\qquad
Student-No: \qquad Section:

Grade:

The remainder of this page has been left blank for your workings.

Indefinite Integrals

1. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate the indefinite integral $\int(\ln x)^{2} d x$ for $x>0$.

Answer: $x(\ln x)^{2}-2 x(\ln x-1)+C$
Solution: We do integration by parts with:

$$
\begin{aligned}
& u(x)=(\ln x)^{2} \Rightarrow u^{\prime}(x)=2 \frac{1}{x} \ln x \\
& v^{\prime}(x)=1 \Rightarrow v(x)=x \\
& \int(\ln x)^{2} d x=x(\ln x)^{2}-\int 2 \ln x d x
\end{aligned}
$$

and then again integration by parts on $\int \ln x d x$ with $u(x)=\ln x$ and $v^{\prime}(x)=1$, and finally get:

$$
\int(\ln x)^{2} d x=x(\ln x)^{2}-2 x(\ln x-1)+C
$$

(b) Calculate the indefinite integral $\int 3 x \sqrt{3-3 x} d x$ for $x<1$.

$$
\text { Answer: }-\frac{2}{5}(3-3 x)^{3 / 2}\left(\frac{2}{3}+x\right)+C
$$

Solution: We take $u(x)=3-3 x$, then we have $u^{\prime}(x)=-3$ and we replace $3 x$ by $3-u(x)$, such that we write

$$
I=\int 3 x \sqrt{3-3 x} d x=-\frac{1}{3} \int(-3) 3 x \sqrt{3-3 x} d x=-\frac{1}{3} \int(3-u) u^{1 / 2} u^{\prime} d x
$$

and apply substitution rule as:

$$
-\int(3-u) u^{1 / 2} u^{\prime} d x=-\left(\int 3 u^{1 / 2}-u^{3 / 2} d u\right)_{u=3-3 x}
$$

Anti-differentiating the simple polynomial function $3 u^{1 / 2}-u^{3 / 2}$ and eventually substituting $u(x)=3-3 x$, we finally get:

$$
I=-\frac{2}{3}\left((3-3 x)^{3 / 2}-\frac{1}{5}(3-3 x)^{5 / 2}\right)+C=-\frac{2}{5}(3-3 x)^{3 / 2}\left(\frac{2}{3}+x\right)+C
$$

Note that this problem can also be solved by IBP (but more challenging) with:

$$
\begin{aligned}
u(x) & =3 x \Rightarrow u^{\prime}(x)=3 \\
v^{\prime}(x) & =(3-3 x)^{1 / 2} \Rightarrow v(x)=\frac{2}{3}\left(\frac{-1}{3}\right)(3-3 x)^{3 / 2}=\frac{-2}{9}(3-3 x)^{3 / 2}
\end{aligned}
$$

such that

$$
\begin{aligned}
I & =3 x\left(\frac{-2}{9}\right)(3-3 x)^{3 / 2}-\int 3\left(\frac{-2}{9}\right)(3-3 x)^{3 / 2} d x \\
& =\left(-\frac{2}{3} x\right)(3-3 x)^{3 / 2}+\frac{2}{3} \int(3-3 x)^{3 / 2} d x
\end{aligned}
$$

Given that the anti-derivative of $\int(3-3 x)^{3 / 2} d x$ is $\frac{2}{5}\left(\frac{-1}{3}\right)(3-3 x)^{5 / 2}+C=$ $-\frac{2}{15}(3-3 x)^{5 / 2}+C$, we get:

$$
\begin{aligned}
I=(3-3 x)^{3 / 2}\left(-\frac{2}{3} x-\frac{4}{45}(3-3 x)\right)+C & =(3-3 x)^{3 / 2}\left(-\frac{4}{15}-\frac{2}{5} x\right)+C \\
& =-\frac{2}{5}(3-3 x)^{3 / 2}\left(\frac{2}{3}+x\right)+C
\end{aligned}
$$

(c) (A Little Harder): Calculate the indefinite integral $\int \tan ^{3}(6 x) \sec ^{3}(6 x) d x$.

$$
\text { Answer: } \frac{1}{30} \sec ^{5}(6 x)-\frac{1}{18} \sec ^{3}(6 x)+C
$$

Solution: We use the substitution $u(x)=6 x, u^{\prime}(x)=6$ to rewrite the indefinite integral as:

$$
\begin{aligned}
I=\int \tan ^{3}(6 x) \sec ^{3}(6 x) d x & =\frac{1}{6} \int 6 \tan ^{3}(6 x) \sec ^{3}(6 x) d x \\
& =\frac{1}{6}\left(\int \tan ^{3} u \sec ^{3} u d u\right)_{u=6 x}
\end{aligned}
$$

