid.
Answer: $\frac{16}{15}$.

Solution: By symmetry we compute twice the volume between 0 and 4,

$$
V=\frac{1}{2} \int_{0}^{4}\left(1-\frac{x^{2}}{16}\right)^{2} d x
$$

We use $x=4 u$ so that $d x=4 d u$ while $x=0$ and $x=4$ map to $u=0$ and $u=1$, respectively. This yields $V=2 \int_{0}^{1}\left(1-u^{2}\right)^{2} d u$, so that

$$
V=2 \int_{0}^{1}\left(1-2 u^{2}+u^{4}\right) d u=2\left(1-\frac{2}{3}+\frac{1}{5}\right)=2 \frac{(15-10+3)}{15}=\frac{16}{15} .
$$

