First Name: \qquad Last Name: \qquad
Student-No: \qquad Section:

> Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int \frac{\sin (x)}{\sqrt{\cos (x)}} d x$ for $0<x<\pi / 2$.

$$
\text { Answer: } I=-2 \sqrt{\cos (x)}+C
$$

Solution: Let $u=\cos (x)$, so that $\sin (x) d x=-d u$. Then,

$$
I=-\int u^{-1 / 2} d u=-2 \sqrt{u}+C .
$$

Using $u=\cos (x)$ we get $I=-2 \sqrt{\cos (x)}+C$.
(b) Calculate the indefinite integral $\int \frac{x+1}{x^{2}+3 x} d x$ for $x>0$.

$$
\text { Answer: } \frac{\ln (|x|)}{3}+\frac{2 \ln (|x+3|)}{3}+C
$$

Solution: The denominator $x^{2}+3 x$ factorizes as $x(x+3)$. Thus, the partial fraction decomposition is $\frac{x+1}{x(x+3)}=\frac{A}{x}+\frac{B}{x+3}$.
Multiplying everything by $x(x+3)$ we get $x+1=A(x+3)+B x$, and by plugging in the values $x=0$ and $x=-3$ we obtain $A=\frac{1}{3}$ and $B=\frac{2}{3}$. Then

$$
\int \frac{x+1}{x^{2}+3 x} d x=\int\left(\frac{1}{3 x}+\frac{2}{3(x+3)}\right) d x=\frac{\ln (|x|)}{3}+\frac{2 \ln (|x+3|)}{3}+C .
$$

(c) (A Little Harder): Calculate the indefinite integral $\int x^{2} e^{-x} d x$.

$$
\text { Answer: } e^{-x}\left(-x^{2}-2 x-2\right)+C
$$

Solution: Let $u=x^{2}$ and $d v / d x=e^{-x}$. We calculate $d u / d x=2 x$ and $v=$ $-e^{-x}$, so that one step of integration by parts gives

$$
I=u v-\int v \frac{d u}{d x} d x=-x^{2} e^{-x}+\int 2 x e^{-x} d x
$$

Now we apply integration by parts again to $J=\int 2 x e^{-x} d x$ choosing $u=2 x$ and $d v / d x=e^{-x}$, obtaining

$$
J=u v-\int v \frac{d u}{d x} d x=-2 x e^{-x}+\int 2 e^{-x} d x=e^{-x}(-2 x-2)+C
$$

Plugging this into our first equation for I we get

$$
I=-x^{2} e^{-x}+J=e^{-x}\left(-x^{2}-2 x-2\right)+C .
$$

Definite Integrals

2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi / 2} \cos ^{3}(x) d x$.

Answer: $\frac{2}{3}$
Solution: Since the power of cosine is odd, we hold on to one copy of it and turn the rest into sines. We get

$$
\int_{0}^{\pi / 2} \cos ^{3}(x) d x=\int_{0}^{\pi / 2} \cos (x)\left(1-\sin ^{2}(x)\right) d x
$$

Now we can use the substitution $u=\sin (x)$. We have $d u / d x=\cos (x)$, and that $x=0$ and $x=\pi / 2$ map to $u=0$ and $u=1$. This yields,

$$
\int_{0}^{\pi / 2} \cos (x)\left(1-\sin ^{2}(x)\right) d x=\int_{0}^{1}\left(1-u^{2}\right) d u=\left[u-\frac{u^{3}}{3}\right]_{0}^{1}=\frac{2}{3}
$$

(b) Calculate $\int_{0}^{3} \frac{9 x^{2}}{x^{2}+9} d x$.

Solution: We first note that $\frac{x^{2}}{x^{2}+9}=1-\frac{9}{x^{2}+9}$. Then

$$
\int_{0}^{3} \frac{9 x^{2}}{x^{2}+9} d x=9 \int_{0}^{3}\left(1-\frac{9}{x^{2}+9}\right) d x=9 \cdot 3-81 \int_{0}^{3} \frac{1}{x^{2}+9} d x
$$

To solve the second integral we use the substitution $x=3 u$, so that

$$
\int_{0}^{3} \frac{1}{x^{2}+9}=\int_{0}^{1} \frac{3}{9\left(u^{2}+1\right)} d u=\left[\frac{\arctan (u)}{3}\right]_{0}^{1}=\frac{\pi}{12}-0
$$

Plugging this back into the first equation we get

$$
\int_{0}^{3} \frac{9 x^{2}}{x^{2}+9} d x=27-\frac{27 \pi}{4}
$$

(c) (A Little Harder): Calculate $\int_{1}^{e^{2}} \frac{\ln x}{x^{2}} d x$.