Then it is classical trigonometric integral, we hold $\tan u \sec u$, replace $\tan ^{2} u$ by $\sec ^{2} u-1$, and do another substitution $v(u)=\sec u, v^{\prime}(u)=\tan u \sec u$ to get:
$I=\frac{1}{6} \int\left(v^{2}-1\right) v^{2} v^{\prime} d u=\frac{1}{6}\left(\int\left(v^{2}-1\right) v^{2} d v\right)_{v=\sec u}=\frac{1}{6}\left[\frac{1}{5} v^{5}-\frac{1}{3} v^{3}\right]_{v=\sec u}+C$
Finally we substitute $v=\sec u$ and $u=6 x$, which boils down to substituting $v=\sec (6 x)$ to establish that:

$$
I=\frac{1}{30} \sec ^{5}(6 x)-\frac{1}{18} \sec ^{3}(6 x)+C
$$

Definite Integrals

2. 8 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Calculate $\int_{0}^{\pi} 3 \sin ^{3} x d x$.

Answer: 4

Solution: This is a trigonometric integral that is calculated as:

$$
I=\int_{0}^{\pi} 3 \sin ^{3} x d x=3 \int_{0}^{\pi} \sin x \sin ^{2} x d x=3 \int_{0}^{\pi} \sin x\left(1-\cos ^{2} x\right) d x
$$

which gives:

$$
I=3\left[-\cos x+\frac{\cos ^{3} x}{3}\right]_{0}^{\pi}=\left[\cos ^{3} x-3 \cos x\right]_{0}^{\pi}=(-1+3)-(1-3)=4
$$

(b) Calculate $\int_{1}^{2} \frac{x-1}{\sqrt{2 x+1-x^{2}}} d x$.

$$
\text { Answer: } \sqrt{2}-1
$$

Solution: We can rewrite $2 x+1-x^{2}$ as $2-(x-1)^{2}$ and use a trigonometric substitution as

$$
\begin{aligned}
& x-1=\sqrt{2} \sin \theta, \quad x^{\prime}(\theta)=\frac{d x}{d \theta}=\sqrt{2} \cos \theta \\
& x=1 \Rightarrow \theta=0 \quad, \quad x=2 \Rightarrow \theta=\pi / 4
\end{aligned}
$$

to get:

$$
I=\int_{1}^{2} \frac{x-1}{\sqrt{2 x+1-x^{2}}} d x=\int_{0}^{\pi / 4} \frac{\sqrt{2} \sin \theta}{\sqrt{2-2 \sin ^{2} \theta}} \sqrt{2} \cos \theta d \theta
$$

Now we replace $\sqrt{1-\sin ^{2} \theta}$ by $\sqrt{\cos ^{2} \theta}=|\cos \theta|=\cos \theta$ as $\cos \theta$ is positive on $[0, \pi / 4]$ and finally calculate:

$$
I=\sqrt{2} \int_{0}^{\pi / 4} \sin \theta d \theta=\sqrt{2}[-\cos \theta]_{0}^{\pi / 4}=\sqrt{2}-1
$$

Note that this problem can also be solved by standard substitution: $u(x)=$ $2 x+1-x^{2}, u^{\prime}(x)=2-2 x=-2(x-1), u(1)=2, u(2)=1$ as

$$
\int_{1}^{2} \frac{x-1}{\sqrt{2 x+1-x^{2}}} d x=-\frac{1}{2} \int_{1}^{2} \frac{-2(x-1)}{\sqrt{2 x+1-x^{2}}} d x=-\frac{1}{2} \int_{1}^{2} u^{\prime} u^{-1 / 2} d x
$$

$$
\begin{aligned}
& \text { and then } \\
& \qquad-\frac{1}{2} \int_{1}^{2} u^{\prime} u^{-1 / 2} d x=-\frac{1}{2} \int_{2}^{1} u^{-1 / 2} d u=\left[-u^{1 / 2}\right]_{2}^{1}=-1+2^{1 / 2}
\end{aligned}
$$

Riemann Sum and FTC

3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
(a) Which definite integral corresponds to $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i \cos \left(\frac{i^{2}}{n^{2}}+1\right)}{n^{2}}$?
(A) $2 \int_{0}^{1} x \cos \left(x^{2}+1\right) d x$
(B) $\int_{0}^{2} x \cos \left(x^{2}+1\right) d x$
(C) $\int_{0}^{1} x \cos \left(x^{2}+1\right) d x$
(D) $2 \int_{0}^{1} \sqrt{x} \cos (x+1) d x$
(E) $\int_{0}^{2} \sqrt{x} \cos (x+1) d x$

Answer: A
Solution: Pick $x_{i}=\frac{i}{n}$, so $x_{0}=0, x_{n}=1$ and $\Delta x=\frac{1}{n}$. Then we can rewrite the summation as:

$$
2 \sum_{i=1}^{n} x_{i} \cos \left(x_{i}^{2} \star 1\right) \Delta x
$$

which corresponds to the Right Riemann Sum for option (A).
(b) Define $F(x)$ and $g(x)$ by $F(x)=\int_{x}^{2} \ln t d t$ and $g(x)=x^{2} F(x)$ for $x>1$. Calculate $g^{\prime}(1)$.