Answer: $1-\frac{3}{e^{2}}$
Solution: We use integration by parts, picking $d v / d x=\frac{1}{x^{2}}$ and $u=\ln x$. We compute $v=-\frac{1}{x}$ and $d u / d x=\frac{1}{x}$. Thus applying the IBP formula we get

$$
I=u v-\int v \frac{d u}{d x} d x=\left[-\frac{\ln x}{x}\right]_{1}^{e^{2}}+\int \frac{1}{x^{2}} d x=-\frac{2}{e^{2}}+\left[-\frac{1}{x}\right]_{1}^{e^{2}}=1-\frac{3}{e^{2}} .
$$

Riemann Sum, FTC, and Volumes

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the infinite sum

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}} \sqrt{1+\frac{i^{3}}{n^{3}}}
$$

by first writing it as a definite integral. Then, evaluate this integral.
Answer: $\frac{2}{3}(2 \sqrt{2}-1)$.
Solution: We try to pick $\Delta x=\frac{1}{n}, a=0, b=1, x_{i}=\frac{i}{n}$, so we have to write the summand in the form $\Delta x f\left(\frac{i}{n}\right)$. By collecting a $\frac{1}{n}$ in the expression we get

$$
\begin{aligned}
& \frac{3}{n}\left(\frac{i}{n}\right)^{2} \sqrt{1+\left(\frac{i}{n}\right)^{3}} \text { so we have } f(x)=3 x^{2} \sqrt{1+x^{3}}, \text { and thus } \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3 i^{2}}{n^{3}} \sqrt{1+\frac{i^{3}}{n^{3}}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}\right)=\int_{0}^{1} 3 x^{2} \sqrt{1+x^{3}} d x .
\end{aligned}
$$

Using the substitution $u=1+x^{3}$ we get

$$
\int_{0}^{1} 3 x^{2} \sqrt{1+x^{3}} d x=\int_{1}^{2} \sqrt{u} d u=\frac{2}{3}\left[u^{3 / 2}\right]_{1}^{2}=\frac{2}{3}(2 \sqrt{2}-1) .
$$

(b) For $x \geq 0$ define $F(x)$ and $g(x)$ by $F(x)=\int_{0}^{x} \cos ^{2}(t) d t$ and $g(x)=x F\left(x^{2}\right)$. Calculate $g^{\prime}(\sqrt{\pi})$.

Answer: $\frac{5}{2} \pi$
Solution: By the product rule, chain rule, and FTC I we have

$$
g^{\prime}(x)=F\left(x^{2}\right)+2 x^{2} F^{\prime}\left(x^{2}\right)=F\left(x^{2}\right)+2 x^{2} \cos ^{2}\left(x^{2}\right) .
$$

Setting $x=\sqrt{\pi}$, we get $g^{\prime}(\sqrt{\pi})=F(\pi)+2 \pi \cos ^{2}(\pi)=F(\pi)+2 \pi$. Now,

$$
F(\pi)=\int_{0}^{\pi} \cos ^{2}(t) d t=\int_{0}^{\pi} \frac{1+\cos (2 t)}{2} d t=\frac{1}{2}\left[t+\frac{\sin (2 t)}{2}\right]_{0}^{\pi}=\frac{\pi}{2} .
$$

So we conclude that $g^{\prime}(\sqrt{\pi})=\frac{\pi}{2}+2 \pi=\frac{5}{2} \pi$.
(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x=-y^{2}$ and $x=-4+y^{2}$ about the vertical line $x=2$. Do not evaluate the integral.

Answer: $V=\pi \int_{-\sqrt{2}}^{\sqrt{2}}\left(\left(6-y^{2}\right)^{2}-\left(2+y^{2}\right)^{2}\right) d y$.
Solution: The plot is as shown:

The red curve is $x=-y^{2}$, the blue curve is $x=-4+y^{2}$ and the green line is the axis of rotation $x=2$. The red and blue curves meet where $-y^{2}=-4+y^{2}$, which gives us $y= \pm \sqrt{2}$ and $x=-2$.
A slice of the rotational solid atheight y will be a circular crown with inner radius $r_{y}=2+y^{2}$ (the distance between $x=2$ and $x=-y^{2}$) and outer radius $R_{y}=6-y^{2}$ (the distance between $x=2$ and $x=-4+y^{2}$).
Thus the area of the slice will be

$$
A_{y}=\pi\left(R_{y}^{2}-r_{y}^{2}\right)=\pi\left(\left(6-y^{2}\right)^{2}-\left(2+y^{2}\right)^{2}\right) .
$$

This gives the volume $V=\pi \int_{-\sqrt{2}}^{\sqrt{2}}\left(\left(6-y^{2}\right)^{2}-\left(2+y^{2}\right)^{2}\right) d y$.
4. (a) 2 marks Plot the finite area enclosed by $y^{2}=x$ and $x=8-2 y$.

Solution: The area is the region enclosed between the blue and red curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. Do not evaluate the integral.

Answer: $A=\int_{-4}^{2}\left(8-2 y-y^{2}\right) d y$
Solution: The two curves meet when $y^{2}=8-2 y$, which has solutions $y=2,-4$. Seeing as how for both curves x is expressed as a function of y, we choose to write the area as an integral in the variable y, with $x_{B}(y)=y^{2}$ and $x_{T}(y)=8-2 y$.
By evaluating at $y=0$ we see that $x_{T}(y) \geq x_{B}(y)$ on the interval $[-4,2]$. Then we get the integral

$$
\int_{-4}^{2}\left[x_{T}(y)-x_{B}(y)\right] d y=\int_{-4}^{2}\left(8-2 y-y^{2}\right) d y
$$

Alternatively, as an integral in x, the area is

$$
A=2 \int_{0}^{4} \sqrt{x} d x+\int_{4}^{16}\left(4-\frac{x}{2}+\sqrt{x}\right) d x
$$

5. A solid has as its base the region in the $x y$-plane between $y=1-x^{2} / 9$ and the x axis. The cross-sections of the solid perpendicular to the x-axis are semi-circles with the diameter of the semi-circle in the base.
(a) 4 marks Write a definite integral that determines the volume of the solid.

Answer: $\quad V=\frac{\pi}{8} \int_{-3}^{3}\left(1-x^{2} / 9\right)^{2} d x$
Solution: The points of intersection with the x-axis are given by $x^{2} / 9=1$, so we get $x= \pm 3$.
A vertical slice of the solid at x will be a half circle whose diameter is $1-x^{2} / 9$, and thus will have area $A_{x}=\frac{\pi}{2}\left(\frac{1}{2}\left(1-x^{2} / 9\right)\right)^{2}$. Then the volume is given by

$$
V=\int_{-3}^{3} A_{x} d x=\int_{-3}^{3} \frac{\pi}{8}\left(1-x^{2} / 9\right)^{2} d x
$$

(b) 2 marks Evaluate the integral to find the volume of the solid.

Answer: $\frac{2}{5} \pi$
Solution: We simplify by using the substitution $u=x / 3$ so that

$$
V=\int_{-3}^{3} \frac{\pi}{8}\left(1-x^{2} / 9\right)^{2} d x=\frac{3 \pi}{8} \int_{-1}^{1}\left(1-u^{2}\right)^{2} d u
$$

Now we note that the function is even, so that

$$
V=\frac{3 \pi}{8} \int_{-1}^{1}\left(1-u^{2}\right)^{2} d u=\frac{3 \pi}{4} \int_{0}^{1}\left(1-u^{2}\right)^{2} d u
$$

Finally we expand the formula and compute the integral:

$$
V=\frac{3 \pi}{4} \int_{0}^{1}\left(1-u^{2}\right)^{2} d u=\frac{3 \pi}{4} \int_{0}^{1}\left(u^{4}-2 u^{2}+1\right) d u=\frac{3 \pi}{4}\left[\frac{u^{5}}{5}-\frac{2 u^{3}}{3}+u\right]_{0}^{1}
$$

We calculate that

$$
V=\frac{3 \pi}{4}\left(\frac{1}{5}-\frac{2}{3}+1\right)=\frac{2}{5} \pi .
$$