Answer: $4 \ln 2-2$
Solution: We use the product rule to get: $g^{\prime}(x)=2 x F(x)+x^{2} F^{\prime}(x)$.
By FTC I, we get $F^{\prime}(x)=-\ln x$, such that:

$$
g^{\prime}(x)=2 x \int_{x}^{2} \ln t d t-x^{2} \ln x
$$

Since $\ln 1=0$, we get:

$$
g^{\prime}(1)=2 \cdot 1 \cdot \int_{1}^{2} \ln t d t=2 \cdot \int_{1}^{2} \ln t d t
$$

By IBP, we calculate:

$$
\int_{1}^{2} \ln t d t=[t \ln t]_{1}^{2}-\int_{1}^{2} 1 d t=2 \ln 2-1
$$

and get $g^{\prime}(1)=4 \ln 2-2$.
(c) Let $F(x)=\int_{x^{2}}^{x^{3}} 6 e^{t^{2}} d t$. Find the equation of the tangent line to the graph of $y=F(x)$ at $x=1$. Tip: recall that the tangent line to the graph of $y=F(x)$ at $x=x_{0}$ is given by the equation $y=F\left(x_{0}\right)+F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.

$$
\text { Answer: } y=6 e(x-1)
$$

Solution: We first write $F(x)$ for any real number c as:

$$
F(x)=-\int_{c}^{x^{2}} 6 e^{t^{2}} d t+\int_{c}^{x^{3}} 6 e^{t^{2}} d t
$$

Then use FTC I and the chain rule to get:

$$
F^{\prime}(x)=-6 e^{x^{4}} 2 x+6 e^{x^{6}} 3 x^{2}
$$

Then we calculate $F(1)$ and $F^{\prime}(1)$, we get $F(1)=\int_{1}^{1} 6 e^{t^{2}} d t=0$ and $F^{\prime}(1)=6 e$, and finally the equation of the tangent $y-F(1)=F^{\prime}(1)(x-1)$ becomes

$$
y=6 e(x-1)
$$

Areas and volumes

Please write your answers in the boxes. Do not use absolute values in your expressions, always work out: (i) the outer function and the inner function for volumes or (ii) which function lies above the other function for areas.
4. 4 marks Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $y=x+5$ and $y=6 \sqrt{x}$ about the vertical line $x=-1$. Do not evaluate the integral.

$$
\text { Answer: } \pi \int_{6}^{30}(y-4)^{2}-\left(y^{2} / 36+1\right)^{2} d y
$$

Solution: Intersection points are given by $x+5=6 \sqrt{x}$.
Solving for x, we determine the 2 intersection points

$$
I_{1}=(1,6) \quad, \quad I_{2}=(25,30)
$$

We integrate in y, hence we write x as a function of y for the 2 curves and apply a shift of +1 , we finally establish:

$$
\pi \int_{6}^{30}(y-4)^{2}-\left(y^{2} / 36+1\right)^{2} d y
$$

5. (a) 2 marks Sketch by hand the finite area enclosed by $y^{2}=x+3$ and $y=1+x$

Answer:

Solution: The area is the region enclosed between the red and blue curves:

(b) 4 marks Write a definite integral with specific limits of integration that determines this finite area.

Answer: $\int_{-1}^{2}\left(-y^{2}+y+2\right) d y$
Solution: We first find the intersection between the two curves, given by the solution of:

$$
y^{2}-3=y-1 \Leftrightarrow(y-2)(y+1)=0 .
$$

We then label the curve $x_{R}=y^{2}-3$ and $x_{B}=y-1$ and notice that $x_{B} \geq x_{R}$ for $-1 \leq y \leq 2$. The area is therefore given by the following definite integral:

$$
A=\int_{-1}^{2}\left(y-1-y^{2}+3\right) d y=\int_{-1}^{2}\left(-y^{2}+y+2\right) d y
$$

(c) 2 marks Evaluate the integral to compute the area enclosed.

Answer: $\frac{9}{2}$

Solution:

$$
A=\left[-\frac{y^{3}}{3}+\frac{y^{2}}{2}+2 y\right]_{-1}^{2}=\frac{9}{2}
$$

